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The f,(1370)

- f,(1370) candidate to complete the controversial scalar nonet above 1 GeV,
Interesting for studies of lightest glueball and its mixing scheme.

- Main problem: Strong model dependence in determinations from data.

Use of specific models or parameterizations and dynamical asumptions

- PDG1984- Still called €(1300)
- PDG1986- f,(1300) “averages meaningless”
- PDG1988- f,(1400), crude estimates

- PDG1994- f,(1370) (due to Crystal Barrell)
PDG1996 until 2021: Same T-matrix pole

(1200-1500)-i(150-250) MeV

- However, it is by far the worst determined scalar above 1 GeV. Moreover:

- “Unfortunately, regardless of the year-long efforts, the scalar isoscalar spectrum is still not fully

resolved: e.g. there is still an ongoing debate whether the f,(1370) exists or not ...”
S. Ropertz, C. Hanhart and B. Kubis, Eur. Phys. J. C 78 (2018) no.12, 1000.

- “However, the existence of f0(1370) is not beyond doubt’, and “As a conclusion, we do not consider the
f0(1370) as established resonance”. E. Klempt and A. Zaitsev, Phys. Rept. 454 (2007), 1
One of their main concerns is “the absence of any measured f,(1370) phase motion



Problems

- Not evident or present in original nr — nr experiments in the 70’s but found in later

mOdels. (Froggat at al. Martin et al., Au, Morgan &Pennington, Kaminski, Lesniak & Maillet, Tornqvist, Janssen, Albaladejo& Oller, etc...)

» Data: extracted from TN—T1TN, assuming one pion exchange.
Large systematic uncertainties and inconsistencies.

- Seen in other reactions (from pp scattering, heavier meson decays, etc), but widely different
pole determinations

« Large model-dependences:
- naive models often used for parameterizations and resonance poles
- Specific parameterizations with a priori relations between pole and residue
- Isobars
- Breit Wigners
- Choice of decay channels
- Multi body channels as quasi two body...
- “tree level dynamics” (resonances or lagrangian constants)

- PDG still quotes Breit-Wigner parameters. No partial widths. Surprisingly...

lists KK-mode masses>1350 MeV whereas many in rr-mode down to 1200MeV



The fy(1370) controversy very very briefly. Most recent developments

- PDG2021: T-matrix pole sample
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Latest two entries@PDG:

M-i /2= (1280.6 £ 1.6 £ 47.4)- 1(205.2 £ 1.7 £ 20.7) (pp, Crystal Barrell Collab. 2020)
M-i [/2= (1290 * 50)-i(170139) (pp, TN, Anisovich & Sarantsev 2009)
Very recently:

M-i /2= (1 370 i40)— I(1 95 120) (J/y, pp, TN, ...Sarantsev,Denisenko, Thoma, Klempt PLB816 2021)
No evidence in J/y radiative decays (BESIII). Too tiny glueball component?



This work:

Data-Driven Forward Dispersion Relations (FDR)
Or partial-wave dispersion relations (Roy or Roy-Steiner)
(phase+elasticity)

Model independent constraints on data description
Enhanced precision

+

Analytic methods for the continuation to the
complex plane in the contiguous sheet

avoiding specific parameterizations
(only phase and elasticity)

!

Reduced Model dependence or independence for pole determinations

We have already done this for the a/f;(500), k/K,*(700)
and for strange resonances below 2 GeV




We choose to analyze meson-meson data because it has
THE MOST STRINGENT ANALYTICITY CONSTRAINTS

- 1stStep: Unconstrained fits to data

- 2"d Step: Check dispersion relations. Discard too bad data
- 31 Step: Constrained fits to data

- 4t Step: Extract resonances with dispersive or analytic methods (This Work)

We have already published dispersively Constrained Fits to Data (CFD):

— i — nwr With Forward Dispersion relations and Roy equations
Garcia Martin, Kaminski, JRP, Ruiz de Elvira, Yndurain, Phys.Rev.D 83 (2011) 074004

— it - KK with Roy-Steiner Equations
JRP, A. Rodas, Eur.Phys.J.C 78 (2018) 11, 897 & Phys.Rept. 969 (2022) 1-126



nr = it SO wave: from uncostrained to constrained

No clear resonance
shape in fy(1370)
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We also constrained the other it - S, P, D, F waves
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+ Protopopescu et al.
o Estabrooks & Martin

v Hyams et al.

o Protopopescu (set 2)

o Protopopescu et al.

Unconstrained Flts to Data (UFD)
Cohen etal.

Losty et al.

Hoogland etal. A

Hoogland etal. B

Durusoy et al. (OPE)

Durusoy et al (OPE+DP)

--- PY (high energy fit)

— Our parametrization
=z BY0S
+  Protopopescu et al. Table XTI

o Protopopescu el al. Table VI
AT R R N i B BT | ‘ i i I ‘ ; + Hyams et al. Sol (--)
T T T

600’ 300 1000 1200 1400 IHHHHulluuuuul J.HJ[\H”H.U.H

s (Mev)

i | i i 1 i 1 I T
800 1000 1200
5" (MeV)

s (Mevy

Protopopescu et al. (Tab. VI) 5 [2}(8}
,

UFD
Losty et al.

Hyams et al (Sol ---)

Estabrooks & Martin
Protopopescu et al. (Tab.XIII)
Hyams et al. ("73)

New DO fit

Hoogland et al.

Cohen et al.

Durusoy et al. (OPE)
Durusoy et al (OPE-DP)

09H

P i | I M|
08} 1000 1200 1400
0.7

0.6

0.5

from f2(1275) in PDG
I Hyams et al. (--- solution)
0.3 Protopopescu et al. (Table XIlI)

- t';oat;psifszsll:(;;:al.(Table\ll) T]z(m Detailed analySiS
-y of statistical and
systematic errors

0.4

i P
1000 1200

I.
800
s (MeV)

0.1 - PY0S

| !
%000

! .
1250

1 L 1 ' ) ' | '
1150 1200 1300 1350

s (MeV)

L | L
1050 1100




Fits for High nmr — nw energies

Above 1.42 GeV. Regge parametrizations of cross section data
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SECOND STEP: Check dispersion relations: nmn->nn
In general, data does not satisfy well DR. Sometimes very badly indeed
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1=0,J=0, Roy-Steiner eqs. Well satisfied up to 1.47 GeV




FOURTH STEP: Extract resonances from dispersive or analytic methods

Data-Driven Dispersion Relations
on amplitude or partial waves (phase+elasticity)

Model independent constraints on data description
Enhanced precision

+

Analytic methods for continuation to complex plane
avoiding specific parameterizations



Analytic continuation to Contiguous Riemann sheet

Roy-like Dispersion relations provide model-independent analytic continuation to first

Riemann sheet

For elastic resonances, contiguous sheet= second sheet and S'"=1/S!

OK for o/f,(500), k/K,*(700), but NOT f,(1370),

To reach the contiguous sheet in the inelastic case, we need an analytic continuation
to the second sheet by means of general analytic functions reproducing the Dispersion

Relation on the real axis or the upper-half complex plane.

Several methods in the literature:

Sequences of Padés
Continued Fractions
Conformal expansions
Laurent-Pietarinen expansions
etc...

These methods avoid specific parameterizations, have convergence theorems, etc...




Padé sequences

Almost model independent: Does not assume any particular functional form
But requires a few derivatives. There are powerful convergence theorems
If many derivatives needed, poor convergence

Based on previous works by P.Masjuan, J.J. Sanz Cillero, I. Caprini, J.Ruiz de Elvira, JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

@ The method is suitable for the calculation of both elastic and inelastic
resonances.

@ The Padé sequence gives us the continuation to the continuous
Riemann Sheet.

@ We take care of the calculation of the errors. Apart from the

experimental and systematic errors of each parameterization we also
include different fits.

I-Riemann Sheet

II-Riemann Sheet

CAVEAT: Requires higher order derivatives of the function to be continued

Still succesfully applied to determine strange resonances from nK scattering up to 1.8 GeV



Strange resonance poles from CFD: Using Padé sequences Jrp, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

The method can be used for inelastic resonances. Provides resonance parameters WITHOUT
ASSUMING SPECIFIC FUNCTIONAL FORM. We only used our constrained data fits in the real
axis. Note thatt these are built piecewise, could be polynomials in some patches...

BUT the analytic continuation was made with Padé sequences. No model

@ For the K{(1430) we find e For the K;(1410) we find
VS = (1431%6)—i(110 £ 19)MeV V5p = (1368 4+ 38) — (106128 MeV
V3 = (1425+50) — (135 £ 40)MeV(PDG) VSp = (1414 £15) — i(116 + 10)MeV (PDG)

0
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-80 m  Boito et al.
@ Final result
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-200
-240

-280
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e For the K;(1430) we find @ For the K3 (1780) we find
(1424 + 4) — i(66 + 2)MeV sy = (1754 +13)  i(119 £ 14)MeV
(1432.4 + 1.3) — i(55 + 3)MeV (PDG) V5 (1776 + 7) — i(80 = 11) MeV/ (PDG)

VSp =
VSp =

Aston et al.
@ Final result
B lﬂ‘}ﬂl) 1720 1760 1800 1840 1880 1920
o\ & 24 7 8¢ 92
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Using Padé Sequences, the kappa: (670+18)-i(295+ 28) MeV
I s &1 Rt e Era B Phys. . €007 7791 Consistent with full dispersive value: (648+7)-i(280+16) MeV



Continued fractions

We now use:

Once again, no specific simple functional form assumed

More stable and accurate than Padés, since no derivatives needed.
We have considered from 6 up to 50 terms or even more

When Padé sequences converge, perfect agreement
Actually, could be rewritten as a Padé



Pole from 11— TTTT

Roy equations applicability proof only up to 1.1 GeV. (But see later). The f,(1370) liesbeyond

However, Forward Dispersion Relations applicability up to 1.42 GeV in our fits.
Complication, we see the isoscalar-wave with all spins, J=0,2,...

Even f,(1500) seen!!!,
Although not partial-wave

| data used beyond 1.42 GeV
f,(1270) R(1270) (Just a Regge description of
Real axis Y N cross sections)

£,(1500)

Imvs (GeV) _

f,(1370) seen behind

Rev's (GeV)

Unfortunately, with just a few derivatives on the real axis, the Padé method does
not converge well behind the f,(1270). New

N\ethod"
But continued fractions provide nice and stable pole description



Forward Dispersion Relations ARE SIMPLE.

Complete isospin set of 3 forward dispersion relations for :

« Two s-u symmetric amplitudes. Fy,= n®n*—>nxn*, F, =nn® —>nOn°
One subtraction
Only depend on two isospin states. Positivity of imaginary part

s(s—4M?) - T . (25'-4M ) Im F(s")

ReF(s)-Re F(4M}) = '(s'=8)(s'—4M 2)(s'+5 - 4M %)

4 4M?

* The I;=1 s-u antisymmetric amplitude

2s—4M3) % ImF(s'
RGF(S)Z( s ”)PP jds' mF(s") :
r o (=s)(s+s—4M))
Roy Egs.
At threshold is the Olsson sum rule Wri:f(eanor partial waves

MUCH MORE CUMBERSOME



There are three independent FDRs: The most precise FDR is F

0.4

Region of interest




We can test how well the continued fractions fare against the FDR output in the
first Riemann sheet (in the conjugated region of interest)

0 L0 AT A T0 0 0
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The difference is less than 10% of the estimated uncertainty from continued fractions
Of course, we need the contiguous sheet in the lower-half plane. The upper-half plane is just a test.



Then we match the FDR output to continued fractions with N=6 to 50 and look for poles
in the lower-half plane of the second sheet. We find three:

£,(1370)
Width

Remarkably stable against N and systematic uncertainties!



rr — i SO wave: “Global fit” up to 2 GeV

JRP, A.Rodas, J.Ruiz de ElviraEur.Phys.J.C 79 (2019) 12, 1008

Our “old” Constrained fit to data (CFD) was a “piece-wise”function up to 1.42 GeV

Recently we have provided a “Global Fit” in terms of analytic functions,
consistent with the CFD and DR up to 1.4 GeV as well as in the complex plane
in the elastic region and the dispersive o/f,(500) and f,(980) poles.

And continuously extended beyond 1.4 GeV to different data sets and f,(1500) scenarios

o Hyamgetal. 75 (-+)
& Hyamsetal. 75 (-—)
& Kaminaki et al.
= Grayer ot al. b)

This “Global fit” is actually slightly better
with respect to Dispersion Relations



Pole from rT— m111. FDR+Cy

For TITT we use both inputs
- Piece-wise Constrained fit to data (CFD)

- 3 Global “Constrained fits to data”

Method VSf0 1370y (MeV G (GeV)

FDR+CFD+Cy

FDR-+Globall+Cy
FDR+Global24Cy
FDR-+Global3+Cx

Our final FDR+C, result covers them all

(1245 + 40) — i (300120) 5.6107




Further checks

- Even though Roy-like Egs. (GKPY) not rigorously valid above 1.1 GeV,
Their extrapolation is still pretty decent up to a few 100s MeV beyond.
If we extrapolate them to get the pole:
PERFECT CONSISTENCY

This confirms the scalar assignment

Method

GKPY4+CFD4Cy ‘ 9% 5612

" . : GKPY4+CFD+PY
In addition, since f,(1270) not present in DTS

partial wave, we can use the
Padé sequence Method (P}})
for analytic continuation.
PERFECT CONSISTENCY

GKPY4CGloball4+Cy
GKPY+Clobal14+PY
GKPY+4Globall+PY
Globall param.+C'yy
Globall param.4+P 11;
Globall param.+P *:‘T

Globall param. 1219424

- If you want a simple analytic form consistent with data up to 2 GeV, dispersion relations up

to 1.42 GeV and Roy egs. applicability region in the complex plane, as well as the dispersive
poles for a/fy(500), f,(980) and this f;(1370), use our “Global fit”

Also, f,(1370) poles consistent with explicit pole in parameterization or with different
analytic continuation methods



Pole from mm—KK. Roy Steiner+Cy

Roy-Steiner Tm—KK equations applicability proved up to 1.47 GeV
Nice because they constrain the relevant SO partial wave

Unfortunately the f,(1370) couples even less strongly to KK

However, we always find a pole in the SO-wave around 1300 MeV, for both CFD solutions.

But large uncertainty completely dominated by choice of matching point t
for Mushkelishvili-Omnés input in Roy-Steiner formalism.

(13807¢) —1i (22077;) 3.2777%



FINAL RESULTS:

BAREERIS [77] m#
A TTI [78]
EEETIN [79] @
a0 HH

“20” tension on the mass

i 130 +0.7
- FDRsrrr +CnN (1245 £ 40) — i (300—70) 5612 between mmr and KK modes

+70 . +80 3
RS, kg TOnN (1380—65) —1 (220—76 a_q, mrr-mode lighter as hinted @PDG

The very high-mass region E11500 MeV of the PDG estimate is disfavored



Summary

We aimed at reducing the model dependence of resonance determinations

 New method to determine resonance poles from data with
Forward Dispersion Relations and analytic continuation techniques

(instead of the usual partial-wave dispersion relations, whose region of applicability is limited)

»  Well suited for the inelastic region in mrr scattering, yields a pole for the
f,(1370), in the low-mass, larger-width region of the present PDG estimate.

« Further consistency checks and simple parameterizations provided.

« f,(1370) pole also found in partial-wave Roy-Steiner equations from rr — KK data.
Less precise than previous one and within PDG estimate.

« Small “20” tension between the two determinations. (Already hints @ PDG)

» Given reduced model dependence this tension must be due to inconsistencies
between nm — nr and nr — KK data sets.



SPARE SLIDES



How the fO(1500) influences the result?

TABLE IV. Continuos fractions results using only input.

/Spote (GeV) gl

(1.224 4 0.029) — 3(0.217 £ 0.042) 4.24 + 0.40
(1.218 4 0.019) — 4(0.219 + 0.036) 4.16 + 0.36
(1.222 4 0.015) — 4(0.221 £ 0.024) 4.26 + 0.23

Final result  (1.22170:03%) — i(0.21920650)  4.22357%3

(
(

¢ Hyamgetal. 75 {(-+)

few MeV difference in pole
Depending on different data
above 1.4 GeV

& Hyams etal. 75(—) |

& Kaminski ot al.
= Grayor et al. b)
O Nad8/2 ot al.

Kooy = 1
Q K-»2mretal

5(s) 3

¢ Hyams et al. 75 (—-}
4 Hyams et al. 75 (—-=}

& Kaminsid et al.
= Grayer ot al. b)
A Mart ]

|||I|IIII||III|I'|l




- i SO wave: “Global fit” up to 2 GeV

This “Global fit” is actually slightly better
with respect to Dispersion Relations

We will provide results for both

Re foals) GFD
Glabal
Fay + CFD
Ray + Glabal

04
Js- [Be)

FIG. 1. Real part of the =7 S0 wave up to 1.35 GeV. The
solid (blue) line corresponds to the piecewise CFD parame-
terization in [53]|. Dashed (orange) curve describes solution 1
of the new Global analytic parameterization in [68]. Finally,
dot-dashed (cyan) and dotted (red) lines stand for the once-
subtracted Roy-equation results using as input the CFD and
Global parameterizations, respectively.

= Fit
— Dispersive

Re Fjj(s) — Fj(4m7)

0.8
Va[Gev]

Fig. 8 Results for forward dispersion relations. Blue lines: real part
coming from our new parameterizations. Orange lines: the result of
the dispersive integrals. The gray bands cover the uncertainties in the
difference between both. From top to bottom: a the 727% FDR, b the
7271 FDR, ¢ the FDRfor J; = 1 scattering




o (300)CEPY
Fo(500)
Fo(980)TRFY
1o (980}

06 08
Vs [GeV]

Fig. 2 Comparison between the CFD fit in [28] (blue) and solution I
(Table 1, orange band). The ener gion dominated by the {980}

pole is delimited between the red dashed lines




Non-ordinary spectroscopic classification

@ Lightest scalar SU(3) multiplets <2 GeV. Accepted picture at RPP g

Light scalar nonet <1 GeV:

K/K*,(700) Y-/
285

Non-strange heavier!!

Hugely Inverted gqq hierarchy.

f,Sin 5| ot Cryptoexotics? (R.Jaffe 1976)
a,(980)

o/f,(500) and f,(980) octet/singlet mixtures
k/Kg (700) only recently “well established at PDG”
Only in 2021 on-line update “Needs Confirmation”

Scalar nonet >1 GeV:

One extra state f,(1370), f,(1500), f,(1710) for just one nonet above 1 GeV

SN EVED)

f, singlet f
@ a,(1450) ‘@ Also, not quite gq hierarchy

+ glueball?
complicated mixtures
f,(1370) worst determined and still contested
because hard to see



TTmT—KK Hiperbolic Dispersion Relations

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

Constarined SIMPLE FITS TO mmm—KK DATA, including systematic uncertainties.

Other waves

= Argonne

— CFD

—-- UFD

- Protopopescu et al.
= Estabrooks et al.

Argonne
UFD
CFD

« Argonne
— Dispersive CFD

+ Brookhaven IT
-- UFD
— CFD

=+ Brookhaven I model
-- UFD
— CFD

UFD Inconsistent with
HDR
If not constrained




mK—1K and mm—KK Hyperbolic Dispersion Relations (HDR)

g!, =nn - KK partial waves. We study (l,J)=(0,0),(1,1),(0,2)
f, = Kn — Kn partial waves. Taken from previous dispersive study JRP, A. Rodas PRD 2018

’f G 2t tYmaly o)+ | ds'GY,(ts)Im £ (<),

o Sl
_|_

/__ ds' Gy ,(t, s)m f; (s)),
IE' Jmi

GO st )male o)+ | Gk m £ ().

G]’J,(t,t’) =integral kernels, depend on a parameter
Lowest # of subtractions. Odd pw decouple from even pw.

< dt Im gl (t) .
" - P t=0,3, A(t) depend on higher waves

or on Kimr—Kirr.

t— 0 *

Integrals from
21 threshold !

Solve in descending J order “Unphysical region”
35

We have used models for higher waves, but give very small contributions



mm—KK Hyperbolic Dispersion Relations (HDR)

For unphysical region below KK threshold, we used Omnés function

JAT(E) sin 1 () o 1 7/ 1 g1 ()] sin ¢ (')
( L .-7 {- i “mmms eaornaeamioe ahn
2 Oi (Y — 1) ﬂi )@ —1)

AQ(¢)sing(t) | 1 [ [g3()]singd(t)
Q0 L () (¥ — 1)

Dominant source
oferror for f0(1370)

We can now check how well these HDR are satisfied



TTT—KK constrained consistent with Roy-Steiner egs. JRP, A.Rodas, Eur.Phys.J. C78 (2018)

Two possible solutions for SO wave

Constrained fits
are consistent with
Roy Steiner Egs.
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