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Overview

eTheoretical model: Sub-saturation EoS with light
clusters at CCSN/HIC conditions

eExperimental data analysis

oFit of exp data to theory



Why are these clusters important?

¢ They influence supernova properties: the clusters can
modify the neutrino transport, affecting the cooling of
the proto-neutron star and/or binary and accreting
systems.



EoS and Constraints
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Many EoS models in literature, like e.g.
phenomenological models, whose
parameters are fitted to nuclei properties,

such as RMF, or Skyrme.
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® Talks tomorrow!

EoS Constraints

eTerrestrial Experiments:
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EoS Constraints °Astrophysical Observations:
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EoS Constraints

— In a near future:

o ATHENA, an X-ray high-precision determination observatory for NS mass and
radius to be launched in 2028.

e New data on NS systems will heavily increase when SKA, the world's largest
radio telescope, will be in full power.

e The radio telescope FAST has started operating, and will give information on
the NS mass.

e The Einstein Telescope (ET), an underground infrastructure to host a 3G
gravitational-wave observatory, foresees the beginning of construction in 2026
with the goal to start observations in 2035...

e On the experimental side, FAIR will put more constraints on the high-density
behaviour of nuclear matter.
e Results of INDRA-FAZIA experiment.




Supernova EoS with light clusters

e The SN EoS should incorporate: all relevant clusters, (mean-field)

intferaction between nucleons and clusters, and a suppression
mechanism of clusters at high densities.

e Different methods: nuclear statistical equilibrium, quantum statistical
approach, and

® RMF approach: clusters as new degrees of freedom, with effective
mass dependent on density.
e In-medium effects: cluster interaction with medium described via the

meson couplings, or effective mass shifts, or both
e Constrains are needed to fix the couplings:
low densities: Virial EoS

high densities: cluster formation has been measured in HIC




In-medium effects

*Binding energy of each cluster: B; = A;m™ — M}, j=d,t,h,«

with m" =m — gs¢g the nucleon effective mass and

MJ’.“ — Ajm —@gbo — (B;-) + the cluster effective mass.
/ \

the scalar cluster-meson coupling binding energy shift

9sj = WLsjfijgs




In-medium effects - 9s;

e The Binding energy of each cluster then becomes:

Bj = Ajgsqb() ($83—1)+B;)—|—5Bj

e Lsj can vary from O to 1 so for the two extreme cases, we have:

Bj — B?+5Bj,if$8j:1,
Bj — B?—I—(SBj—Ajgsqbo,ifiUsj:O.

® This implies that a larger X, corresponds to a larger 55;, and that
the cluster dissolution density will occur at larger densities.

Lsj needs to be determined from exp. constraints

10



In-medium effects - 0B,

S ——

binding energy shift —  Responsible for dissolution of clusters
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6B; = = (¢ —mp’) + —L (¢ — mp})
J 00 ( p p) 00 n n
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%= 2 A p°e;(p)(fi+(P) + fi—(0))dp |, Lowest energy levels of the
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pi=— p*(fi+(p) + fi-(p))dp, .
™ Jo the energy states occupied by
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the gas are excluded in the
calculation of B;:
double counting avoided!




B, (MeV)

Contribution of 0B;
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e However, this does not give a complete picture of the in-medium effects and cluster
dissolution mechanism: the particle fractions are affected in a complex way due to the

self-consistency of the approach, since the equations of motion for the meson fields

are modified by 5Bj
12



Cluster fractions - effect of dB;

e Note that at finite T, X
the clusters dissolve
at a P well above

the one for which
B;~0

L

FSU, T=5 MeV
yp=0.41, Xs=0.85

107° 107 1078 1072
o (fm™)

0B ] important for dissolution of clusters!
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Exp Constraint: Equilibrium constants

eIn Qin et , PRL 108, 172701 (2012), Kc were calculated with
data from HIC:

e At the fime, unique existing constraint on in-medium modifications
of light clusters at finite T.

¢ This analysis was performed using ideal gas considerations.

14



Exp Constraint: Equilibrium constants

e Yellow bands:
exp data from
Qin et al

® Red points: RMF
model calculated
at (T,rho,yp) of
exp data with
xs = 0.85+£0.05

e x_s first fitted to
the Virial EoS,
model-ind
constraint, only
depends on exp B
and scattering
phase shifts.
Provides correct
zero-density limit
for finite-T EoS.
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e Our theoretical model describes quite well
experimental data, except for deuteron 15



Experimental chemical equilibrium

PRL 125, 012701 (2020);

constants with INDRA data-====

e Experimental data includes 4He, 3He, 3H, 2H, and 6He.
e 3 experimental systems: 136Xe+124Sn, 124Xe+124Sn, and 124Xe+112Sn.
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R. Bougault et al, for the INDRA collab,
J. Phys. G 47, 025103 (2020)

e Vsurf is the velocity of
the emitted particles at
the nuclear surface, so
fastest particles
correspond to earliest
emission times.

® The temperature, proton fraction and density as a function of Vsurf, for
the intfermediate mass system. 16



Experimental determination of
chemical equilibrium constants

e Weak point: T and density are NOT directly measured, but deduced

from experimental multiplicities, using analytical expressions that
assume the physics of an ideal gas...
7000

e Since we are in 6000 |
thermodynamical 5000
equilibrium, the free
volume occupied by the
clusters should be the
same!
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e But they arent.... 0




Considering in-medium effects

e How to solve this problem?
e We should take into account the interactions between clusters:

* We introduce a correction factor that modifies the binding energies
of the clusters:

BltAOZt = Baz — Aaz, Aiz = alA? + as|l|™




Considering in-medium effects

e al, a2, a3, and a4 parameters are random variables that need fo be

determined.
e How to do that? Bayesian analysis.

 They are going to be calculated such that the volumes of the clusters,

sz (B, - 2z +1 V@
Vf(AZ) — B3RAT exp [ AZ @ , < AZA_I_ 1 (1_5:) )
T(A-1) 2 Yaz(pa)

are the same, so that the thermodynamical conditions are fulfilled.

® The posterior distribution is obtained by imposing the volume observation
with a likelihood probability: AZ) )
( Sar (V@) - vf<a>>2>

Froa(@) = N exp 2V, (a)?

e To minimize assumptions, we take flat priors Pprior(@) = 0(Gmin — Gmax)
19



Experimental chemical equilibrium
constants with INDRA data

® The points show the posterior expectation values for the volumes:
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e When we apply the correction, the volumes converge.
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Equilibrium constants and data
from INDRA

points: analysis
lines: ideal gas

124y 0 1125 5
124y 124G, o
8 [136yq, 124G

® We obtain densities larger than
the ideal gas limit.

® The 3 data systems are
compatible.
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Equilibrium constants and data

from INDRA

® This work shows that there are in-medium
effects:

® We obtain a higher x_s as compared to a the
previous fit of Qin et al data:

® The higher the x_s, the bigger the binding
energies (and the smaller effect of the

medium), and the higher the dissolution
densities of the clusters.
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e Later, we used other RMF models to fit to the

same INDRA data. The values of s found for
FSU2R and DDME2 were very close to the
previous one found using the FSU model.
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Mass fractions and dissolution density

I

T. Custodio etal,

£pJA 56, 295 (2020)
100 i | ]
: | @ Looking at the mass fractions, we
Jo! find that different models predict
T=10MeV | similar abundances.
Yp=0-41 | @ rho_diss(FSU2R)=[0.0758:0.0857]fm "~
10 ' FSU2R, x,=0.91x0.02 =z | rho_diss(DDME2)=[0.0741:0.0851] fm

' DDME2, x,=0.93+0.02

In a near future:

e New data is expected where similar analysis can be implemented.

® PhD students Tiago Custodio and Alex Rebillard-Soulié working on
the subject from the theoretical (EoS) and experimental (data
analysis) points of view, respectively.
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Conclusions

e Our model reproduces both virial limit and K¢ from HIC data.

¢ INDRA data was analysed based on a new method, with in-medium
effects.

e By fitting to a theoretical RMF model, a larger scalar coupling than
the one found in a previous study, NOT including in-medium effects in
the data analysis, was found.

¢ This implies bigger binding energies => larger melting densities =>
MORE clusters in CCSN matter!!

e Clusters are relevant and should be explicitly included in EoS for
CCSN simulations and NS mergers.




