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Bayesian inference

 Statistical approach for model-to-data 
comparison

 Often associated with:

 Large-scale model-to-data comparison

 Uncertainty quantification

 Emulation
(PCA, Gaussian process, …)
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Bernhard, Moreland, Bass (2019) Nature Phys.
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Fig. ref.: https://scikit-learn.org/0.17/auto_examples/gaussian_process/plot_gp_regression.html

“Design points”
(model calculations)

Emulator



Applications of Bayesian inference in heavy-ion collisions

 Most applications have been for:

 Soft sector: transport coefficients and initial conditions

 Hard sector: parton energy loss
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Bernhard, Moreland, Bass (2019) Nature Phys. JETSCAPE Collaboration (2021) PRC 104, 024905



OVERVIEW OF BAYESIAN INFERENCE



Bayes’ theorem

J-F PAQUET (VANDERBILT UNIVERSITY)
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Adapted from: 
Bayesian Methods in Cosmology, edited by Michael P. Hobson, et al., Cambridge University Press, 2009.
Chapter "Foundations and algorithms", by John Skilling

▪ The posterior is (generally) what we are after: probability of model parameters given data

𝑷𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝑷𝒓𝒊𝒐𝒓 × 𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝐩𝐫𝐨𝐛 𝐩 × 𝐩𝐫𝐨𝐛 𝒅|𝒑 = 𝒑𝒓𝒐𝒃 𝒑, 𝒅 = 𝒑𝒓𝒐𝒃 𝒅 × 𝒑𝒓𝒐𝒃 𝒑 𝒅

Prior   × Likelihood   = Joint    = Evidence  × Posterior

Inputs Outputs



Bayesian parameter inference w/ Gaussian likelihood
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𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫 𝒑|𝑫 ∝ 𝒑𝒓𝒊𝒐𝒓 𝒑 × 𝒆𝒙𝒑 −
𝟏

𝟐
𝑫 −𝑴𝒐𝒅𝒆𝒍 𝒑

𝑻

𝑪𝒐𝒗−𝟏 𝑫−𝑴𝒐𝒅𝒆𝒍 𝒑

Experimental 
and theoretical 
uncertainties

Mean value of 
measurements

External constraints on 
parameters: 

positivity or range of allowed 
values, “probabilistic theoretical 

constraints”, …

Probabilistic 
constraints on 
parameters

Prediction of model
for given set of 

parameters (𝜂/𝑠, 𝜁/𝑠, 
initial conditions, …)



Bayesian parameter inference w/ Gaussian likelihood
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𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫 𝒑|𝑫 ∝ 𝒑𝒓𝒊𝒐𝒓 𝒑 × 𝒆𝒙𝒑 −
𝝌𝟐

𝟐

External constraints on 
parameters: 

positivity or range of allowed 
values, “probabilistic theoretical 

constraints”, …

Probabilistic 
constraints on 
parameters



Simple example (with Gaussian likelihood)
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▪ Say your model is 
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 𝑥 = 2 + 0.3 𝑥

▪ Say the measured observable 
is 𝑑 = 2.6 ± 0.13
(5% relative uncertainty)

Data with uncertainty

Model

Model parameter

▪ Result:

𝒆𝒙𝒑 −
𝒅 − 𝟐 − 𝟎. 𝟑 𝒙 𝟐

𝟐 𝟎. 𝟎𝟓𝒅 𝟐
= 𝒆𝒙𝒑 −

𝒅 − 𝟐 /𝟎. 𝟑 − 𝒙
𝟐

𝟐 𝟎. 𝟎𝟓𝒅/𝟎. 𝟑 𝟐

• Uncertainty on x:      
𝐞𝐱𝐩.𝐮𝐧𝐜𝐞𝐫𝐭

(𝒔𝒍𝒐𝒑𝒆 𝒐𝒇 𝒎𝒐𝒅𝒆𝒍)
=

𝟎.𝟎𝟓 𝒅

𝟎.𝟑



Bayesian inference in practice

 Models are non-linear, numerical, expensive, stochastic
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𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫 𝒑|𝑫 ∝ 𝒑𝒓𝒊𝒐𝒓 𝒑 × 𝒆𝒙𝒑 −
𝟏

𝟐
𝑫𝒂𝒕𝒂 −𝑴𝒐𝒅𝒆𝒍 𝒑

𝑻

𝑪𝒐𝒗−𝟏 𝑫𝒂𝒕𝒂 −𝑴𝒐𝒅𝒆𝒍 𝒑

Experimental 
and theoretical 
uncertainties

Generally needs to replace model 
prediction by fast 

“surrogate”/emulator

Parameter

O
b
se

rv
ab

le
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 Models are non-linear, numerical, expensive, stochastic
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𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫 𝒑|𝑫 ∝ 𝒑𝒓𝒊𝒐𝒓 𝒑 × 𝒆𝒙𝒑 −
𝟏

𝟐
𝑫𝒂𝒕𝒂 −𝑴𝒐𝒅𝒆𝒍 𝒑

𝑻

𝑪𝒐𝒗−𝟏 𝑫𝒂𝒕𝒂 −𝑴𝒐𝒅𝒆𝒍 𝒑

 Bayesian inference in practice:

 Choose a model and a set of parameters

 Choose priors for parameters, and prepare emulator for model over prior range

 Choose data set

 Compute and study the posterior and the evidence



Multistage simulations of heavy ion collisions
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Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

▪ Energy-momentum tensor of plasma:

▪ Conservation of energy and momentum:

▪ Mueller-Israel-Stewart-type relativistic viscous hydrodynamics

𝑇𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃(𝜖) + Π (g𝜇𝜈−𝑢𝜇𝑢𝜈) + 𝜋𝜇𝜈

𝜕𝜈𝑇
𝜇𝜈 = 0

𝜏Π ሶΠ + Π = −𝜻(𝑇) 𝜕𝜇 𝑢
𝜇 + (2nd order);𝜏𝜋Δ𝛼𝛽

𝜇𝜈
ሶ𝜋𝛼𝛽 + 𝜋𝜇𝜈 = 2 𝜼(𝑇)(𝜕𝜇𝑢𝜈 +⋯) + (2nd order);

Early dynamics Hadronic transportEnergy deposition

Hydrodynamics
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JETSCAPE Collaboration, (2021) PRC, PRL

Nijs, van der 
Schee, Gürsoy, 
Snellings (2021) 
PRC, PRL

Similar results from Parkkila, Onnerstad, Kim (2021) PRC

Bernhard, Moreland, Bass (2019) Nat.Phys.

𝜂
/𝑠

0.3

0.0
Temperature [GeV] 0.30.15

JETSCAPE Collaboration, (2021) PRC, PRL

Nijs, van der Schee, Gürsoy, 
Snellings (2021) PRC, PRL

Parkkila, Onnerstad, Kim 
(2021) PRC: 𝜁/𝑠 < 0.03

Bernhard, Moreland, Bass (2019) Nat.Phys.

𝜁/𝑠 < 0.01𝜁
/𝑠

0.08

0.0
Temperature [GeV] 0.30.15

Shear viscosity calibrations

Bulk viscosity calibrations



16

JETSCAPE Collaboration, (2021) PRC, PRL

Nijs, van der 
Schee, Gürsoy, 
Snellings (2021) 
PRC, PRL

Similar results from Parkkila, Onnerstad, Kim (2021) PRC

Bernhard, Moreland, Bass (2019) Nat.Phys.

𝜂
/𝑠

0.3

0.0
Temperature [GeV] 0.30.15

Shear viscosity calibrations

 Bayesian inference in practice:

 Choose a model and a set of parameters

 Choose priors for parameters, and prepare emulator for model over prior range

 Choose data set

 Compute and study the posterior and the evidence
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JETSCAPE Collaboration, (2021) PRC, PRL

Nijs, van der 
Schee, Gürsoy, 
Snellings (2021) 
PRC, PRL

Similar results from Parkkila, Onnerstad, Kim (2021) PRC

Bernhard, Moreland, Bass (2019) Nat.Phys.

𝜂
/𝑠

0.3

0.0
Temperature [GeV] 0.30.15

JETSCAPE Collaboration, (2021) PRC, PRL

Shear viscosity calibrations

 Why do results differ?

 Models (initial stage+hydrodynamics+hadronic afterburner): similar but not identical

 Differences in priors but also in parametrizations

 Different selection of data



Keeping everything in perspective

J-F PAQUET (VANDERBILT UNIVERSITY)
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JETSCAPE Collaboration, (2021) PRC, PRL

Favoured by data

Modified from the Hot QCD White Paper 2015



Pros and cons of Bayesian inference

 Systematic and reproducible
constraints on model parameters

 Propagation of uncertainties 
(experimental, theoretical; covariance)

 Scales well to large number of 
measurements and model parameters

 Model selection/comparison

 Model mixing

 Experimental design
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Benefits: Challenges:

 Expensive numerically

 Emulation introduces additional 
uncertainty 
(complicating experimental design and 
interpretation of uncertainties)

 Communicating meaning of 
uncertainties; “precision vs accuracy”

 Communication meaning of parameters
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Why do calibrations differ, and what to learn from it?
 Why do results differ?

 Models

 Differences in priors but also in parametrizations

 Different selection of data

Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

Early dynamics Hadronic transportEnergy deposition Hydrodynamics

Model differences are often a 
reflection of “theoretical 

uncertainty”
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Why do calibrations differ, and what to learn from it?
 Why do results differ?

 Models

 Differences in priors but also in parametrizations

 Different selection of data

Model differences are often a 
reflection of “theoretical 

uncertainty”

Model differences should reduce as theoretical description of heavy-
ion collisions improve

Early dynamics Hadronic transportEnergy deposition Hydrodynamics
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Why do calibrations differ, and what to learn from it?
 Why do results differ?

 Models

 Differences in priors but also in parametrizations

 Different selection of data

Model differences are often a 
reflection of “theoretical 

uncertainty”

Hadronic transportHydrodynamics

𝑇𝜇𝜈 = σ𝑛𝑔𝑛∫
𝑑3𝑘

2𝜋 3𝐾0 𝐾
𝜇𝐾𝜈 𝑓𝑛 𝐾

= 𝜖𝑢𝜇𝑢𝜈 − 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈 𝑃 + Π
+𝜋𝜇𝜈
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Why do calibrations differ, and what to learn from it?
 Why do results differ?

 Models

 Differences in priors but also in parametrizations

 Different selection of data

JETSCAPE Collaboration, (2021) PRC, PRL
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Why do calibrations differ, and what to learn from it?
 Why do results differ?

 Models

 Differences in priors but also in parametrizations

 Different selection of data

JETSCAPE Collaboration, (2021) PRC, PRL
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Why do calibrations differ, and what to learn from it?
 Why do results differ?

 Models

 Differences in priors but also in parametrizations

 Different selection of data

Dashed line is posterior (90% 
credible interval) using prior 
from a previous analysis

Solid line is posterior using 
broader prior
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Why do calibrations differ?
 Why do results differ?

 Models

 Differences in priors but also in parametrizations

 Different selection of data

More data ≠ Better results 
(if model quality varies by observables)

But picking and choosing data is risky, 
and comparison with large data sets is desirable

Ref.: https://wp.stolaf.edu/it/gis-precision-accuracy/

Model selection can help
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JETSCAPE Collaboration, (2021) PRC, PRL

Nijs, van der 
Schee, Gürsoy, 
Snellings (2021) 
PRC, PRL

Similar results from Parkkila, Onnerstad, Kim (2021) PRC

Bernhard, Moreland, Bass (2019) Nat.Phys.

𝜂
/𝑠

0.3

0.0
Temperature [GeV] 0.30.15

JETSCAPE Collaboration, (2021) PRC, PRL

Shear viscosity calibrations

 Why do results differ?

 Models: differences in model, but also in uncertainties that are quantified

 Differences in priors & parametrizations: communicating the results

 Data selection



Communicating the results

J-F PAQUET (VANDERBILT UNIVERSITY)
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Early dynamics Hydrodynamics



Communicating the results

J-F PAQUET (VANDERBILT UNIVERSITY)
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Width

𝒅𝒎𝒊𝒏



OPPORTUNITIES AND OUTLOOK



Pros and cons of Bayesian inference

 Systematic and reproducible
constraints on model parameters

 Propagation of uncertainties 
(experimental, theoretical; covariance)

 Scales well to large number of 
measurements and model parameters

 Model selection/comparison

 Model mixing

 Experimental design

31

Benefits: Challenges:

 Expensive numerically

 Emulation introduces additional 
uncertainty 
(complicating experimental design and 
interpretation of uncertainties)

 Communicating meaning of 
uncertainties; “precision vs accuracy”

 Communication meaning of parameters



Experimental design
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Model responses of an observable with respect 
to a given parameter



Experimental design
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Model responses of an observable with respect 
to a given parameter



Experimental design
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Model mixing

J-F PAQUET (VANDERBILT UNIVERSITY)
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 What if a model is better at predicting certain observables than others?

 What if a model works better in certain regions of the parameter space (e.g. at 
small viscosity)

 Model mixing can take the “best” out of different models

See e.g. document from BAND collaboration for a discussion 
https://arxiv.org/pdf/2012.07704.pdf



Reducing numerical cost

 Multiple methods are being investigated:

 Transfer learning, multifidelity emulation

Yi Ji et al, arXiv:2209.13748; Liyanage et al (2022) PRC

 Adaptive sampling

 Optimizing statistical and interpolation uncertainties

J-F PAQUET (VANDERBILT UNIVERSITY)
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Pros and cons of Bayesian inference

 Systematic and reproducible
constraints on model parameters

 Propagation of uncertainties 
(experimental, theoretical; covariance)

 Scales well to large number of 
measurements and model parameters

 Model selection/comparison

 Model mixing

 Experimental design
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Benefits: Challenges:

 Expensive numerically

 Emulation introduces additional 
uncertainty 
(complicating experimental design and 
interpretation of uncertainties)

 Communicating meaning of 
uncertainties; “precision vs accuracy”

 Communication meaning of parameters



QUESTIONS?

J-F PAQUET (VANDERBILT UNIVERSITY)
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