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The f0(1370)

(1200-1500)-i(150-250) MeV

- PDG1996 until 2021: Same T-matrix pole                   

- Main problem: Strong model dependence in determinations from data. 

Use of specific models or parameterizations and dynamical asumptions

- PDG1984- Still called 𝜖𝜖 1300

- PDG1986- f0(1300) “averages meaningless”

- PDG1988- f0(1400), crude estimates

- PDG1994- f0(1370) (due to Crystal Barrell)

- f0(1370) candidate to complete the controversial scalar nonet above 1 GeV,
Interesting for studies of lightest  glueball and its mixing scheme.                               

- “Unfortunately, regardless of the year-long efforts, the scalar isoscalar spectrum is still not fully 
resolved: e.g. there is still an ongoing debate whether the f0(1370) exists or not ...”
S. Ropertz, C. Hanhart and B. Kubis, Eur. Phys. J. C 78 (2018) no.12, 1000.

- “However, the existence of f0(1370) is not beyond doubt”, and “As a conclusion, we do not consider the 
f0(1370) as established resonance”. E. Klempt and A. Zaitsev, Phys. Rept. 454 (2007), 1 
One of their main concerns is “the absence of any measured f0(1370) phase motion

- However, it is by far the worst determined scalar above 1 GeV. Moreover:



• Large model-dependences: 
- naïve models often used for parameterizations and resonance poles
- Specific parameterizations with a priori relations between pole and residue
- Isobars
- Breit Wigners
- Choice of decay channels
- Multi body channels as quasi two body…
- “tree level dynamics” (resonances or lagrangian constants)

Problems

• Data: extracted from πN→ππN, assuming one pion exchange.
Large systematic uncertainties and inconsistencies.

- Not evident or present in original 𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋 experiments in the 70’s but found in later
models. (Froggat at al. Martin et al., Au, Morgan &Pennington, Kaminski, Lesniak & Maillet, Tornqvist, Janssen, Albaladejo&  Oller, etc…)  

- Seen in other reactions (from pp scattering, heavier meson decays, etc), but widely different
pole determinations

- PDG still quotes Breit-Wigner parameters. No partial widths. Surprisingly…

lists KK-mode masses>1350 MeV whereas many in 𝜋𝜋𝜋𝜋-mode down to 1200MeV



The f0(1370) controversy very very briefly. Most recent developments

- PDG2021: T-matrix pole sample

M-i Γ/2= (1280.6 ± 1.6 ± 47.4)− i(205.2 ± 1.7 ± 20.7) (𝑝𝑝𝑝̅𝑝, Crystal Barrell Collab. 2020)

M-i Γ/2= (1290 ± 50)−i(170−40+20) (𝑝𝑝𝑝̅𝑝, πN, Anisovich & Sarantsev 2009)

Latest two entries@PDG:

Very recently: 
M-i Γ/2= (1370 ±40)− i(195 ±20)   (J/ψ, 𝑝𝑝𝑝̅𝑝, πN, …Sarantsev,Denisenko,Thoma, Klempt PLB816 2021)
No evidence in J/ψ radiative decays (BESIII). Too tiny glueball component?



Reduced Model dependence or independence for pole determinations

This work:

Data-Driven Forward Dispersion Relations (FDR)
Or partial-wave dispersion relations (Roy or Roy-Steiner) 

(phase+elasticity)

We have already done this for the σ/f0(500), κ/K0*(700)
and for strange resonances below 2 GeV

Model independent constraints on data description
Enhanced precision

+
Analytic methods for the continuation to the 

complex plane in the contiguous sheet
avoiding specific parameterizations 

(only phase and elasticity)



• We choose to analyze meson-meson data because it has 
THE MOST STRINGENT ANALYTICITY CONSTRAINTS

- 1st Step:  Unconstrained fits to data
- 2nd Step: Check dispersion relations. Discard too bad data
- 3rd Step: Constrained fits to data
- 4th Step: Extract resonances with dispersive or analytic methods (This Work)

• We have already published dispersively Constrained Fits to Data (CFD): 

− 𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋 with Forward Dispersion relations and Roy equations
García Martin, Kaminski, JRP, Ruiz de Elvira, Yndurain, Phys.Rev.D 83 (2011) 074004

− 𝜋𝜋𝜋𝜋 → 𝐾𝐾�𝐾𝐾 with Roy-Steiner Equations
JRP, A. Rodas,  Eur.Phys.J.C 78 (2018) 11, 897 & Phys.Rept. 969 (2022) 1-126



𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋 S0 wave: from uncostrained to constrained

Only sizable
change in 
f0(980) region

No clear resonance
shape in  f0(1370) 
region



We also constrained the other 𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋 S, P, D, F waves

Detailed analysis
of statistical and 
systematic errors



Fits for High 𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋 energies

JRP, F.J.Ynduráin. PRD69,114001 (2004)

Regge parametrizations of cross section data

Factorization

Above 1.42 GeV.



SECOND STEP: Check dispersion relations:  ππ→ππ
In general, data does not satisfy well DR. Sometimes very badly indeed

FDRs Roy GKPY



THIRD STEP: Use dispersion relations as constraints for the fits:  ππ→ππ
Very good fulfillment: Constrained Fits to Data

FDRs Roy GKPY



I=0,J=0, CFDSimilarly for ππ→KK Roy Steiner Equations JRP, A.Rodas, Eur.Phys.J. C78 (2018)

No clear resonance peak
in  f0(1370) region

I=0,J=0, Roy-Steiner eqs. Well satisfied up to 1.47 GeV



Data-Driven Dispersion Relations
on amplitude or partial waves  (phase+elasticity)

Analytic methods for continuation to complex plane
avoiding specific parameterizations

Model independent constraints on data description
Enhanced precision

+

FOURTH STEP: Extract resonances from dispersive or analytic methods



Analytic continuation to Contiguous Riemann sheet

Roy-like Dispersion relations provide model-independent analytic continuation to first
Riemann sheet

To reach the contiguous sheet in the inelastic case, we need an analytic continuation
to the second sheet by means of general analytic functions reproducing the Dispersion
Relation on the real axis or the upper-half complex plane.

For elastic resonances, contiguous sheet= second sheet and SII=1/SI

OK for σ/f0(500), κ/K0*(700), but NOT f0(1370), 

Several methods in the literature:
- Sequences of Padés
- Continued Fractions
- Conformal expansions
- Laurent-Pietarinen expansions
- etc…

These methods avoid specific parameterizations, have convergence theorems, etc…



Padé sequences

Almost model independent: Does not assume any particular functional form
But requires a few derivatives. There are powerful convergence theorems
If many derivatives needed, poor convergence
Based on previous works by P.Masjuan, J.J. Sanz Cillero, I. Caprini, J.Ruiz de Elvira, JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

CAVEAT: Requires higher order derivatives of the function to be continued

Still succesfully applied to determine strange resonances from πK scattering up to 1.8 GeV



Strange resonance poles from CFD: Using Padé sequences JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

The method can be used for inelastic resonances. Provides resonance parameters WITHOUT 
ASSUMING SPECIFIC FUNCTIONAL FORM. We only used our constrained data fits in the real 
axis. Note thatt these are  built piecewise, could be polynomials in some patches…
BUT the analytic continuation was made with Padé sequences. No model

Using Padé Sequences, the kappa:  
JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91

(670±18)-i(295± 28) MeV
Consistent with full dispersive value: (648±7)-i(280±16) MeV  



Continued fractions

We now use:

More stable and accurate than Padés, since no derivatives needed.
We have considered from 6 up to 50 terms or even more

When Padé sequences converge, perfect agreement
Actually, could be rewritten as a Padé

Once again, no specific simple functional form assumed



Pole from ππ→ ππ

Roy equations applicability proof only up to 1.1 GeV. (But see later). The f0(1370) liesbeyond  

However, Forward Dispersion Relations applicability up to 1.42 GeV in our fits.
Complication, we see the isoscalar-wave with all spins, J=0,2,…

f2(1270)

f0(1370) seen behind

Unfortunately, with just a few derivatives on the real axis, the Padé method does
not converge well behind the f2(1270).

But continued fractions provide nice and stable pole description

Even f0(1500) seen!!!, 
Although not partial-wave 
data used beyond 1.42 GeV
(Just a Regge description of
cross sections)



Forward Dispersion Relations ARE SIMPLE.

Complete isospin set of 3 forward dispersion relations for : 

Two s-u symmetric amplitudes. F0+≡ π0π+→π0π+, F00 ≡π0π0 →π0π0

One subtraction
Only depend on two isospin states. Positivity of imaginary part
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At threshold is the Olsson sum rule
Roy Eqs. 
written for partial waves
MUCH MORE CUMBERSOME



There are three independent FDRs: The most precise FDR is F00

Region of interest



We can test how well the continued fractions fare against the FDR output in the 
first Riemann sheet (in the conjugated region of interest)

The difference is less than 10% of the estimated uncertainty from continued fractions
Of course, we need the contiguous sheet in the lower-half plane. The upper-half plane is just a test.



Then we match the FDR output to continued fractions with N=6 to 50 and look for poles
in the lower-half plane of the second sheet. We find three: 

Remarkably stable against N and systematic uncertainties!

f2(1270)

f2(1270)

f0(1500)

f0(1500)

Masses

Widths

f2(1270)

f2(1270)

f0(1500)

f0(1500)

Masses

Mass

Widths

Width

f0(1370)

f0(1370)



𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋 S0 wave: “Global fit” up to 2 GeV JRP, A.Rodas, J.Ruiz de ElviraEur.Phys.J.C 79 (2019) 12, 1008

Our “old” Constrained fit to data (CFD) was a “piece-wise”function up to 1.42 GeV
Recently we have provided a “Global Fit” in terms of analytic functions, 
consistent with the CFD and DR up to 1.4 GeV as well as in the complex plane
in the elastic region and the dispersive σ/f0(500) and f0(980) poles.

And continuously extended beyond 1.4 GeV to different data sets and f0(1500) scenarios

This “Global fit” is actually slightly better
with respect to Dispersion Relations



Pole from ππ→ ππ. FDR+CN

For ππ we use both inputs

- Piece-wise Constrained fit to data (CFD)

- 3 Global “Constrained fits to data”

Our final FDR+CN result covers them all



- Even though Roy-like Eqs. (GKPY) not rigorously valid above 1.1 GeV,
Their extrapolation is still pretty decent up to a few 100s MeV beyond.
If we extrapolate them to get the pole:
PERFECT CONSISTENCY
This confirms the scalar assignment

- If you want a simple analytic form consistent with data up to 2 GeV, dispersion relations up 
to 1.42 GeV and Roy eqs. applicability region in the complex plane, as well as the dispersive 
poles for σ/f0(500), f0(980) and this f0(1370), use our “Global fit”

Also, f0(1370) poles consistent with explicit pole in parameterization or with different
analytic continuation methods

Further checks

In addition, since f2(1270) not present in
partial wave, we can use the 
Padé sequence Method (𝑃𝑃𝑀𝑀𝑁𝑁)
for analytic continuation.
PERFECT CONSISTENCY



Roy-Steiner ππ→KK equations applicability proved up to 1.47 GeV
Nice because they constrain the relevant S0 partial wave

Unfortunately the f0(1370) couples even less strongly to KK

However, we always find a pole in the S0-wave around 1300 MeV, for both CFD solutions.

But large uncertainty completely dominated by choice of matching point tm
for Mushkelishvili-Omnés input in Roy-Steiner formalism. 

Pole from ππ→KK. Roy Steiner+CN



FINAL RESULTS:

“2σ” tension on the mass
between 𝜋𝜋𝜋𝜋 and KK modes

𝜋𝜋𝜋𝜋-mode lighter as hinted @PDG

The very high-mass region 1500 MeV of the PDG estimate is disfavored



Summary

• New method to determine resonance poles from data with
Forward Dispersion Relations and analytic continuation techniques
(instead of the usual partial-wave dispersion relations,  whose region of applicability is limited)

• f0(1370) pole also found in partial-wave Roy-Steiner equations from 𝜋𝜋𝜋𝜋 → 𝐾𝐾𝐾𝐾 data.
Less precise than previous one and within PDG estimate.                                

• Well suited for the inelastic region in 𝜋𝜋𝜋𝜋 scattering, yields a pole for the 
f0(1370), in the low-mass, larger-width region of the present PDG estimate.

We aimed at reducing the model dependence of resonance determinations

• Further consistency checks and simple parameterizations provided.

• Small “2σ” tension between the two determinations. (Already hints @ PDG)

• Given reduced model dependence this tension must be due to inconsistencies 
between 𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋 and 𝜋𝜋𝜋𝜋 → 𝐾𝐾𝐾𝐾 data sets.



SPARE SLIDES



few MeV difference in pole
Depending on different data 
above 1.4 GeV

How the f0(1500) influences the result?



𝜋𝜋𝜋𝜋 → 𝜋𝜋𝜋𝜋 S0 wave: “Global fit” up to 2 GeV

This “Global fit” is actually slightly better
with respect to Dispersion Relations

We will provide results for both





Non-ordinary spectroscopic classification

Lightest scalar SU(3) multiplets <2 GeV. Accepted picture at RPP

f0

κ/K*0(700)

a0(980)
f0 Singlet

Non-strange heavier!!
Hugely Inverted 𝒒𝒒�𝒒𝒒 hierarchy. 
Cryptoexotics? (R.Jaffe 1976)

σ/f0(500) and f0(980) octet/singlet mixtures
κ/𝐾𝐾0∗ (700) only recently “well established at PDG”
Only in 2021 on-line update “Needs Confirmation”

f0

K*0 (1430)

a0(1450)

One extra state f0(1370), f0(1500), f0(1710) for just one nonet above 1 GeV

f0 singlet f0

+ glueball?
Also, not quite 𝒒𝒒�𝒒𝒒 hierarchy

complicated mixtures
f0(1370) worst determined and still contested
because hard to see

Light scalar nonet <1 GeV:

Scalar nonet >1 GeV: 



UFD already goodConstarined SIMPLE FITS TO ππ→KK DATA, including systematic uncertainties.
Other waves

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)

34

UFD Inconsistent with 
HDR
If not constrained



JRP, A. Rodas PRD 2018 

gI
J =ππ → KK partial waves. We study (I,J)=(0,0),(1,1),(0,2)

fI
J = Kπ → Kπ partial waves. Taken from previous dispersive study

Δ(t) depend on higher waves
or on Kπ→Kπ.

Solve in descending J order
We have used models for higher waves, but give very small contributions

𝐺𝐺𝐽𝐽,𝐽𝐽𝐽
𝐼𝐼 (t,t’) =integral kernels, depend on a parameter

Lowest # of subtractions. Odd pw decouple from even pw. 

35

Integrals from
2π threshold !
“Unphysical region”

πK→πK  and ππ→KK Hyperbolic Dispersion Relations (HDR)



ππ→KK Hyperbolic Dispersion Relations (HDR)

For unphysical region below KK threshold, we used Omnés function

This is the form of our HDR: Roy-Steiner+Omnés formalism

We can now check how well these HDR are satisfied

36

Dominant source
oferror for f0(1370)



ππ→KK constrained consistent with Roy-Steiner eqs. JRP, A.Rodas, Eur.Phys.J. C78 (2018)

HDR S0-wave

HDR S0-wave

Two possible solutions for S0 wave

Constrained fits
are consistent with
Roy Steiner Eqs.
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