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CCSN and neurtinos Collective ν-osc Beyond the mean field

Week 2: several talks on collective neutrino oscillations!
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Outline

1 Core-collapse supernovae and neutrinos

2 Collective neutrino oscillations

3 Beyond the effective one-particle description of collective
oscillations
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Key motivations and definitions
∗ Neutrinos

Elementary particles
No electric charge
Not massless, but really small masses
Don’t interact much (only weak interactions)
Byproduct of some types of nuclear reactions, e.g., decay of a
neutron into a proton (but other ways to make them too)
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Key motivations and definitions
∗ Supernovae (core-collapse supernovae)

Explosions of massive stars that are much heavier than our sun
Final stage in the life cycle of massive stars after multiple
stages of nuclear burning
Triggered by gravitational collapse of stellar core, when it gets
so heavy that gravity overcomes pressure support
Neutrinos have a big part to play
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Key motivations and definitions
∗ Neutrino flavor oscillations

Neutrinos come in three ‘flavors’: electron, muon, and tau
Neutrino produced in a well-defined flavor state evolves into a
quantum superposition of all three flavors as it propagates,
with oscillating amplitudes in each flavor
In environments with dense neutrino streams, neutrinos can
undergo collective flavor oscillations driven by ν-ν interactions
Subsequent interactions depend on flavor composition —
critically important for supernovae and nucleosynthesis
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Core-collapse supernovae and neutrinos

Stars with M⋆ ≳ 8 M⊙ undergo core collapse & neutronization
when core mass exceeds ∼ 1.4 M⊙, i.e., when its gravity
surpasses the limit of electron degeneracy pressure support

Core bounce at nuclear density sends shockwave through
infalling material → shock eventually loses energy and stalls
before it can blow up the star

Details of the explosion mechanism unknown, but neutrinos
expected to play a major role

CCSNe are neutrino factories: νs are the main carriers of
gravitational binding energy (∼ 99%) and lepton number
radiated away from the star

B.E. ∼ 1053 ergs =⇒ ∼ 1058 νs with ⟨Eν⟩ ∼ 10 MeV
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Core-collapse supernovae and neutrinos

Neutrinos depositing ∼ 1% of their energy behind the stalled
shock front could revive the shock and explode the star

ν-induced heating in the aftermath of explosion drives
baryonic matter outflows from the surface of the nascent
neutron star

Charged-current weak processes govern the energy deposition
and n/p ratio, a crucial input for nucleosynthesis

νe + n←→ p + e−

ν̄e + p←→ n + e+

Flavor asymmetric processes: thorough understanding of
neutrino flavor evolution therefore required
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Neutrino oscillations in vacuum

Neutrino weak-interaction (flavor) eigenstates not aligned
with propagation (energy/mass) eigenstates

|νe⟩ = cos θ |ν1⟩+ sin θ |ν2⟩
|νx⟩ = − sin θ |ν1⟩+ cos θ |ν2⟩

As neutrinos propagate, mass eigenstates gather quantum
mechanical phase at different rates, leading to oscillations

Pex = sin2 2θ sin2
(

∆m2L

4Eν

)
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Neutrino oscillations in vacuum

Vacuum oscillations driven by the free-particle Hamiltonian

Hvac =
(

m2
1

2p
a†

1pa1p + m2
2

2p
a†

2pa2p

)
= ωp B⃗ · J⃗p ,

where ωp = δm2

2p
, and

B⃗ = (0, 0,−1)mass = (sin 2θ, 0,− cos 2θ)flavor.

Here we have used the mass-basis ‘isospin’ operators
J+

p = a†
1pa2p , J−

p = a†
2pa1p ,

Jz
p = 1

2
(
a†

1pa1p − a†
2pa2p

)
,

which obey the usual SU(2) commutation relations
[J+

p , J−
q ] = 2δpqJz

p , [Jz
p, J±

q ] = ±δpqJ±
p .
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Neutrino flavor evolution: matter effects

Matter backgrounds (electrons, nucleons, etc.) modify flavor
evolution: “effective mass” through neutrino forward scattering.
Mass level crossing Hνeνe = Hνxνx =⇒ MSW resonance
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Figure: MSW resonance (figure by George Fuller)

Wolfenstein (1978, ’79)
Mikheyev & Smirnov (1985)
Bethe (1986)
Haxton (1986)
Parke (1986)
and so on ...

Neutrino-matter Hamiltonian:

Hmat = λ L⃗ · J⃗p

where λ =
√

2 GF ne and
L⃗ = (sin 2θ, 0, cos 2θ)mass
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Neutrino-neutrino interactions

q

p q

p

νβ

να

να

νβ

q

p q

p

νβ

να

νβ

να

Neutrino-neutrino interaction Hamiltonian

Hνν =
√

2GF

V

∑
p,q

(1− cos ϑpq) J⃗p · J⃗q .

Note: here, we only consider interactions which preserve or
exchange momenta (or equivalently, flavor)
[see however: L. Johns, arXiv:2305.04916]

A many-body coupled quantum system (2N complex
amplitudes) with a complicated geometry on top!
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Many-body neutrino Hamiltonian (two-flavor system)

Hν =

vacuum︷ ︸︸ ︷∑
p

ωpB⃗ · J⃗p +

neutrino-matter︷ ︸︸ ︷
λ
∑

p
L⃗ · J⃗p +

neutrino-neutrino︷ ︸︸ ︷√
2GF

V

∑
p,q

(1− cos ϑpq) J⃗p · J⃗q,

where ωp = δm2

2|p| , λ =
√

2GF ne, B⃗ = (0, 0,−1), L⃗ = (sin 2θ, 0, cos 2θ),
J⃗p: neutrino “isospin” operator (|↑⟩ = |ν1⟩, |↓⟩ = |ν2⟩)

“single-angle” approximation
www� neglect neutrino-matter term

Hν =
∑

p

ωpB⃗ · J⃗p + µ(r)J⃗ · J⃗

where J⃗ =
∑
p

J⃗p and µ(r) =
√

2GF

V
⟨(1− cos ϑpq)⟩.
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Mean-field (random phase) approximation

ν̄β(
~p′)

ν̄β(~p)να(~k′)

να(~k) ν̄β(
~p′)

ν̄β(~p)

να(~k′)

να(~k)

Figure: Volpe et al. (2013)

In an effective one-particle approximation [Sigl and Raffelt
(1993), Samuel (1993), Qian and Fuller (1995)], each neutrino
considered to interact with an average potential representing
all other particles in the medium (including neutrinos)

Operator product O1O2 approximated as

O1O2 ∼ O1⟨O2⟩+ ⟨O1⟩O2 − ⟨O1⟩⟨O2⟩.

Above expectation values are calculated w.r.t state |Ψ⟩ which
satisfies ⟨O1O2⟩ = ⟨O1⟩⟨O2⟩
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Mean-field (random phase) approximation

This method yields the effective one-particle neutrino
interaction Hamiltonian

HRPA
νν =

∑
p,q

µpq
[
J⃗p · ⟨J⃗q⟩+ ⟨J⃗p⟩ · J⃗q − ⟨J⃗p⟩ · ⟨J⃗q⟩

]

Together with the one-body terms (Hvac and Hmat),
Ehrenfest’s theorem for the evolution of one-body operator
expectation values gives:

dP⃗q
dt

= ωq B⃗ × P⃗q + λL⃗× P⃗q + 2
∑

p
µpq P⃗p × P⃗q,

where P⃗q = 2⟨J⃗q⟩ is called the neutrino “Polarization vector”
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Collective flavor oscillations: synchronized and bipolar
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Figure: Taken from Duan et al. (1001.2799). Left: regimes for different
types of neutrino oscillations in a CCSN environment. Right: a neutrino
spectral split/swap resulting from collective flavor effects.
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‘Fast’ collective flavor transformations
Fast collective oscillations — driven by flavor-lepton number
crossings in the neutrino angular distributions could cause
significant flavor conversion on timescales much shorter than
bipolar oscillations, i.e., within O(1–10) km from the PNS,
making them more relevant for shock reheating and
nucleosynthesis
Recent reviews by Chakraborty et al. (1602.02766), Tamborra
& Shalgar (2011.01948), and Richers & Sen (2207.03561)
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Neutrino quantum kinetics

One-particle effective limit of the neutrino Hamiltonian with
only forward and exchange terms results in the coherent
mean-field equations shown above

In general, other interactions changing neutrino momenta or
neutrino number also present =⇒ collision terms in the
one-particle effective description

Including coherent flavor conversion, collisions, and advection,
the evolution equations for the one-body neutrino density
matrices in this picture given by

i

(
∂

∂t
+ v.∇

)
ρ = [H, ρ] + iC
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Other cool phenomena in effective one-particle description

Matter-neutrino resonances
(Malkus, McLaughlin, Friedland, Wu, Vaananen, Zhu, et al.:
1403.5797, 1507.00946, 1509.08975, 1510.00751, 1607.04671,
1801.07813)

Collisionally triggered collective flavor instabilities
(Lucas Johns et al.: 2104.11369, 2206.09225, 2208.11059)

‘Halo’ effect from backscattered neutrinos
(J. F. Cherry et al.: 1203.1607, 1302.1159, 1908.10594,
1912.11489; V. Cirigliano et al.: 1807.07070)

Decoherence by wave-packet separation
(Akhmedov, Kopp, Lindner, Kersten, Smirnov, et al.:
1512.09068, 1702.08338)
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Beyond the mean field, and neutrino entanglement

The mean-field picture asserts that ν-ν quantum correlations
(i.e., entanglement) are strictly prohibited, reducing number
of independent amplitudes from 2N to 2N (for two flavors)

This begs the question as to whether any significant physics is
being left out by this approximation

Early works [Bell et al. (2003), Friedland et al. (2003a,
2003b, 2006), McKellar et al. (2009)] attempted to answer
this question using different physical setups. Friedland et al.
observed that, in their setup, the build-up of entanglement
and the resulting flavor conversion was occurring on
timescales suggestive of incoherent effects (and hence
unimportant in the large-N limit)
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Beyond the mean field, and neutrino entanglement

Nevertheless, McKellar et al. (arXiv:0903.3139) subsequently
pointed out that this does not necessary preclude the
multiparticle correlations from being significant

In any case, these early analyses had some notable
simplifications, such as omitting the one-body term in the
Hamiltonian. It is known, even in the mean-field limit that
interplay between Hvac and Hνν can give rise to interesting
phenomena such as spectral splits

Renewed interest in re-examining these fundamental questions
also partly fueled by ongoing advances in quantum
information science & quantum computing capabilities
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Some more comments on the many-body formalism

It was shown in Balantekin & Pehlivan (astro-ph/0607527)
that the mean-field solution can also be derived using a
saddle-point approximation to the path integral of the full
many-body system

In Volpe et al. (arXiv:1302.2374), the many-body evolution is
described using a tower of coupled differential equations based
on the BBGKY hierarchy, connecting the evolution of
one-body density operators to successively higher-order
many-body correlations. This provides a potential framework
to systematically extend the mean-field evolution equations

In Pehlivan et al. (arXiv:1105.1182), the many-body
Hamiltonian was shown to be integrable in the single-angle
limit, and the eigenvalue problem was formulated in terms of
a set of algebraic Bethe Ansatz equations
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Recent work

Patwardhan, Cervia, Balantekin, Siwach, Coppersmith,
Johnson, Lacroix et al.: 1905.04386, 1908.03511, 2109.08995,
2202.01865, 2205.09384;

Rrapaj, Roggero, Xiong, Martin, Duan, Carlson, Illa, Savage,
Yeter-Aydeniz et al.: 1905.13335, 2102.10188, 2102.12556,
2103.11497, 2104.03273, 2111.00437, 2112.12686,
2203.02783, 2207.03189, 2210.08656, 2301.07049 — some of
these involve simulating on a quantum computer

More recently (Shalgar & Tamborra: 2304.13050, Johns:
2305.04916) the suitability of the above studies for judging
the efficacy of the mean field has been questioned. Suggested
possible paths forward include an open quantum system
formulation with wavepackets (S&T), or a unified many-body
framework with forward and non-forward scatterings (Johns)

Amol V. Patwardhan, SLAC Many-body collective neutrino oscillations 25/39 INT 23-2 program



CCSN and neurtinos Collective ν-osc Beyond the mean field

L. Johns et al., arXiv:2305.04916

The aforementioned many-body literature is predicated on the
ν-ν interaction Hamiltonian consisting of only forward and
exchange interaction terms. However, forward/exchange
interaction should have no special priority in a faithful
many-body calculation. The coherent enhancement of forward
scattering is in fact a direct consequence of the one-particle
effective treatment (quantum kinetics)

The many-body evolution must not be compared only to the
coherent part of the mean-field evolution equations. The
O(G2

F ) terms in the full QKEs do implicitly contain
information about the back-reaction of many-body
correlations on one-body expectation values
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Shalgar and Tamborra, arXiv:2304.13050

A system of interacting neutrinos in a realistic astrophysical
setting is an open quantum system (with finite-sized neutrino
wavepackets streaming in and out of any interaction volume),
whereas the toy models used in the many-body literature
consist of a closed quantum system (with interacting plane
waves in a box)

Even if one considers a many-body Hamiltonian with only
forward and exchange interaction terms, it nevertheless
contains both coherent and incoherent effects, whereas the
mean-field limit of this many-body Hamiltonian retains only
the coherent effect

The evolution of an interacting quantum system driven by
incoherent interactions depends on the size of the interacting
wavepackets (i.e., the duration of the interactions)
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Our framework

Try to ascertain the potential role of many-body neutrino
correlations using simple toy systems. Operating with these
toy models necessitates being careful about avoiding sweeping
generalizations based on the observed behaviors. Nevertheless,
certain patterns or scaling relations could be sought

Model the neutrino system as N interacting plane waves in a
box of volume V , which in general could be time-dependent
(to mimic the decreasing density of neutrinos streaming out
from a source)

Examine the evolution of one-body observables (such as
expectation values of J⃗p) and compare with the mean-field
expectation. Additionally, we use entanglement measures
(such as bipartite entropy of entanglement) to quantify the
degree of multiparticle correlations in the system
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Numerical approaches and descriptions

In order to be able to simulate larger and large systems, we have so
far explored various numerical methods

Exploiting the integrability of the single-angle Hamiltonian to
diagonalize using Bethe Ansatz solutions [Up to N ≃ 10]
(1905.04386, 1908.03511)

Brute force numerical integration using 4th order Runge-Kutta
with adaptive time step [Up to N = 16] (2109.08995)

Tensor network calculation using a time-dependent variational
principle method [Up to N ≃ 50 or N ≃ 20 depending on
initial state] (2202.01865)

Approximate phase-space method to evolve a two-beam
neutrino system, wherein the neutrinos in each beam are
identical to one another [Up to N ≃ 100] (2205.09384)
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Single-angle limit: Integrability and Bethe Ansatz

Eigenvalues and eigenstates obtained using procedure derived from
Richardson-Gaudin diagonalization (a.k.a. “Bethe-Ansatz” method)
— AVP, Cervia, Balantekin, arXiv:1905.04386

For a system where each neutrino occupies its own energy mode,
the eigenproblem can be mapped onto a system of coupled
quadratic equations:

Λ̃2
q + Λ̃q = µ

N∑
p=1
p ̸=q

Λ̃q − Λ̃p

ωq − ωp

Λ̃p are related to eigenvalues of the invariants hp of the single-angle
Hamiltonian. Bethe-Ansatz equations shown to be equivalent to
polynomial relations between invariants hp

— Cervia, AVP, Balantekin, arXiv:1905.00082

Amol V. Patwardhan, SLAC Many-body collective neutrino oscillations 30/39 INT 23-2 program



CCSN and neurtinos Collective ν-osc Beyond the mean field

Single-angle limit: adiabatic many-body evolution

Eigenvalues and eigenvectors facilitate calculating the
adiabatic evolution of the many-body neutrino system,
starting from any given initial condition, as µ is varied

Consider an initial many-body state, |Ψ0⟩ ≡ |Ψ(µ0)⟩
Example: in the (two-)flavor-basis, |νeνxνeνe⟩

May be decomposed into the basis of energy eigenstates:
|Ψ(µ0)⟩ =

∑
n cn |en(µ0)⟩

If µ were to change sufficiently slowly then the system
adiabatically evolves into

|Ψ(µ)⟩ ≃
∑

n

cne
−i
∫ µ

µ0
En(µ′)
dµ′/dt

dµ′
|en(µ)⟩
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Summary of entanglement measures
Density Matrix, Polarization Vector, & Entanglement Entropy

Consider a pure, many-body neutrino state ρ = |Ψ⟩⟨Ψ|.
Single-neutrino reduced density matrix: ρq ≡ Tr1,...,q̂,...,N [ρ], given
by (̂ denotes exclusion)

ρq =
2∑

i1,...,îq ,...,iN =1

⟨νi1 . . . ν̂iq . . . νiN |ρ|νi1 . . . ν̂iq . . . νiN ⟩ ,

S(ωq), Entropy of entanglement between neutrino q and rest:

S(ωq) = −Tr[ρq log ρq]

“Polarization vector” of neutrino q, P⃗ (ωq) = 2 ⟨J⃗q⟩, related to
the reduced density matrix as:

ρq = 1
2
(
I + P⃗ (ωq) · σ⃗

)
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Relations between entanglement measures

Entanglement entropy has a one-to-one, inverse relationship with
the magnitude of the polarization vector

S(Pq) = −1− Pq

2 log
(1− Pq

2

)
− 1 + Pq

2 log
(1 + Pq

2

)
with Pq = |P⃗ (ωq)|

P = 1 ⇐⇒ S = 0 (Unentangled)
P = 0 ⇐⇒ S = log(2) (Maximally Entangled)

Other studies have used different entanglement measures,
including bipartite measures such as Negativity, Renyi entropy, and
Left-Right entanglement entropy, as well as multipartitie measures
such as n-tangle (e.g., Illa and Savage: 2210.08656)
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Correlation of Pz-discrepancies and entanglement entropy
Calculate ∆Pz(ω) ≡ |P MF

z (ω)− P MB
z (ω)| at r ≫ Rν (i.e., µ ≈ 0)

For N = 4: all initial conditions with definite flavor νe, νx

(e.g., |νe, νx, νx, νx⟩)
For N = 8: same ICs as N = 4, but with four additional νe

appended to left or right of spectrum
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Trendline: y(S) ≡ P MF(S)− P MB(S) = 1− P (S)
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Example: initial condition with both neutrino flavors
Comparison of final Pz spectra between many-body and mean-field

Evolve |Ψ0⟩ = |νeνeνeνeνxνxνxνx⟩ until r ≫ Rν
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[Cervia, AVP, et al.: 1908.03511]

Spectral split-like features persist in the many-body calculations,
but are less sharp relative to mean-field calculations
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Comparison of Pz evolution with r

Same initial conditions, |Ψ0⟩ = |νeνeνeνeνxνxνxνx⟩
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Spectral splits and entanglement entropy
In [AVP, Cervia, Balantekin: 2109.08995], we extended our calculations
to N = 16, and noted that the entanglement entropy (and corresponding
deviation from the mean-field observables) was seen to be maximum for
the neutrinos nearest to the spectral splits. This observation of
entanglement localization in certain reigons of the neutrino spectrum
motivated the use of tensor networks in a further study (2202.01865).
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Figure: Initial and final neutrino spectra, along with the respective final
state entanglement entropies, for the evolution of initial states
|νe⟩⊗8 |νx⟩⊗8 (left) and |νe⟩⊗12 |νx⟩⊗4 (right).
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Studies by other groups [not an exhaustive list]
Other groups have performed complementary studies and uncovered
interesting behaviors

Presence of collective oscillations on “fast” timescales
[τF ∼ µ−1 log(N)] linked to Dynamical phase transitions in the
model (Roggero, 2103.11497)

Simulations with larger N using interacting two-beam models
(Xiong, arXiv:2111.00437 & Martin et al., arXiv:2112.12686). For
certain initial configurations and mixing angle values, the oscillation
behavior was found to converge to the mean-field limit; in other
cases, deviations were observed

Multi-angle model with randomly distributed one- and two-body
couplings (Martin et al., 2301.07049) yielded qualitatively different
results from the single-angle case . Significant loss of coherence
observed in the one- and two-body trace-reduced subsystems,
suggesting that the evolution could be approximated as a classical
mixture of separable states
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Conclusions, Summary and Outlook

Calculations of collective neutrino flavor evolution typically
rely on a ‘mean-field’, i.e., effective one-particle description,
the efficacy of which has been (and continues to be)
scrutinized

Using a simple model of interacting neutrino plane waves in a
box, certain deviations from the mean-field behaviour are
observed in small systems, which can be attributed to
multi-particle entanglement in this class of models

It has been suggested that these toy models have limited
applicability towards robustly evaluating the mean-field
approximation. Nevertheless, a number of potentially
interesting insights were revealed in these studies, some of
which may generalize to more sophisticated future treatments
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