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Question for this INT Program

Coherent multiple dynamical description pPQCD + collinear
scattering of effects in the initial factorization + nuclear
£he-vee | = state of the cold PDF modification
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Glasma diagram (courtesy modification in nuclei

Raju Venugopalan)
* Two different approaches to describing effects in (semi-)hard processes in p+A collisions.

* Are they describing distinct phenomena? Or different ways of capturing the same physics?

e Specific question: can an “ordinary” pQCD+nPDF picture describe recent di-hadron/
jet saturation measurements at RHIC and LHC?

= |.e. does the way we extract nPDFs partially encode non-linear QCD phenomena?
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* Are they describing distinct phenomena? Or different ways of capturing the same physics?



Saturated gluon matter

H1 and ZEUS HERA I+11 10 parameter PDF Fit
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Mono-jet production In saturated nuclel

jet (from hard- jet
scattered parton)
proton proton proton nucleus
O-+0O O— 7%
jet

Parton in proton interacts
Ordinary pQCD di-jet coherently with saturated

production in, e.g., proton- gluons in nucleus

proton collisions _
= forward “mono-jet”



Di-hadron correlations at EIC -
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Focus on two recent measurements at RHIC and LHC

ATLAS PRC 100 (2019) 034903 STAR, PRL 129 (2022) 092501
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In both RHIC & LHC measurements: a depleted per-trigger yield,
interpreted as compatible with saturation

Both performed just in centrality-integrated p+A events

A challenging aspect of both measurements: no change in A@
correlation shape...



Focus on two recent measurements at RHIC and LHC

ATLAS PRC 100 (2019) 034903 STAR, PRL 129 (2022) 092501
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Question quantitatively explored in this talk:

How much of the effect in data is compatible with an “ordinary” universal

nuclear PDF (nPDF) modification in a collinear factorization picture?

Does that mean these effects aren’t saturation per se”? Or do nPDFs
partially encode “exotic” non-linear QCD physics?




Focus on two recent measurements at RHIC and LHC

ATLAS PRC 100 (2019) 034903
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Forward di-jets in p+Pb by ATLAS




ATLAS measurement selection

Select events with a
“trigger” jet at forward

rapidity, 2.7 <1 < 4.0

Measure the per-trigger yield
(also as a function of Ag)

1 d*Ni»
dy*dy*dprd
nucleus N, dyidyydprdpr

1 dN12
—p — Ci2(P1,1, P1,25 Y15 Y5) =
O—% 9=

(P11, P12, Y70 Y5) =

‘. Note the normalization by
.. number of trigger jets /V,

. The per-trigger normalization is sometimes
argued to “cancel out” any overall suppression In
the cross-section

Find the sub-leading jet in the
event, whatever rapidity it is at
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ATLAS measurement selection

Select events with a
“trigger” jet at forward Measure the per-trigger yield

rapidity, 2.7 < 17 < 4.0 (also as a function of Ag)
1 d*Ni;

dy*dy:dprd
proton nhucleus N, dyidy;dpr,1dpr,

1 dN12
—p Ci2(P1,1, P1,25 Y15 Y5) =
O—% 9= 3

(P11, P12, Y70 Y5) =

‘. Note the normalization by
.. number of trigger jets /V,

. The per-trigger normalization is sometimes
argued to “cancel out” any overall suppression In
the cross-section

Find the sub-leading jet in the

event, whatever rapidity it is at One can show that this is only a partial cancellation

and nPDF effects appear in this observable
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Forward di-jet data at LHC

—
ATLAS
2015 pp data, 25 pb’

VSNN =5.02 TeV

anti-k, R = 0.4 jets

2016 p+Pb data, 360 ub”' 2.7 <y*<4
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Modest but significant (~15%) suppression
for forward-forward pairs, which is not
present for forward-central pairs

Suppression compatible with saturation physics explanation, but no change in jet-jet

azimuthal correlation width (backup slide)




Simulation setup

* Not a “state of the art” calculation, but an MC study to gauge the size of nPDF effects

. Pythia 8.307, HardQCD, p . =14 GeV (safe for et 5 28 GeV)
pTrmn pT

 Benchmark per-trigger jet yields (left) and azimuthal correlation (right) with ATLAS p+p data

= Reasonable agreement on overall physics process, within the limitations of Pythia as
LO+ISR/FSR/PS generator
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X, (I.e. x, In a p+Pb collision)

Xa values probed

« Consider all events with a leading jet at forward (proton-going) rapidity, 2.7 < n < 4.0

Pythia 8.307,5.02 TeV, R=0.4jets ~ 28<p,_ <35 GeV,27 <7, <40 c 0.35 T ——— T —— .
T T VP work in progress 3. 3 10° 5 - Pythia 8.307, 5.02 TeV, R = 0.4 jets N
- k" . Sh= S 0.3 | o -
B = B 1 4 = - — Require forward leading jet: 7]
B = 1 7 - B _
10_1 B . = . i g 0.05 28<pT’1<35 GeV, 2.7 < 771<4.O =
= o l® . 3 111 - — Also require forward sub-leading jet: ]
- 1 4n2 - 5
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| — —
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-5 4 -3 -2 -1 0 1 2 3 4 5 107 1073 1072 107" 1
Mt 2 X, (1.e. x5 in a p+Pb collision)

Compare x, distribution for all events w/ a forward

The typical x, In the nucleus is _ ) )
jet vs. those which have two forward jets

then highly sensitive to the
rapidity of the sub-leading jet

These will have different average nPDF modification!
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Xa values probed

For example, for these kinematic selections, S T P;/thlial8l3lol;|502lTeIVIFaI’I—I (I)Illjets
using EPPS21NLO: % 0-31 —Require’forward Ie;\ding jet
. . . § 0.25:_ 28 < Pri< 35 GeV, 2.7 < n,.<4.0
Events with a forward leading jet (and no other i - — Also require forward sub-leading jet
specific requirement) have an overall Rpa of 0.89 > 28<p;,<35GeV,27<n,<40

The subset of these which also have a forward
sub-leading jet have an Rpa of 0.84

_ 0.05 DVP K i
These cancel only partially, and thus nPDF _Tthﬁ‘i__ﬂ__ WOTRITPIOFIEDS S
effects will give a suppressed per-trigger yield ~ 0o 1"0'43 ' "“*“Jf T

Rpa(dijet) / Rpaltrigger jet only) ~ 0.94

X, (1.e. x5 In a p+Pb collision)

Compare x, distribution for all events w/ a forward
jet vs. those which have two forward jets

These will have different average nPDF modification!



Per-trigger suppression

from EPPS21

&:ﬁ - p+Pb5.02 TeV, R=0.4jets, 2.7 < 1, lnz < 4.0 l -
o Use EPPS21NLO 197Au and free nucleon sets 2, 1.1 ¢ ATLASData —
through LHAPDFG, weighting Pythia events by Qj [ —— Pythia 8.307 + EPPS21NLO -
iorCia @ e, 0% :
= = B B e e s
 Evaluate 48 nuclear uncertainties, add In § 0'9; | | -
quadrature %: 0_8;_ + ¢ ¢ . _
e Systematically compare to ATLAS data in “g 0_72_ E
different pT,l ® pT,2 selections &"% E DVP work in progress E
B I I I I I |

0-6 <635 ® 2&353&45 ® 2&325 o, 5\4545 % & 2&3545 0 @, 5~4545 9 & 95.9,

p_. Range [GeV] ® P, Range [GeV]

* Surprising result: the nominal nPDF estimate is ~half of the observed effect in data!

= \When considering full theory + data uncertainties, the full suppression effect could be
described by an (“ordinary”, linear) nPDF modification picture
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A¢@ broadening from EPPS21?

* On the other hand, no significant change in
shape of A¢ distribution from nPDF effects

= Same pattern as in the data

 The nPDF picture “naturally” results in (1) a
suppression of the per-trigger yield, but (2) an
unmodified width of the correlation function
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p+Pb , pp
o 1l

Ratio of conditional yields /

Sensitivity to other nPDF set choice
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NCTEQ15WZ

Other (older) nPDF sets show a smaller impact, compatible with only part of the suppression

= Takeaway question: are some of the effects arising from non-linear QCD included in nPDF
extractions? Are these pictures overlapping or redundant?
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Focus on two recent measurements at RHIC and LHC

STAR, PRL 129 (2022) 092501

x107°
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Forward di-hadrons in p+Au by STAR




STAR measurement selection

1 i 7) O’
Select “trigger” 7*’s at Measure the per-trigger yield

forward rapidity, 2.6 <7 < 4.0 (also as a function of A¢)

C(A¢) — [Npair(A¢)/( Ntrig X A¢bln)]

proton nucleus
O—&
RO\ Like the ATLAS case, this observable can
RS, evaluated in an nPDF picture, but with caveats:
‘\:\\ = |[ooser connection to underlying (x, Q2) from
\‘ A using hadrons rather than jets
= challenge to evaluate some nPDF sets in
Consider “associated” 7%’s in regions Q2 down to 1 GeV?

the same rapidity region, = STAR results are after subtracting pedestal

whatever the A¢ between them contribution in data - non-trivial to model
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Simulation setup

* Pythia 6.428 Tune 370 (CTEQG6L1), ISUB 95 and 96

(*) To protect from occasional negative nPDF values, | evaluate
at Q2 = max(Q2?, 1.8 GeV?) as suggested in EPPS paper

= Chosen to match STAR Supplementary Material - many thanks to Xiaoxuan Chu (BNL)
= Events weighted using EPPS21 Au-197 and Al-27 sets to evaluate nPDF effects(”)

C(A0)

x107°

:-l-cb

\'Sny = 200 GeV, NN — X
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Per-trigger yield C(A¢)
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-+ EPPS21 NLO Al-27 O E
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— X _
N + e _
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— O O =
— ¥ ¥ =
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— e ’ @ C
e -
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= |mperfect description of correlation function shape, but clear (modest) impact from nPDF effects
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Area suppression from EPPS21

B | | | | .I | | | | | | | | | | | | | | I_
o S 1.4 p+Au200GeV, 2.6 < 1 <4, p" =152 GeV, p== = 1-1.5 GeV—
» Evaluate EPPS21 nuclear uncertainties, = - -
. S ~ ¢ STAR Data i
systematically compare to STAR data S 1ok | i
S =L =—— Pythia 6.428 Tune 370 + EPPS21NLO .
? N -

= ON rticular lection shown S 1=
one particular p ; @ pt , selection sho g i -
here, for both p+Al and p+Au cases - - TI -
(qu T |
s i -
= there are may be other (unevaluated) 8 06l -
uncertainties related to my pedestal/peak S i == -
separation S 04 _‘
(S i -
_ DVP work in progress i

0.2 ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ]
1 2 3 4 5 6

1/3
* Again, a surprising result: the estimated effect size within an nPDF picture is ~half of A

the observed suppression effect in p+Au data! (And the ~entire effect in p+Al)

= Takeaway question: does this mean there is less saturation than we think? Or — is the
universal, nPDF-based approach partially including some of the effects of saturation on
hard process dynamics? How do we disentangle this ...
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Comment #1 ...

Zheng, et al, PRD 89 (2014) 074037  * An earlier study found that EPS09 (e.g.) predicts

] T T e oo = very modest effects in di-hadron correlations at EIC
0.4 - °© °p -
A ©_eAunosat - = EPPS21 has significantly stronger gluon
0al Uncertainty from EPS09 - shadowing, based on LHC data
. 2 = probably interesting to re-evaluate with updated
0.2 P — knowledge of EIC kinematics & global nPDF
- \ - sets?
0.1 4 ,0 A — o L6
: . “ g : 14 % 1.4
Y . = » e, 1.2 D 1.2
0 [eoes | [%0eed® " | | ® 1.0 S 1.0
-1 0 1 2 3 4 14 0.8 I 0.8
A¢ [rad] M 0.6 —pD 0.6
=04 2047
=02 £s02
IR TTTTT MATERTTIT IR . = 0.0 FoomniiEs
10* 107 107 10" 1 10" 10° 10% 10"
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Comment #2 ...

CLAS, PRL 129 (2022) 182501

g— 1-1 [ [ [ [ | [ [ [ [ [ [ [ [ | [ [ [ [ | [ [ [ [ | [ [ [ [ | [
LN - |
Pighs @ EREVE S RERHERS o i i
5 | A i
Highlights Recent Accepted Collections Authors Referees Search Press Jalelell]s - 1.0— ]
Editorial Team N N‘ : :
e | -
Observation of Azimuth-Dependent Suppression of g 0.9 —
Hadron Pairs in Electron Scattering off Nuclei < = s
S.J. Paul et al. (CLAS Collaboration) o B i

Phys. Rev. Lett. 129, 182501 — Published 25 October 2022 0.8

- : T~
0.7 ' -
S @& This work, C — GIiBUU, C _
Measurement in fixed o.c ¥ Thiswork,Fe  -- GiBUU, Fe i -
"L ¥ Thiswork, Pb —- GiBUU, Pb -
target e + A at JLab | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||

0.0 0.5 1.0 1.5 2.0 2.5 3.0

|Ad| [rad]

Very different kinematics, different way of presenting the data ... but the

same physics effects (at much larger x,).

How could saturation possibly play a role here? How do we understand

together with RHIC (and future EIC) data”?
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Comment #3 ...

Multiplicity-based centrality selections for hard processes have turned out
to be sensitive to all kinds of (unintended) physics.

PHYSICAL REVIEW C 110, LO11901 (2024)

large (small) activity events. A recent measurement by the PHENIX Collaboration compared the yield of neutral
pion and direct photon production in d + Au collisions, under the argument that the photon yields correct for such
biases, and the difference between the two species is thus attributable to final-state effects (i.e., jet quenching). 07
The main finding suggests a significant degree of jet quenching for hard processes in small systems. In this
paper, I argue that the particular photon and pion events selected by PHENIX arise from proton configurations
with significantly different Bjorken-x distributions, and thus are subject to different magnitudes of modification O . 6
in the color fluctuation model. Using the results of a previous global analysis of data from the BNL Relativistic
Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC), I show that potentially all of the

%,y :Inl<0.35,p_=7.5-18 GeV +

¢ PHENIX Data
--=- Color Fluctuation Model (all Rys, g = 1)
— Color Fluctuation Model (x0.90 normalization)

(Wed.)

| letter
N 1 . 2 B [ L | LI | | L | L I | l 1 i
% - . -
Contribution to differential 7° and ;. modification in small systems from color fluctuation effects & u d+Au, 200 GeV
\_3 1 . 1 __ B S .. ]
Dennis V. Perepelitsa®’ 3z - DI
Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, USA m 1 | S BT .
~~— — T TT====== M o . F N Fahyg ::::""' """""""""""
M (Received 6 May 2024; accepted 20 June 2024; published 1 July 2024) : — *\ + 1" F---.. .
§ B — reaa., - (]
A major complication in the search for jet quenching in proton- or deuteron-nucleus collision systems is the ~ O 9 [ \‘ I u rl I
presence of physical effects which influence the experimental determination of collision centrality in the presence % — || .
of a hard process. For example, in the proton color fluctuation picture, protons with a large Bjorken-x (x = 0.1) \n | M I't r a n kOV
parton interact more weakly with the nucleons in the nucleus, leading to a smaller (larger) than expected yield in O . 8 — o

pion-to-photon difference in PHENIX data can be described by a proton color fluctuation picture at a quantitative O ] 5 o e e e Lo P Lo P e L
level before any additional physics from final-state effects is required. This finding reconciles the interpretation O 2 4 6 8 1 O 1 2 1 4 1 6 1 8 20
of the PHENIX measurement with others at RHIC and LHC, which have found no observable evidence for jet

quenching in small systems. < >

coll
DOI: 10.1103/PhysRevC.110..011901

Recent example: PHENIX 7'/ Y4ir SUPpression in d+Au collisions - conjectured to be

small system energy loss - also compatible with a Iarge—xp “color fluctuation” picture
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Conclusion

1.

Q (q\| | | | x | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
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* Fact: A straightforward application of nPDF effects to LHC p+Pb di-jet and RHIC p+Au di-
hadron data is compatible with a significant fraction of reported “saturation” signals

= Should a collinear factorization + nPDF picture be expected to describe this? What are the
limitations of these approaches?

= n.b. EPPS21 authors note that they do not observe any “inconsistency” in the input
datasets — nuclear data are compatible with a universal modification in (x, Q2).
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Early measurements in d+Au at RHIC

PHENIX PRL 107 (2011) 172301
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Strongly suppressed/ broaden%d (;CIWEIY' Strong suppression of per-trigger
side correlation in d+Au — w-n- + X yields for forward di-hadrons

e Dramatic effects seen STAR and PHENIX!

* Note: both of these historical measurements involve centrality selections in p/d+A collisions,
which we would be more cautious about if performed now (discussed later)
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Forward di-jet data at LHC - angular broadening
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distribution between forward di-

No significant change in width
jet pairs in p+p and p+Pb J J

observed for any kinematic selection

 ATLAS sees a change in per-trigger yield, but via an overall suppression that doesn’t
change the width of the correlation function

= Together, these features of the data are a challenge for saturation-based explanations
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