Systematizing the Effective Theory of SelfInteracting Dark Matter

Aditya Parikh
Harvard University

In collaboration with P. Agrawal and M. Reece Based on 2003.00021, 2012.11606 + work to appear

SIDM Overview

- Discrepancies between DM-only simulations and observations
- Diversity of Rotation Curves, Too Big to Fail, Missing Satellites, Core vs. Cusp OR Baryons
- Different systems map out the velocity dependence of the DM self interaction rate
- What underlying DM microphysics leads to this?
- Possible Sommerfeld enhancement since the DM is non-relativistic

Sommerfeld Enhancement

- A Classical Analogy
- w/o gravity $\sigma_{0}=\pi R^{2}$
- $\mathrm{w} /$ gravity $\quad \sigma=\pi b_{\text {max }}^{2}=\sigma_{0}\left(1+\frac{v_{e s c}^{2}}{v^{2}}\right)$
- Non-perturbative effect that can be treated quantum mechanically
- Match a field theory calculation onto a quantum mechanical potential and solve the corresponding Schrödinger equation

Case Studies: Scalar \& Pseudoscalar Exchange

$$
\begin{aligned}
& V_{\text {scalar }}(r)=-\frac{\lambda^{2}}{4 \pi r} \mathrm{e}^{-m_{\phi} r} \\
& V_{\text {pseudoscalar }}(r)=\frac{\lambda^{2}}{4 \pi}\left(\frac{4 \pi \delta^{3}(\vec{r})}{4 m_{\chi}^{2}-m_{\phi}^{2}}\left(\frac{1}{2}-2 S_{1} \cdot S_{2}\right)-\frac{4 \pi \delta^{3}(\vec{r})}{3 m_{\chi}^{2}} \mathrm{e}^{-m_{\phi} r} S_{1} \cdot S_{2}\right. \\
& \left.\quad+\frac{\mathrm{e}^{-m_{\phi} r}}{m_{\chi}^{2}}\left[\frac{m_{\phi}^{2}}{3 r} S_{1} \cdot S_{2}+\frac{3\left(S_{1} \cdot \hat{r}\right)\left(S_{2} \cdot \hat{r}\right)-S_{1} \cdot S_{2}}{r^{3}}\left(1+m_{\phi} r+\frac{m_{\phi}^{2} r^{2}}{3}\right)\right]\right)
\end{aligned}
$$

How do we set well-defined boundary conditions for r^{-3} potentials?

Matching Prescription

- Short distances correspond to semirelativistic momenta
- QFT is a better description than the effective QM potential
- Sommerfeld enhancement is important at large distances

Setting Boundary Conditions

- How do we access the QFT information?
- The first Born approximation in quantum mechanics faithfully reproduces tree-level QFT

$$
K_{\ell s, \ell^{\prime} s^{\prime}}^{a}=-\frac{2 \mu}{k} \int_{0}^{a} d r s_{\ell^{\prime}}(k r) V_{\ell s, \ell^{\prime} s^{\prime}}(r) s_{t}(k r)
$$

- This alters the wavefunction and its derivative

$$
u_{\ell s, \ell^{\prime} s}(a) \sim \delta_{\ell s, \ell^{\prime} s^{\prime} s_{\ell}}(k a)+K_{\ell s, \ell^{\prime} s}^{a} c_{\ell}(k a)
$$

Numerical Results: Scalar Exchange

- Numerical cross section vs. QFT tree-level cross section
- Sommerfeld enhancement at low velocities

Mediator Mass = 0.1 GeV; Dark Matter Mass = 1 GeV ; Coupling = 1

Numerical Results: Pseudoscalar Exchange

- Numerical cross section vs. QFT tree-level cross section
- No Sommerfeld enhancement at low velocities

$V \supset \frac{\lambda^{2}}{4 \pi} \frac{\mathrm{e}^{-m_{\phi} r}}{m_{\chi}^{2}}\left[\frac{m_{\phi}^{2}}{3 r} S_{1} \cdot S_{2}+\frac{3\left(S_{1} \cdot \hat{r}\right)\left(S_{2} \cdot \hat{r}\right)-S_{1} \cdot S_{2}}{r^{3}}\left(1+m_{\phi} r+\frac{m_{\phi}^{2} r^{2}}{3}\right)\right]$
Mediator Mass $=0.1 \mathrm{GeV}$; Dark Matter Mass $=1 \mathrm{GeV}$; Coupling $=0.1$

Sommerfeld Enhancement from Feynman Diagrams: Pseudoscalar

- Tree-level has s- and t-channel diagrams
- Box diagram for the 1-loop process
- Pseudoscalar case
- t-channel velocity suppressed in the NR limit

- $\frac{M_{1-\text { loop }}}{M_{\text {tree }}} \sim \frac{\lambda^{2}}{32 \pi^{2}} \log \frac{m_{\chi}^{2}}{m_{\phi}^{2}}$

Sommerfeld Enhancement from Feynman Diagrams: Scalar

- Tree-level has s- and t-channel diagrams
- Box diagram for the 1-loop process
- Scalar case

- t-channel dominant in the NR limit
- $\frac{M_{1-\text { loop }}}{M_{\text {tree }}} \sim \frac{\lambda^{2} m_{\chi}}{4 \pi m_{\phi}} \quad \rightarrow \quad m_{\phi} \lesssim \frac{\lambda^{2} m_{\chi}}{4 \pi}$

Singular or Not?

- Is the pseudoscalar potential singular?
- Do singular potentials have phenomenological implications?
- Extensive reviews in the literature exploring singular potentials
- More recently, it has been claimed that this has implications for SIDM and Sommerfeld enhancement for pseudoscalars. In particular, they introduce square-well regulators, but treat the depth of the square well and the coupling strength as free parameters, instead of matching to a perturbative QFT.

Conclusions

- Using the QFT to set the boundary conditions, we analyzed a variety of potentials. We were able to reproduce the known results for the Yukawa potential.
- Pseudoscalar potentials don't generate Sommerfeld enhancement. Tree-level perturbative QFT is a good approximation to scattering mediated by pseudoscalars.
- QFT seems to produce highly non-generic quantum mechanical potentials. In some cases, we have very non-trivial cancellations occurring so as to preserve the nonsingular behavior of these potentials.
- We have only focused on scattering so far but we can analyze annihilations as well. They are inherently short-range and absorptive so they modify the short distance boundary conditions with an imaginary part.

Backup

The Quantum Mechanics Swampland

- The Landscape consists of all quantum mechanical potentials that can be derived from well-defined tree-level QFTs. A potential resides in the Swampland if it is singular.
- Diagnostic: If the first Born approximation diverges for any combination of incoming and outgoing states, then the potential is singular.

$$
K_{\ell s, \ell^{\prime} s^{\prime}} \propto \int_{0}^{a} d r s_{\ell^{\prime}}(k r) V_{\ell s, \ell^{\prime} s^{\prime}}(r) s_{\ell}(k r) \approx \int_{0}^{a} d r(k r)^{\ell^{\prime}+1} V_{\ell s, \ell^{\prime} s^{\prime}}(r)(k r)^{\ell+1}
$$

- As an example, we'll evaluate the pseudoscalar potential and the fourfermion version of it.

Pseudoscalar Potentials

- Mediated by renormalizable operators, we get
- $\mathscr{L}_{i n t}=i \lambda \phi \bar{\psi} \gamma^{5} \psi \rightarrow V \supset \frac{3\left(S_{1} \cdot \hat{r}\right)\left(S_{2} \cdot \hat{r}\right)-S_{1} \cdot S_{2}}{r^{3}}\left(1+m_{\phi} r+\frac{m_{\phi}^{2} r^{2}}{3}\right) \frac{e^{-m_{\phi} r}}{m_{\chi}^{2}}$
- Diagnostic check - the only singular term has a vanishing matrix element!
- $K_{\ell s, \ell^{\prime} s^{\prime}} \supset \int_{0}^{a} d r s_{\ell^{\prime}}(k r) \frac{N_{\ell, \ell^{\prime}}}{r^{3}} s_{\ell}(k r) \approx N_{\ell, \ell^{\prime}} \int_{0}^{a} d r r^{\ell+\ell^{\prime}-1}$
- $N_{0,0}=\left\langle\ell^{\prime}=0\right| 3\left(S_{1} \cdot \hat{r}\right)\left(S_{2} \cdot \hat{r}\right)-S_{1} \cdot S_{2}|\ell=0\rangle=0$

Pseudoscalar Potentials

- Mediated by non-renormalizable operators, we get
- $\mathscr{L}_{\text {int }}=\frac{\lambda}{\Lambda^{2}} \bar{T}_{1} \gamma^{5} \psi_{1} \bar{\psi}_{2} \gamma^{5} \psi_{2} \quad \rightarrow \quad V \supset \frac{\lambda}{m_{1} m_{2} \Lambda^{2}}\left(\vec{S}_{1} \cdot \vec{\nabla}\right)\left(\vec{S}_{2} \cdot \vec{\nabla}\right) \delta^{3}(\vec{r})$
- Diagnostic check
- $\int_{0}^{a} d r s_{\ell^{\prime}(k r)}\left(\vec{S}_{1} \cdot \vec{\nabla}\right)\left(\vec{S}_{2} \cdot \vec{\nabla}\right) \delta^{3}(\vec{r}) s_{\ell}(k r) \approx S_{1}^{i} S_{2}^{j} \int_{0}^{a} d r \nabla_{i} \nabla_{j} \frac{\delta(r)}{r^{2}}(k r)^{\ell+1}(k r)^{\ell^{\prime}+1}$
- $S_{1}^{i} S_{2}^{j} \nabla_{i} \nabla_{j} \delta(r) r^{\ell+\ell^{\prime}}=\delta(r) r^{\ell+\ell^{\prime}-2}\left[\left(\ell+\ell^{\prime}-1\right) \delta_{i j}+\left(3+\left(\ell+\ell^{\prime}\right)\left(\ell+\ell^{\prime}-4\right)\right) \hat{r}_{i} \hat{r}_{j}\right] S_{1}^{i} S_{2}^{j}$
- Case I: $\ell=\ell^{\prime}=0 \rightarrow \frac{3\left(S_{1} \cdot \hat{r}\right)\left(S_{2} \cdot \hat{r}\right)-S_{1} \cdot S_{2}}{r^{2}} \delta(r) \quad$ Case II: $\ell+\ell^{\prime}=1 \rightarrow 0$

Extensions to Higher Dimensions

- Coulomb potentials in d spatial dimensions
- No operator structure! Problematic for $\mathrm{d}>4$?

$$
V(r)=\frac{\alpha}{r^{d-2}}
$$

- To compute the diagnostic, we need the free particle solutions in d spatial dimensions. Let's turn to solving the free Schrödinger equation in d dimensions, which will give us these solutions.

Solving the Schrödinger Equation in Higher Dimensions

- Consider the free particle Schrödinger equation in d spatial dimensions

$$
-\frac{1}{2 \mu} \nabla_{d}^{2} \Psi(r)=E \Psi(r) \quad \nabla_{d}^{2}=\partial_{r}^{2}+\frac{d-1}{r} \partial_{r}+\frac{1}{r^{2}} \Omega^{2}
$$

- The wavefunction is a product of a radial function and Gegenbauer polynomials. They are the higher dimensional generalization of the spherical harmonics.

$$
\partial_{r}^{2} R+\frac{d-1}{r} \partial_{r} R-\frac{\ell(\ell+d-2)}{r^{2}} R=-k^{2} R
$$

- Change variables to cancel the first derivative: $u(r)=r^{(d-1) / 2} R(r)$

$$
\partial_{r}^{2} u+\left[k^{2}-\frac{j(j+1)}{r^{2}}\right] u=0 \quad j=\ell+\frac{d-3}{2}
$$

Higher Dimensional Coulomb Potentials

- Coulomb potentials in d spatial dimensions
- No operator structure! Problematic for $\mathrm{d}>4$? $\quad V(r)=\frac{\alpha}{r^{d-2}}$
- Free particle solutions in d spatial dimensions

$$
s_{j}(k r)=k r j_{j}(k r) \quad c_{j}=-k r y_{j}(k r) \quad j=\ell+\frac{d-3}{2}
$$

- Diagnostic check

$$
K_{j s, j^{\prime} s^{\prime}}=\frac{-2 \mu}{k} \int_{0}^{a} d r s_{j}(k r) V_{j s, j j^{\prime}}(r) s_{j}(k r) \approx \frac{-2 \alpha \mu}{k} \int_{0}^{a} d r r^{j^{\prime}+1} r^{2-d_{r} j^{j+1}} \approx \frac{-2 \alpha \mu}{k} \int_{0}^{a} d r r^{\ell^{\prime}+\ell+1}
$$

Scalar-Scalar Potentials

- Scalars don't possess any intrinsic spin. This allows us to uniquely fix the non-relativistic limit of the amplitude.

$$
\tilde{V}(\vec{q})=\frac{f\left(q^{2}\right)}{q^{2}+m^{2}}=\sum_{n=0}^{\infty} \frac{a_{n} q^{2 n}}{q^{2}+m^{2}}=\frac{\tilde{a}_{-1}}{q^{2}+m^{2}}+\sum_{n=0}^{\infty} \tilde{a}_{n} q^{2 n}
$$

- Every factor of q gives us another derivative, so the potential is the sum of a Yukawa term and even derivatives of delta functions.
- Diagnostic check

$$
\nabla^{2 n} \delta(r) r^{\ell+\ell^{\prime}}=\left(\ell+\ell^{\prime}\right)\left(\ell+\ell^{\prime}-1\right) \cdots\left(\ell+\ell^{\prime}+1-2 n\right) \delta(r) r^{\ell+\ell^{\prime}-2 n}
$$

