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Overview

•Theoretical model: Sub-saturation EoS with light 
clusters at CCSN/HIC conditions

•Experimental data analysis
•Fit of exp data to theory
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Why are these clusters important?

• They influence supernova properties: the clusters can 
modify the neutrino transport, affecting the cooling of 
the proto-neutron star and/or binary and accreting 
systems. 
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EoS and Constraints

Solution: Need Constraints (Experiments, Observations, 
Microscopic calculations)

Many EoS models in literature, like e.g. 
phenomenological models, whose 
parameters are fitted to nuclei properties, 
such as RMF, or Skyrme.


check CompOSE:

https://compose.obspm.fr/
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Fig. 2. The mass-radius relation for all the RMF unified EoS (thick lines) considered in this work. The thin lines correspond to
a construction where a BPS-Polytropic fitted crust EoS is used (see text for details). The top (bottom) gray region indicates the
heavier (lighter) NS in the GW170817 event for a parametrized EoS where a lower limit on the maximum mass of 1.97M� was
imposed [89], with a 90% (solid contour) and 50% (dashed contour) confidence interval. The constraints from the millisecond
pulsar PSR J0030+0451 NICER x-ray data (two blue regions) [3] and PSR J0740+6620 [88] (gray hatched region) are also
represented. The 21 SHF EoS are represented by the salmon band.

SHF EoSs satisfy the overlap regions of GW and NICER
constraints for the low-mass NS, though, on the other
hand, half of the band does not fullfill the NICER con-
straints for the high-mass NS. This is because the SHF
EoS have a tendency to give lower radius compared to
RMF.

In Table 2, we show a few NS properties obtained from
our eight sets of unified RMF EoSs, namely the core-crust
transition density, nt, the NS maximum mass Mmax, and
the central square of the speed of sound for the maxi-
mum mass NS, c2s. The R1.4, Rcore

1.4 , Rcrust
1.4 and ⇤1.4 are

the total radius, the radius for core, the crust thickness
and the tidal deformability for a 1.4 M� NS respectively.
The RBPS+Poly

1.4 in the table is the radius for a 1.4 M�
NS calculated with BPS+Poly fitted crust as discussed
above. For our RMF EoSs, the crust thickness is, on av-
erage ⇠ 1.3 km. These two di↵erent crust treatments, the
unified and the BPS+Poly, give a di↵erence of ⇠ ±4% for
the radius of 1.4M� NS, this di↵erence increasing with
lower-mass NS. As already seen in Fig. 2, the models
NL3!⇢L55 and FSU2 present the largest di↵erence, due to

their high incompressibility and slope of the symmetry en-
ergy. However, this will have little e↵ect on the dimension-
less tidal deformability, since this quantity is insensitive
to the crust because the Love number k2 compensates the
changes of the radii in di↵erent crust constructions. The
dimensionless tidal deformability of 1.4M� NS obtained
for NL3!⇢L55 and FSU2 is greater than 800, being disfa-
vored by the GW170817 constraint. This will be discussed
in detail in the next figures. All these models, being rela-
tivistic, are causal, as one can see from the square of the
speed of sound for the center of NS maximum mass, also
given in the Table.

In Fig. 3, we show the dimensionless tidal deformabil-
ity parameters ⇤1 and ⇤2 for the 2 objects involved in the
BNS event from GW170817, with masses m1 and m2. The
curves correspond to the EoS considered in this work, and
were obtained by varying m1 in the range 1.365 < m1 <
1.6 M�, and m2 was calculated by keeping the chirp mass
fixed at Mchirp = 1.186 M�, as observed in the GW170817
event. The orange solid (dashed) line represents the 90%
(50%) confidence interval from a marginalized posterior
for the tidal deformabilities of the two binary components

GW170817

PSR J0030+0451 from NICER

PSR J0740+6620
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Fig. 1. The equation of state, i.e. the pressure as function of the energy density (left) and as a function of the density (right),
for the 8 models considered in this work. The bottom panels concentrate in the low-density part of the star, whereas the top
panels show the full density range, up to ⇠ 8n0.

moment Qij of a neutron star due to the strong tidal grav-
itational field Eij of the companion star. This quadrupole
deformation in leading order in perturbation is given as
[66–70],

Qij = ��Eij . (12)

The parameter � is related to the dimensionless tidal Love
number k2 as k2 = 3

2G�R�5, with R being the radius
of the neutron star. This parameter k2 can be calculated
from the following expression:

k2 =
8C5

5
(1� 2C)2 [2 + 2C (yR � 1)� yR]⇥ (13)

⇢
2C (6� 3yR + 3C(5yR � 8))

+4C3
⇥
13� 11yR + C(3yR � 2) + 2C2(1 + yR)

⇤

+ 3(1� 2C)2 [2� yR + 2C(yR � 1)] log (1� 2C)

��1

,

where C (⌘ m/R) is the dimensionless compactness pa-
rameter of the star with mass m. The quantity yR (⌘
y(R)) can be obtained by solving the following di↵erential
equation

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (14)

with

F (r) =
r � 4⇡r3 (✏(r)� p(r))

r � 2m(r)
, (15)

Q(r) =
4⇡r

⇣
5✏(r) + 9p(r) + ✏(r)+p(r)

@p(r)/@✏(r) �
6

4⇡r2

⌘

r � 2m(r)

� 4


m(r) + 4⇡r3p(r)

r2 (1� 2m(r)/r)

�2
. (16)

For a given EoS, Eq.(14) can be integrated together
with the Tolman-Oppenheimer-Volko↵ equations [71] with
the boundary conditions y(0) = 2, p(0)=pc and m(0)=0,
where y(0), pc and m(0) are the dimensionless quantity,
pressure and mass at the center of the NS, respectively.
One can then define the dimensionless tidal deformabil-
ity, ⇤ = 2

3k2C
�5. The tidal deformabilities of the neutron

stars in the BNS system can be combined, and the follow-
ing weighted average, i.e. the e↵ective tidal deformability,
⇤̃, can be calculated

⇤̃ =
16

13

(12q + 1)⇤1 + (12 + q)q4⇤2

(1 + q)5
, (17)

TOV
EoS M(R)
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FIG. 5. 48Ca neutron minus proton radius versus that for
208Pb. The PREX-2+PREX-1 experimental result is shown
as a blue square, while that for CREX is shown as a red
square with the inner error bars indicating the experimental
error and the outer error bars including the model error. The
gray circles (magenta diamonds) show a variety of relativis-
tic (non-relativistic) density functionals. Coupled cluster [8]
and dispersive optical model (DOM) predictions [46] are also
shown.

els, while that of 208Pb (PREX) is thick, yet both are
consistent with a number of density functional models
and with the microscopic coupled cluster models [8]. This
will have implications for future energy density functional
calculations and the density dependence of the symmetry
energy.

The small model dependence of this result could be fur-
ther constrained with a future measurement of APV from
48Ca at an additional Q2 [47]. Experimental techniques
from this work, including excellent systematic control
of helicity-correlated fluctuations and demonstration of
high precision electron beam polarimetry, will inform the
design of future projects MOLLER [48] and SoLID [49]
at JLab measuring fundamental electroweak couplings,
as well as P2 and the 208Pb radius experimental propos-
als at Mainz [50].

We thank the entire sta↵ of JLab for their e↵orts to
develop and maintain the polarized beam and the exper-
imental apparatus, and acknowledge the support of the
U.S. Department of Energy, the National Science Foun-
dation and NSERC (Canada). We thank J. Piekarewicz,
P. G. Reinhard and X. Roca-Maza for RPA calculations
of 48Ca excited states and J. Erler and M. Gorchtein for
calculations of � � Z radiative corrections. This mate-
rial is based upon the work supported by the U.S. De-
partment of Energy, O�ce of Science, O�ce of Nuclear
Physics Contract No. DE- AC05-06OR23177.
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suggest a positive correlation between L and J . In the
context of density functional theory, such a positive cor-
relation is easy to understand. Using Eq.(3) at e⇢

0
yields

S(e⇢
0
) = J �

L

9
! J ⇡

✓
26MeV +

L

9

◆
. (6)

The value of S(e⇢
0
)⇡26MeV [22] follows because the sym-

metry energy at e⇢
0
is tightly constrained by the binding

energy of heavy nuclei. The PREX-II inferred value for L
yields a corresponding value of J=(37.7±4.1)MeV, that
is entirely consistent with the limit obtained in Eq.(5).
Although consistent at the 2� level, the “Intersection”
region in Fig. 2 obtained from a variety of experimental
and theoretical approaches lies outside the 1� PREX-II
limits.
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quantum chromodynamics, c2sðn ≫ 50n0Þ ¼ 1

3 [63]. The
uncertainties, however, are sizeable at the maximum
density: c2sð2n0Þ ≃ 0.14$ 0.08 (N2LO) and c2sð2n0Þ ≃
0.10$ 0.07 (N3LO). Precise measurements of neutron
stars with mass ≳2 M⊙ [64–67] indicate that the limit
has to be exceeded in some density regime beyond n0 [68].
Our 2σ uncertainty bands are consistent with this happen-
ing slightly above 2n0, especially since the downward turn
of c2s (n ≳ 0.28 fm−3) is likely an edge effect that will
disappear if we train on data at even higher densities.
Comparison to experiment.—Figure 2 depicts con-

straints in the Sv–L plane. The allowed region we derive
from χEFT calculations of infinite matter is shown as
the yellow ellipses (dark: 1σ, light: 2σ) and denoted
“GP-B” (Gaussian process–BUQEYE collaboration).
Also shown are several experimental and theoretical con-
straints compiled by Lattimer et al. [69–71]. The experi-
mental constraints include measurements of isoscalar giant
dipole resonances, dipole polarizabilities, and neutron-skin
thicknesses (see the caption for details). The white area
depicts the intersection of all these (excluding that from
isobaric analog states and isovector skins, which barely
overlaps). This region is in excellent agreement with our
prediction.
Our yellow ellipses in Fig. 2 represent the posterior

prðSv; L jDÞ, where the training data D are the order-by-
order predictions of ðE=NÞðnÞ and ðE=AÞðnÞ up to 2n0.
The distribution is accurately approximated by a two-
dimensional Gaussian with mean and covariance

!
μSv
μL

"
¼

!
31.7

59.8

"
and Σ ¼

!
1.112 3.27

3.27 4.122

"
: ð5Þ

We consider all likely values of n0 via prðSv; L jDÞ ¼R
prðS2; L j n0;DÞprðn0 jDÞdn0. Here, prðS2; L j n0;DÞ

describes the correlated to-all-orders predictions at a par-
ticular density n0, and prðn0 jDÞ ≈ 0.17$ 0.01 fm−3 is the
Gaussian posterior for the saturation density, including
truncation errors, determined in Ref. [28]. If the canonical
empirical saturation density, n0 ¼ 0.164 fm−3, is used
instead the posterior mean shifts slightly downwards: Sv →
Sv − 0.8 MeV and L → L − 1.4 MeV. This shift is well
within the uncertainties computed using our internally
consistent n0. In contrast to experiments, which extract
Sv–L from measurements over a range of densities, our
theoretical approach predicts directly at saturation density,
thereby removing artifacts induced by extrapolation.
Our 2σ ellipse falls completely within constraints

derived from the conjecture that the unitary gas is a lower
limit on the EOS [69] (solid black line). The same work
also made additional simplifying assumptions to derive an
analytic bound—only our 1σ ellipse is fully within that
region (dashed black line). Figure 2 also shows the allowed
regions obtained from microscopic neutron-matter
calculations by Hebeler et al. [79] (based on χEFT NN

and 3N interactions fit to few-body data only) and Gandolfi
et al. [80] (where 3N interactions were adjusted to a range
of Sv). The predicted ranges in Sv agree with ours, but we
find that L is ≈10 MeV larger, corresponding to a stronger
density-dependence of S2ðn0Þ. References [79,80] quote
relatively narrow ranges for Sv–L, but those come from
surveying available parameters in the Hamiltonians and so,
unlike our quoted intervals, do not have a statistical
interpretation.
Summary and outlook.—We presented a novel frame-

work for EFT truncation errors that includes correlations

FIG. 2. Constraints on the Sv–L correlation. Our results
(“GP–B”) are given at the 68% (dark-yellow ellipse) and 95%
level (light-yellow ellipse). Experimental constraints are derived
from heavy-ion collisions (HIC) [72], neutron-skin thicknesses of
Sn isotopes [73], giant dipole resonances (GDR) [74], the dipole
polarizability of 208Pb [75,76], and nuclear masses [77]. The
intersection is depicted by the white area, which only barely
overlaps with constraints from isobaric analog states and iso-
vector skins (IASþ ΔR) [78]. In addition, theoretical constraints
derived from microscopic neutron-matter calculations by
Hebeler et al. (H) [79] and Gandolfi et al. (G) [80] as well as
from the unitary gas (UG) limit by Tews et al. [69]. The figure has
been adapted from Refs. [70,71]. A Jupyter notebook that
generates it is provided in Ref. [42].

PHYSICAL REVIEW LETTERS 125, 202702 (2020)

202702-4

FIG. 2: (Color online). Constraints on the J–L correlation
obtained from a variety of experimental and theoretical ap-
proaches. The figure was adapted from Refs. [11, 33] and no-
ticeably displays the tension with the recent PREX-II result.

Next, we explore the impact of PREX-II on a few
neutron-star observables. We start by displaying in Fig. 3
the minimum central density and associated neutron star
mass required for the onset of the direct Urca process.
Neutron stars are born very hot (T ' 1011K ' 10MeV)
and then cool rapidly via neutrino emission through the
direct Urca process that involves neutron beta decay fol-
lowed by electron capture:

n ! p+ e� + ⌫̄e, (7a)

p+ e� ! n+ ⌫e. (7b)

After this rapid cooling phase is completed, neu-
trino emission proceeds in the standard cooling scenario
through the modified Urca process—a process that may
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FIG. 3: (Color online). Direct Urca thresholds for the onset
of enhanced cooling in neutron stars. The threshold density is
depicted by the lower blue line and the corresponding stellar
mass for such a central density with the upper green line.
The shaded area represents PREX-II 1� confidence region.
For each of these two quantities, the best-fit line is displayed
together with their associated correlation coe�cients.

be millions of times slower as it requires the presence
of a bystander nucleon to conserve momentum at the
Fermi surface[34]. The transition into the much slower
modified Urca process is solely based on the expectation
that the proton fraction in the stellar core is too low
to conserve momentum at the Fermi surface. However,
given that the proton fraction is controlled by the poorly
known density dependence of the symmetry energy [35],
the minimal cooling scenario may need to be revisited.
In particular, a sti↵ symmetry energy—as suggested by
PREX-II—favors large proton fractions that may trigger
the onset of the direct Urca process at lower central densi-
ties. This analysis is particularly timely given that x-ray
observations suggest that some neutron stars may require
some form of enhanced cooling. Indeed, the detected x-
ray spectrum of the neutron star in the low-mass x-ray
binary MXB 1659-29 strongly suggests the need for a fast
neutrino-cooling process [36]. For a comprehensive re-
port that explores the interplay between the direct Urca
process and nucleon superfluidity in transiently accreting
neutron stars, see Ref. [37]. The shaded area in Fig. 3 dis-
plays the region constrained by PREX-II. In particular,
the 1� lower limit of Rskin=0.212 fm suggests a threshold
mass for the onset of direct Urca cooling of M?⇡1.45M�
and a corresponding central density of ⇢? ⇡ 0.42 fm�3.
However, if instead one adopts the larger PREX-II cen-
tral value of Rskin =0.283 fm, then one obtains the con-
siderably lower threshold values of M? ⇡ 0.85M� and
⇢?⇡0.24 fm�3, or a threshold density just slightly higher
than saturation density. Although some stars are likely
to require enhanced cooling, observations of many iso-

EoS Constraints •Terrestrial Experiments:

• PREXII (Adhikari et al, PRL 126, 172502 (2021):

Rn-Rp(208Pb)=0.283 ± 0.071 fm.

-Reed et al, PRL 126, 172503: L = 106 ± 37 MeV;

-Yue et al, PRR 4, L022054: L = 85.5 ± 22.2 MeV;

-Essick et al, PRL 127, 192701: 


-Reinhard et al, PRL 127, 232501 (2021), get 
r(skin)=0.19±0.02 fm, with L = 54 ± 8 MeV.


• Spectra of charged pions (Estee et al, PRL 126, 
162701 (2021)): 42<L<117MeV.


• VEoS: only depends on exp. B and scattering phase 
shifts. Correct zero-density limit for finite T EoS.

• Kc from HIC: cluster formation observed in HIC.
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The symmetry energy and its density dependence are crucial inputs for many nuclear physics and
astrophysics applications, as they determine properties ranging from the neutron-skin thickness of nuclei to
the crust thickness and the radius of neutron stars. Recently, PREX-II reported a value of 0.283! 0.071 fm
for the neutron-skin thickness of 208Pb, implying a slope parameter L ¼ 106! 37 MeV, larger than most
ranges obtained from microscopic calculations and other nuclear experiments. We use a nonparametric
equation of state representation based on Gaussian processes to constrain the symmetry energy S0, L, and

R
208Pb
skin directly from observations of neutron stars with minimal modeling assumptions. The resulting

astrophysical constraints from heavy pulsar masses, LIGO/Virgo, and NICER clearly favor smaller values
of the neutron skin and L, as well as negative symmetry incompressibilities. Combining astrophysical data
with PREX-II and chiral effective field theory constraints yields S0 ¼ 33.0þ2.0

−1.8 MeV, L ¼ 53þ14
−15 MeV, and

R
208Pb
skin ¼ 0.17þ0.04

−0.04 fm.

DOI: 10.1103/PhysRevLett.127.192701

Introduction.—The symmetry energy SðnÞ is a central
quantity in nuclear physics and astrophysics. It character-
izes the change in the nuclear-matter energy as the ratio of
protons to neutrons is varied and thus impacts, e.g., the
neutron-skin thickness of nuclei [1–3], their dipole polar-
izability [4,5], and the radius of neutron stars (NSs) [6,7].
This information is encoded in the nuclear equation of state
(EOS), described by the nucleonic energy per particle,
Enuc=A, a function of total baryon density n and proton
fraction x ¼ np=n for proton density np. The energy per
particle is connected to the bulk properties of atomic nuclei
for proton fractions close to x ¼ 1=2, i.e., symmetric
nuclear matter (SNM) with ESNM=A ¼ ðEnuc=AÞjx¼1=2.
As the neutron-proton asymmetry increases (or the proton
fraction x decreases) the energy per particle increases,
reaching a maximum for x ¼ 0, i.e., pure neutron matter
(PNM) with EPNM=A ¼ ðEnuc=AÞjx¼0. PNM is closely
related to NS matter. The symmetry energy characterizes
the difference between these two systems:

SðnÞ ¼ EPNM

A
ðnÞ − ESNM

A
ðnÞ: ð1Þ

Crucial information is encoded in the density depend-
ence of SðnÞ, which is captured by the slope parameter L

and the curvature Ksym defined at nuclear saturation
density, n0 ≈ 0.16 fm−3,

L ¼ 3n
∂SðnÞ
∂n

!!!!
n0

; KsymðnÞ ¼ 9n2
∂2SðnÞ
∂n2

!!!!
n0

: ð2Þ

As dðESNM=AÞ=dn ¼ 0 at n0, L describes the pressure of
PNM around n0. S0 ¼ Sðn0Þ and L are of great interest to
nuclear physics [5,8,9] and astrophysics [10–12].
Experimental [4,5,13,14] and theoretical [15–18] determi-
nations consistently place S0 in the range of 30–35 MeV
and L in the range of 30–70 MeV. Recently, however, the
PREX-II experiment reported a new result for the neutron-
skin thickness of 208Pb [19], R

208Pb
skin , a quantity strongly

correlated with L (see, e.g., Refs. [1–3]). The measurement
of R

208Pb
skin ¼ 0.283! 0.071 fm (mean! standard deviation),

including PREX-I and PREX-II data, led Ref. [20] to
conclude that L ¼ 106! 37 MeV. This value is larger than
previous determinations, and thus presents a challenge to
our understanding of nuclear matter, should a high L value
be confirmed precisely.
In this Letter, we address this question by constraining

S0, its density dependence L, and R
208Pb
skin directly from

astrophysical observations. We adopt a nonparametric

PHYSICAL REVIEW LETTERS 127, 192701 (2021)
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Reed et al, PRL 126, 172503 
(2021)

• CREX (Adhikari et al, PRL 129, 042501 (2022): 
Rn-Rp(48Ca)=0.121 ± 0.026 ±0.024: seems to 
indicate the L could be smaller…

Adhikari et al, PRL 129, 
042501 (2022)

• Talks tomorrow!
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EoS Constraints •Astrophysical Observations:
• GW170817 from NS-NS (Abbott et al, PRL 

119, 161101 (2017) followed up by 
GRB170817A and AT2017gfo.


Others followed:

• GW190425 (Abbott et al, ApJL 892, L3 

(2020): largest NS binary known to date 

• GW190814 (Abbott et al, ApJL 896, L44 

(2020): BH+2.5-2.6Msun object (not ruled 
out yet to be NS)…


• NASA’s Neutron star Interior Composition 
Explorer (NICER) X-ray telescope:


•  PSR J0030+0451: 

-Riley et al, ApJL 887, L21 (2019): 

M=                 , R= 

-Miller et al, ApJL 887, L24 (2019):

M=                 ; R=

• PSR J0740+6620:

-Riley et al, ApJL 918, L27 (2021):

M=                  ; R=                 

-Miller et al, ApJL 918, L28 (2021):

M=                ; R=
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ABSTRACT

We report on Bayesian parameter estimation of the mass and equatorial radius of the millisecond
pulsar PSR J0030+0451, conditional on pulse-profile modeling of Neutron Star Interior Composition

Explorer X-ray spectral-timing event data. We perform relativistic ray-tracing of thermal emission
from hot regions of the pulsar’s surface. We assume two distinct hot regions based on two clear pulsed
components in the phase-folded pulse-profile data; we explore a number of forms (morphologies and
topologies) for each hot region, inferring their parameters in addition to the stellar mass and radius. For
the family of models considered, the evidence (prior predictive probability of the data) strongly favors
a model that permits both hot regions to be located in the same rotational hemisphere. Models
wherein both hot regions are assumed to be simply-connected circular single-temperature spots, in
particular those where the spots are assumed to be reflection-symmetric with respect to the stellar
origin, are strongly disfavored. For the inferred configuration, one hot region subtends an angular
extent of only a few degrees (in spherical coordinates with origin at the stellar center) and we are
insensitive to other structural details; the second hot region is far more azimuthally extended in the
form of a narrow arc, thus requiring a larger number of parameters to describe. The inferred mass M
and equatorial radius Req are, respectively, 1.34+0.15

�0.16 M� and 12.71+1.14
�1.19 km, whilst the compactness

GM/Reqc
2 = 0.156+0.008

�0.010 is more tightly constrained; the credible interval bounds reported here are
approximately the 16% and 84% quantiles in marginal posterior mass.
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2 Miller, Lamb, Dittmann, et al.

plorer (NICER). This approach is thought to be less subject to systematic errors than
other approaches for estimating neutron star radii. We explored a variety of emission
patterns on the stellar surface. Our best-fit model has three oval, uniform-temperature
emitting spots and provides an excellent description of the pulse waveform observed us-
ing NICER. The radius and mass estimates given by this model are Re = 13.02+1.24

�1.06 km
and M = 1.44+0.15

�0.14 M� (68%). The independent analysis reported in the companion
paper by Riley et al. explores di↵erent emitting spot models, but finds spot shapes
and locations and estimates of Re and M that are consistent with those found in this
work. We show that our measurements of Re and M for PSR J0030+0451 improve the
astrophysical constraints on the EoS of cold, catalyzed matter above nuclear saturation
density.

Keywords: dense matter — equation of state — neutron star — X-rays: general

1. INTRODUCTION

A key current goal of nuclear physics is to understand the properties of cold catalyzed matter above
the saturation density of nuclear matter. Matter at these densities cannot be studied in terrestrial
laboratories. Hence observations of neutron stars—which contain large quantities of such matter—
play a key role (see, e.g., Lattimer & Prakash 2007). Over the last few years, the discovery of several
high-mass neutron stars (Demorest et al. 2010; Antoniadis et al. 2013; Arzoumanian et al. 2018b;
Cromartie et al. 2019) and measurement of the binary tidal deformability during a neutron star
merger (Abbott et al. 2017, 2018; De et al. 2018) have advanced our knowledge of the properties of
cold dense matter, but precise and reliable measurements of neutron star radii would significantly
improve our understanding.
Various radius estimates have been made using models of the X-ray emission from quiescent neutron
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Photon Imaging Camera spectroscopic event data to inform our X-ray likelihood function. The prior
support of the pulsar radius is truncated at 16 km to ensure coverage of current dense matter models.
We assume conservative priors on instrument calibration uncertainty. We constrain the equatorial ra-
dius and mass of PSR J0740+6620 to be 12.39+1.30

�0.98 km and 2.072+0.067
�0.066 M� respectively, each reported

as the posterior credible interval bounded by the 16% and 84% quantiles, conditional on surface hot
regions that are non-overlapping spherical caps of fully-ionized hydrogen atmosphere with uniform
e↵ective temperature; a posteriori, the temperature is log

10
(T [K]) = 5.99+0.05

�0.06 for each hot region.
All software for the X-ray modeling framework is open-source and all data, model, and sample infor-
mation is publicly available, including analysis notebooks and model modules in the Python language.
Our marginal likelihood function of mass and equatorial radius is proportional to the marginal joint
posterior density of those parameters (within the prior support) and can thus be computed from the
posterior samples.

Keywords: dense matter — equation of state — pulsars: general — pulsars: individual
(PSR J0740+6620) — stars: neutron — X-rays: stars

1. INTRODUCTION

The nature of supranuclear density matter, as found
in neutron star cores, is highly uncertain. Possibilities
include both neutron-rich nucleonic matter and stable
states of strange matter in the form of hyperons or
deconfined quarks (for recent reviews see Oertel et al.
2017; Baym et al. 2018; Tolos & Fabbietti 2020; Yang &
Piekarewicz 2020; Hebeler 2021). One way to determine
the dense matter Equation of State (the EOS, a func-
tion of both composition and inter-particle interactions)
is to measure neutron star masses and radii (Lattimer
& Prakash 2016; Özel & Freire 2016). There are several
possible methods, but in this Letter we focus on pulse-
profile modeling (see Watts et al. 2016; Watts 2019, and
references therein). This requires precise phase-resolved
spectroscopy, a technique that motivated the design and
development of NASA’s Neutron Star Interior Compo-
sition Explorer (NICER).
The NICER X-ray Timing Instrument (XTI) is a pay-

load installed on the International Space Station. The
primary observations carried out by NICER are order
megasecond exposures of rotation-powered X-ray mil-
lisecond pulsars (MSPs) that may be either isolated or
in a binary system (Bogdanov et al. 2019a). Surface X-
ray emission from the heated magnetic poles propagates
to the NICER XTI through the curved spacetime of the
pulsar, and the compactness a↵ects the signal registered
by the instrument. However, these pulsars also spin at
relativistic rates. So with a precisely measured spin
frequency derived from radio timing and high-quality
spectral-timing event data, we are also sensitive to rota-
tional e↵ects on surface X-ray emission, and therefore to
the radius of the pulsar independent of the compactness
(see Bogdanov et al. 2019b, and references therein).

The first joint mass and radius inferences conditional1

on pulse-profile modeling of NICER observations of a
MSP were reported by Miller et al. (2019) and Riley
et al. (2019).
The target was PSR J0030+0451, an isolated2 source

spinning at approximately 205 Hz. Being isolated, the
radio timing model for this MSP has no dependence
on its mass, in contrast to the radio timing model for
an MSP in a binary. This meant that a wide prior on
the mass had to be assumed in the pulse-profile mod-
eling, which nevertheless - due to the high quality of
the data set in terms of the number of pulsed counts -
delivered credible intervals on the mass and radius pos-
teriors at the ⇠ 10% level. These posterior distributions
have been used to infer properties of the dense matter
EOS (in combination with constraints from radio tim-
ing, gravitational wave observations, and nuclear physics
experiments). To give a few examples, there have been
follow-on studies constraining both parameterized EOS
models (Miller et al. 2019; Raaijmakers et al. 2019, 2020;
Dietrich et al. 2020; Jiang et al. 2020; Al-Mamun et al.
2021) and non-parameterized EOS models (Essick et al.
2020; Landry et al. 2020), some focusing particularly on
the neutron star maximum mass (Lim et al. 2020; Tews
et al. 2021). Others have focused on specific nuclear
physics questions: hybrid stars and phase transitions to
quark matter (Tang et al. 2021; Li et al. 2020; Christian
& Scha↵ner-Bielich 2020; Xie & Li 2021; Blaschke et al.
2020; Alvarez-Castillo et al. 2020); the three nucleon po-
tential (Maselli et al. 2021); relativistic mean-field mod-
els (Traversi et al. 2020); muon fraction content (Zhang

1 For an introduction to the concept of conditional probabilities
within Bayesian inference see Sivia & Skilling (2006); Trotta
(2008); Hogg (2012); Gelman et al. (2013); Clyde et al. (2021);
Hogg et al. (2020).

2 No binary companion has ever been detected despite 20 years of
intensive radio timing (Lommen et al. 2000; Arzoumanian et al.
2018).
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FIG. 1. Mass measurements of 73 NSs within 68.3% confidence level (1σ ) except for PSR J1903 + 0327: 99.7% (!) and GW170817. The
following classification is adopted: binaries with two neutron stars (DNS), millisecond pulsars (MSPs) with spin frequency f ! 50 Hz and
with a companion that is not a NS, slowly rotating pulsars (SLOW) with spin frequency f " 50 Hz not in a DNS, X/OPT for NSs measured
through x-ray or optical observations (as opposed to radio in previous categories) and GW for NS mass measurements using detection of
gravitational waves. Data from Ref. [14] (Jan. 2021), Ref. [15], Table 1 in Refs. [16–18].
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Abstract

PSR J0740+6620 has a gravitational mass of 2.08± 0.07Me, which is the highest reliably determined mass of any
neutron star. As a result, a measurement of its radius will provide unique insight into the properties of neutron star
core matter at high densities. Here we report a radius measurement based on fits of rotating hot spot patterns
to Neutron Star Interior Composition Explorer (NICER) and X-ray Multi-Mirror (XMM-Newton) X-ray
observations. We find that the equatorial circumferential radius of PSR J0740+6620 is �

�13.7 1.5
2.6 km (68%). We

apply our measurement, combined with the previous NICER mass and radius measurement of PSR J0030+0451,
the masses of two other ∼2Me pulsars, and the tidal deformability constraints from two gravitational wave events,
to three different frameworks for equation-of-state modeling, and find consistent results at ∼1.5–5 times nuclear
saturation density. For a given framework, when all measurements are included, the radius of a 1.4Me neutron star
is known to±4% (68% credibility) and the radius of a 2.08Me neutron star is known to±5%. The full radius
range that spans the±1σ credible intervals of all the radius estimates in the three frameworks is 12.45± 0.65 km
for a 1.4Me neutron star and 12.35± 0.75 km for a 2.08Me neutron star.

Unified Astronomy Thesaurus concepts: X-ray sources (1822); Millisecond pulsars (1062); Neutron stars (1108);
Neutron star cores (1107)

1. Introduction

Neutron stars are unique laboratories for the study of dense
matter. Their cores consist of matter that is believed to be
catalyzed to the ground state, at a few times nuclear saturation
density (a mass density ρs≈ 2.7–2.8× 1014 g cm−3, or a
baryonic number density ns≈ 0.16 fm−3). The combination
of high density and the expected large neutron–proton

asymmetry in neutron star cores cannot be duplicated in
laboratories. Hence, observations of neutron stars can provide
us with a valuable window into an otherwise inaccessible realm
of nuclear physics.
Over the last several years great strides have been made in

neutron star observations, and thus in our understanding of the
equation of state (EOS: pressure as a function of energy
density) of neutron star matter at high densities (see, e.g.,
Pavlov & Zavlin 1997; Bhattacharyya et al. 2005; Steiner et al.
2010; Miller 2013; Miller & Lamb 2016; Özel et al. 2016;
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Microscopic nuclear equation of state at finite temperature and stellar stability
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A microscopic nuclear equation of state compatible with all current astrophysical constraints constructed
within the Brueckner-Hartree-Fock formalism is presented and extended in a consistent way to finite temper-
ature. The effects of finite temperature on the properties of neutron stars are studied in detail and a universal
relation regarding stellar stability is proposed.

I. INTRODUCTION

The determination of the nuclear equation of state (EOS)
for neutron stars (NSs) currently represents a formidable the-
oretical challenge in nuclear astrophysics. In fact NSs are
characterized by a density which spans over fourteen orders
of magnitude from the crust to the inner core, where signifi-
cant isospin asymmetries can be present. However, whereas
for cold NSs in weak β -equilibrium the EOS reduces to a rela-
tion between pressure and energy density, the dynamical evo-
lutions of core-collapse supernovae (CCSN) [1–4], proto-NSs
[5–10], and binary neutron star (BNS) mergers [11–19], re-
quire an EOS strongly dependent on the temperature T , which
can rise in some cases up to a few tens or even above a hun-
dred MeV. Nuclear physics experiments in terrestrial labora-
tories cannot explore the high-density regions encountered in
NSs, and therefore theoretical methods have to be devised for
the exploration of this regime. While the subject remained
rather academic for several years, the recent progress of astro-
physical observations opened the possibility that theoretical
speculations could be confronted with observational data. For
this purpose many theoretical methods have been devised, see,
e.g., Refs. [20–23] for recent reviews.

From the observational point of view, NS mass measure-
ments are particularly relevant because they provide lower
limits on the maximum gravitational mass of stable config-
urations. The observations of pulsars with masses around
2M", which include PSR J1614-2230 (M = 1.97± 0.04 M")
[24], and PSR J0348+0432 (M = 2.01±0.04 M") [25], placed
some of the most stringent constraints on the high-density
EOS so far.

Gravitational waves emitted during the late inspiral phase
of the BNS merger event GW170817 have allowed to de-
termine a combined tidal deformability of the two NSs [26–
29]. Along with the detection of its electromagnetic counter-
parts, AT2017gfo [30–34], this allowed to constrain the EOS
of dense matter by ruling out very stiff EOSs due to an up-
per limit on the average tidal deformability. A lower limit on
the tidal deformability could also be extracted by considering
the large amount of ejected matter, which powers the kilonova
AT2017gfo [35].

∗ zhli09@fudan.edu.cn

The Neutron Star Interior Composition Explorer (NICER)
mission has recently provided two simultaneous mass
and radius measurements for PSR J0030+0451 with
R(1.44+0.15

−0.14M") = 13.02+1.24
−1.06 km [36] and R(1.34+0.15

−0.16M") =

12.71+1.14
−1.19 km [37] and for J0740+6620 with R(2.08 ±

0.07M") = 13.7+2.6
−1.5 km [38] and R(2.072+0.067

−0.066M") =

12.39+1.30
−0.98 km [39]. The difference between these estimates

reflects the model dependence of the experimental analyses.
Combining the NICER results with the limits on the NS max-
imum mass as well as the tidal deformability from GW170817
[28] leads to constraints on the β -equilibrated EOS for densi-
ties in the range 1.5ρ0 ! ρB ! 3ρ0 (being ρ0 the nuclear sat-
uration density) [38, 40], which can be translated into limits
for NS radii [36–41].

Theoretical EOSs are now routinely confronted with these
new data, which has already lead to the exclusion of many
EOSs that do not fulfill the current constraints on NS mass
and radius, see, e.g., [42]. The theoretical modeling of the
EOS can therefore benefit from these data, and this allows to
extend the preparation of theoretical nuclear EOSs in a con-
trolled way to more exotic conditions, in particular finite tem-
perature. So far only a few theoretical EOSs are available
for this purpose [42], because useful observational constraints
regarding temperature effects are still not available. In partic-
ular, among the ab-initio theoretical calculations we mention
the Brueckner-Hartree-Fock (BHF) EOSs V18 and N93 [42–
46], based on the Bloch-De Dominicis approach, and those
based on the variational APR EOS [47], i.e., TNTYST [48]
and SRO(APR) [49]. Other approaches based on the covari-
ant density-functional theory are available, and among those
we mention Shen11 [50, 51], Shen20 [52], HS(DD2) [53, 54],
SFHx [53, 55], and FSU2H [56, 57]. Also non-relativistic
Skyrme-type EOSs at finite temperature are widely used, in
particular the Lattimer-Swesty EOS [58]. However, the cur-
rent status of theoretical investigation is expected to change
in the near future, in particular once features of the hot rem-
nant of BNS merger events will be revealed by more sensitive
next-generation gravitational-wave detectors [59].

This work is dedicated to the construction of a theoreti-
cal nuclear EOS compatible with all current constraints on
the cold EOS at high density, and extended in a microscopic
way to relevant astrophysical temperatures. We continue sev-
eral previous works regarding the EOS based on the BHF ap-
proach with an approximate treatment of finite temperature,
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• A few examples:



EoS Constraints
In a near future: 


• ATHENA, an X-ray high-precision determination observatory for NS mass and 
radius to be launched in 2028. 


• New data on NS systems will heavily increase when SKA, the world's largest 
radio telescope, will be in full power. 


• The radio telescope FAST has started operating, and will give information on 
the NS mass. 


• The Einstein Telescope (ET), an underground infrastructure to host a 3G 
gravitational-wave observatory, foresees the beginning of construction in 2026 
with the goal to start observations in 2035…


• …


• On the experimental side, FAIR will put more constraints on the high-density 
behaviour of nuclear matter.


• Results of INDRA-FAZIA experiment.

• …
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•The SN EoS should incorporate: all relevant clusters, (mean-field) 
interaction between nucleons and clusters, and a suppression 
mechanism of clusters at high densities.


•Different methods: nuclear statistical equilibrium, quantum statistical 
approach, and


•RMF approach: clusters as new degrees of freedom, with effective 
mass dependent on density.


• In-medium effects: cluster interaction with medium described via the 
meson couplings, or effective mass shifts, or both


•Constrains are needed to fix the couplings:

low densities: Virial EoS

high densities: cluster formation has been measured in HIC


Supernova EoS with light clusters
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In-medium effects    
•Binding energy of each cluster:

with the nucleon effective mass and

the cluster effective mass.

the scalar cluster-meson coupling

PRC 97, 045805 2018
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In-medium effects -    
•The Binding energy of each cluster then becomes:
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while the vector coupling is given by

gvj = Ajgv. (15)

Aj corresponds to the number of nucleons in cluster
j. The xs factor can vary from 0 to 1. In a previous
work, its value was fixed to xs = 0.85 ± 0.05 from a fit
to the Virial EoS. In later works, the value was found to
be higher, xs = 0.92 ± 0.02, when a fit to experimental
data was considered [11, 12]. In this work, and as we will
see, we will use both couplings to test its e↵ect in the
clusters abundances. The dissolution of the clusters will
be a↵ected by a combination of both the binding energy
shift, �Bj , and this factor xs. Substituting eqs. (12), (9)
and (14) in eq. (11), we obtain

Bj = Ajgs�0 (xsj � 1) +B0

j + �Bj . (16)

For the two extreme cases, we have

Bj = B0

j + �Bj , if xsj = 1 , (17)

Bj = B0

j + �Bj �Ajgs�0 , if xsj = 0 . (18)

This implies that a larger xsj corresponds to a larger
binding energy, and, consequently, the dissolution of the

cluster will occur at larger densities. If xs = 1, the disso-
lution is totally defined by the binding shift �Bj . Notice
that at finite temperature, the clusters dissolve at a den-
sity well above the one for which Bj ⇠ 0. For this reason
the tetraneutron survives even as a resonance. The larger
the temperature the more the fraction of clusters is de-
fined by their mass and isopsin, and not by the binding
energy.
With the same set of couplings determined in the last

section, we calculate the chemical equilibrium constants

Kc[j] =
⇢j

⇢
Nj
n ⇢

Zj
p

(19)

where ⇢j is the number density of cluster j, with neutron
numberNj and proton number Zj , and ⇢p, ⇢n are, respec-
tively, the number densities of free protons and neutrons.
Even though there are no experimental Kc for the

tetraneutron, we will calculate it for the other clusters,
considering calculations where we do and do not include
the 4n. This may give a hint on the abundance of the
clusters, and the presence or not of the tetraneutron.
Let us also refer to the another point that must be

discussed. The tetraneutron, just as the other light clus-
ters, is treated as a point-like particle, and one may ask

•        can vary from 0 to 1 so for the two extreme cases, we have:
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while the vector coupling is given by

gvj = Ajgv. (15)

Aj corresponds to the number of nucleons in cluster
j. The xs factor can vary from 0 to 1. In a previous
work, its value was fixed to xs = 0.85 ± 0.05 from a fit
to the Virial EoS. In later works, the value was found to
be higher, xs = 0.92 ± 0.02, when a fit to experimental
data was considered [11, 12]. In this work, and as we will
see, we will use both couplings to test its e↵ect in the
clusters abundances. The dissolution of the clusters will
be a↵ected by a combination of both the binding energy
shift, �Bj , and this factor xs. Substituting eqs. (12), (9)
and (14) in eq. (11), we obtain

Bj = Ajgs�0 (xsj � 1) +B0

j + �Bj . (16)

For the two extreme cases, we have

Bj = B0

j + �Bj , if xsj = 1 , (17)

Bj = B0

j + �Bj �Ajgs�0 , if xsj = 0 . (18)

This implies that a larger xsj corresponds to a larger
binding energy, and, consequently, the dissolution of the

cluster will occur at larger densities. If xs = 1, the disso-
lution is totally defined by the binding shift �Bj . Notice
that at finite temperature, the clusters dissolve at a den-
sity well above the one for which Bj ⇠ 0. For this reason
the tetraneutron survives even as a resonance. The larger
the temperature the more the fraction of clusters is de-
fined by their mass and isopsin, and not by the binding
energy.
With the same set of couplings determined in the last

section, we calculate the chemical equilibrium constants

Kc[j] =
⇢j

⇢
Nj
n ⇢

Zj
p

(19)

where ⇢j is the number density of cluster j, with neutron
numberNj and proton number Zj , and ⇢p, ⇢n are, respec-
tively, the number densities of free protons and neutrons.
Even though there are no experimental Kc for the

tetraneutron, we will calculate it for the other clusters,
considering calculations where we do and do not include
the 4n. This may give a hint on the abundance of the
clusters, and the presence or not of the tetraneutron.
Let us also refer to the another point that must be

discussed. The tetraneutron, just as the other light clus-
ters, is treated as a point-like particle, and one may ask
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while the vector coupling is given by

gvj = Ajgv. (15)

Aj corresponds to the number of nucleons in cluster
j. The xs factor can vary from 0 to 1. In a previous
work, its value was fixed to xs = 0.85 ± 0.05 from a fit
to the Virial EoS. In later works, the value was found to
be higher, xs = 0.92 ± 0.02, when a fit to experimental
data was considered [11, 12]. In this work, and as we will
see, we will use both couplings to test its e↵ect in the
clusters abundances. The dissolution of the clusters will
be a↵ected by a combination of both the binding energy
shift, �Bj , and this factor xs. Substituting eqs. (12), (9)
and (14) in eq. (11), we obtain

Bj = Ajgs�0 (xsj � 1) +B0

j + �Bj . (16)

For the two extreme cases, we have

Bj = B0

j + �Bj , if xsj = 1 , (17)

Bj = B0

j + �Bj �Ajgs�0 , if xsj = 0 . (18)

This implies that a larger xsj corresponds to a larger
binding energy, and, consequently, the dissolution of the

cluster will occur at larger densities. If xs = 1, the disso-
lution is totally defined by the binding shift �Bj . Notice
that at finite temperature, the clusters dissolve at a den-
sity well above the one for which Bj ⇠ 0. For this reason
the tetraneutron survives even as a resonance. The larger
the temperature the more the fraction of clusters is de-
fined by their mass and isopsin, and not by the binding
energy.
With the same set of couplings determined in the last

section, we calculate the chemical equilibrium constants

Kc[j] =
⇢j

⇢
Nj
n ⇢

Zj
p

(19)

where ⇢j is the number density of cluster j, with neutron
numberNj and proton number Zj , and ⇢p, ⇢n are, respec-
tively, the number densities of free protons and neutrons.
Even though there are no experimental Kc for the

tetraneutron, we will calculate it for the other clusters,
considering calculations where we do and do not include
the 4n. This may give a hint on the abundance of the
clusters, and the presence or not of the tetraneutron.
Let us also refer to the another point that must be

discussed. The tetraneutron, just as the other light clus-
ters, is treated as a point-like particle, and one may ask

•This implies that a larger       corresponds to a larger     , and that

the cluster dissolution density will occur at larger densities.
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while the vector coupling is given by

gvj = Ajgv. (15)

Aj corresponds to the number of nucleons in cluster
j. The xs factor can vary from 0 to 1. In a previous
work, its value was fixed to xs = 0.85 ± 0.05 from a fit
to the Virial EoS. In later works, the value was found to
be higher, xs = 0.92 ± 0.02, when a fit to experimental
data was considered [11, 12]. In this work, and as we will
see, we will use both couplings to test its e↵ect in the
clusters abundances. The dissolution of the clusters will
be a↵ected by a combination of both the binding energy
shift, �Bj , and this factor xs. Substituting eqs. (12), (9)
and (14) in eq. (11), we obtain

Bj = Ajgs�0 (xsj � 1) +B0

j + �Bj . (16)

For the two extreme cases, we have

Bj = B0

j + �Bj , if xsj = 1 , (17)

Bj = B0

j + �Bj �Ajgs�0 , if xsj = 0 . (18)

This implies that a larger xsj corresponds to a larger
binding energy, and, consequently, the dissolution of the

cluster will occur at larger densities. If xs = 1, the disso-
lution is totally defined by the binding shift �Bj . Notice
that at finite temperature, the clusters dissolve at a den-
sity well above the one for which Bj ⇠ 0. For this reason
the tetraneutron survives even as a resonance. The larger
the temperature the more the fraction of clusters is de-
fined by their mass and isopsin, and not by the binding
energy.
With the same set of couplings determined in the last

section, we calculate the chemical equilibrium constants

Kc[j] =
⇢j

⇢
Nj
n ⇢

Zj
p

(19)

where ⇢j is the number density of cluster j, with neutron
numberNj and proton number Zj , and ⇢p, ⇢n are, respec-
tively, the number densities of free protons and neutrons.
Even though there are no experimental Kc for the

tetraneutron, we will calculate it for the other clusters,
considering calculations where we do and do not include
the 4n. This may give a hint on the abundance of the
clusters, and the presence or not of the tetraneutron.
Let us also refer to the another point that must be

discussed. The tetraneutron, just as the other light clus-
ters, is treated as a point-like particle, and one may ask
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while the vector coupling is given by

gvj = Ajgv. (15)

Aj corresponds to the number of nucleons in cluster
j. The xs factor can vary from 0 to 1. In a previous
work, its value was fixed to xs = 0.85 ± 0.05 from a fit
to the Virial EoS. In later works, the value was found to
be higher, xs = 0.92 ± 0.02, when a fit to experimental
data was considered [11, 12]. In this work, and as we will
see, we will use both couplings to test its e↵ect in the
clusters abundances. The dissolution of the clusters will
be a↵ected by a combination of both the binding energy
shift, �Bj , and this factor xs. Substituting eqs. (12), (9)
and (14) in eq. (11), we obtain

Bj = Ajgs�0 (xsj � 1) +B0

j + �Bj . (16)

For the two extreme cases, we have

Bj = B0

j + �Bj , if xsj = 1 , (17)

Bj = B0

j + �Bj �Ajgs�0 , if xsj = 0 . (18)

This implies that a larger xsj corresponds to a larger
binding energy, and, consequently, the dissolution of the

cluster will occur at larger densities. If xs = 1, the disso-
lution is totally defined by the binding shift �Bj . Notice
that at finite temperature, the clusters dissolve at a den-
sity well above the one for which Bj ⇠ 0. For this reason
the tetraneutron survives even as a resonance. The larger
the temperature the more the fraction of clusters is de-
fined by their mass and isopsin, and not by the binding
energy.
With the same set of couplings determined in the last

section, we calculate the chemical equilibrium constants

Kc[j] =
⇢j

⇢
Nj
n ⇢

Zj
p

(19)

where ⇢j is the number density of cluster j, with neutron
numberNj and proton number Zj , and ⇢p, ⇢n are, respec-
tively, the number densities of free protons and neutrons.
Even though there are no experimental Kc for the

tetraneutron, we will calculate it for the other clusters,
considering calculations where we do and do not include
the 4n. This may give a hint on the abundance of the
clusters, and the presence or not of the tetraneutron.
Let us also refer to the another point that must be

discussed. The tetraneutron, just as the other light clus-
ters, is treated as a point-like particle, and one may ask
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while the vector coupling is given by

gvj = Ajgv. (15)

Aj corresponds to the number of nucleons in cluster
j. The xs factor can vary from 0 to 1. In a previous
work, its value was fixed to xs = 0.85 ± 0.05 from a fit
to the Virial EoS. In later works, the value was found to
be higher, xs = 0.92 ± 0.02, when a fit to experimental
data was considered [11, 12]. In this work, and as we will
see, we will use both couplings to test its e↵ect in the
clusters abundances. The dissolution of the clusters will
be a↵ected by a combination of both the binding energy
shift, �Bj , and this factor xs. Substituting eqs. (12), (9)
and (14) in eq. (11), we obtain

Bj = Ajgs�0 (xsj � 1) +B0

j + �Bj . (16)

For the two extreme cases, we have

Bj = B0

j + �Bj , if xsj = 1 , (17)

Bj = B0

j + �Bj �Ajgs�0 , if xsj = 0 . (18)

This implies that a larger xsj corresponds to a larger
binding energy, and, consequently, the dissolution of the

cluster will occur at larger densities. If xs = 1, the disso-
lution is totally defined by the binding shift �Bj . Notice
that at finite temperature, the clusters dissolve at a den-
sity well above the one for which Bj ⇠ 0. For this reason
the tetraneutron survives even as a resonance. The larger
the temperature the more the fraction of clusters is de-
fined by their mass and isopsin, and not by the binding
energy.
With the same set of couplings determined in the last

section, we calculate the chemical equilibrium constants

Kc[j] =
⇢j

⇢
Nj
n ⇢

Zj
p

(19)

where ⇢j is the number density of cluster j, with neutron
numberNj and proton number Zj , and ⇢p, ⇢n are, respec-
tively, the number densities of free protons and neutrons.
Even though there are no experimental Kc for the

tetraneutron, we will calculate it for the other clusters,
considering calculations where we do and do not include
the 4n. This may give a hint on the abundance of the
clusters, and the presence or not of the tetraneutron.
Let us also refer to the another point that must be

discussed. The tetraneutron, just as the other light clus-
ters, is treated as a point-like particle, and one may ask
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while the vector coupling is given by

gvj = Ajgv. (15)

Aj corresponds to the number of nucleons in cluster
j. The xs factor can vary from 0 to 1. In a previous
work, its value was fixed to xs = 0.85 ± 0.05 from a fit
to the Virial EoS. In later works, the value was found to
be higher, xs = 0.92 ± 0.02, when a fit to experimental
data was considered [11, 12]. In this work, and as we will
see, we will use both couplings to test its e↵ect in the
clusters abundances. The dissolution of the clusters will
be a↵ected by a combination of both the binding energy
shift, �Bj , and this factor xs. Substituting eqs. (12), (9)
and (14) in eq. (11), we obtain

Bj = Ajgs�0 (xsj � 1) +B0

j + �Bj . (16)

For the two extreme cases, we have

Bj = B0

j + �Bj , if xsj = 1 , (17)

Bj = B0

j + �Bj �Ajgs�0 , if xsj = 0 . (18)

This implies that a larger xsj corresponds to a larger
binding energy, and, consequently, the dissolution of the

cluster will occur at larger densities. If xs = 1, the disso-
lution is totally defined by the binding shift �Bj . Notice
that at finite temperature, the clusters dissolve at a den-
sity well above the one for which Bj ⇠ 0. For this reason
the tetraneutron survives even as a resonance. The larger
the temperature the more the fraction of clusters is de-
fined by their mass and isopsin, and not by the binding
energy.
With the same set of couplings determined in the last

section, we calculate the chemical equilibrium constants

Kc[j] =
⇢j

⇢
Nj
n ⇢

Zj
p

(19)

where ⇢j is the number density of cluster j, with neutron
numberNj and proton number Zj , and ⇢p, ⇢n are, respec-
tively, the number densities of free protons and neutrons.
Even though there are no experimental Kc for the

tetraneutron, we will calculate it for the other clusters,
considering calculations where we do and do not include
the 4n. This may give a hint on the abundance of the
clusters, and the presence or not of the tetraneutron.
Let us also refer to the another point that must be

discussed. The tetraneutron, just as the other light clus-
ters, is treated as a point-like particle, and one may ask



Contribution of     
•       completely negligible in the 
low-density range 

• but rises fast for larger densities
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• However, this does not give a complete picture of the in-medium effects and cluster 
dissolution mechanism: the particle fractions are affected in a complex way due to the 
self-consistency of the approach, since the equations of motion for the meson fields 
are modified by 



Cluster fractions - effect of     

important for dissolution of clusters!
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• Note that at finite T, 
the clusters dissolve 
at a   well above 
the one for which  
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FIG. 1. (Color online) Fraction of deuteron, Xd, triton, Xt, helion, Xh, and α, Xα, as a function of the density for FSU, T = 4
MeV (a) and 10 MeV (b), with proton fraction yp = 0.5, taking δB = 0, xsj = 0.85±0.05, (variation indicated by the spreading
of the bands), and comparing with results of the Virial EoS from [20]. Solid vertical black lines are given by ρλ3

n = 1/10. For
more details, check the text.

equilibrium constants with the recent experimental re-
sults published in Ref. [18]. All the calculations are
performed for the FSU [21] model, at finite fixed tem-
peratures and for fixed proton fractions yp which de-
scribes the ratio of the total proton density to the baryon
density. For this model, the values of the nucleon cou-
pling constants are g2s = 112.1996, g2v = 204.5469, and
g2ρ = 138.4701 and the nuclear saturation density is

ρ0 = 0.148 fm−3. Further constants (the meson masses
and the couplings of the non-linear meson terms) are
found in Ref. [21]. This model has been chosen be-
cause it describes adequately the properties of nuclear
matter at saturation and subsaturation densities. It has
the drawback of not predicting a two solar mass NS. How-
ever, it is possible to include excluded volume like effects
above saturation density making the EoS hard enough at
high density [22, 23]. We have tested the formalism with
two other models that have good properties at satura-
tion density and below, and, besides, describe two solar
mass NS, the NL3ωρ [24] and the TM1ωρ models [25, 26]
with the symmetry energy slope L ∼ 55 MeV. The re-
sults obtained were within the uncertainty bands of our
approach and, therefore, we do not include them in the
present study. A more complete thermodynamical study
will be left for a future work.

A. Low-density limit and cluster-meson couplings

We will first take as reference the virial EoS (VEoS)
[20]. There, the account of continuum correlations (scat-
tering phase shifts), which is necessary to obtain the cor-
rect second virial coefficient, was performed by introduc-

TABLE I. Virial cluster fraction, Xj , for the light clusters
triton, helion and α, at different densities, ρ, for T = 4 and
10 MeV used in the present work and taken from Ref. [20].
The densities are in units of 10−6fm−3.

ρ 1.1 5.3 12.0 52.5 91.2

Xj

cluster T = 4 MeV

t(3H) 1.3×10−6 3.0×10−5 1.5×10−4 2.6×10−3 6.8×10−3

h(3He) 1.1×10−6 2.5×10−5 1.3×10−4 2.1×10−3 5.7×10−3

α(4He) 2.7×10−8 2.9×10−6 3.2×10−5 2.4×10−3 1.1×10−1

cluster T = 10 MeV

t(3H) 2.3×10−8 5.2×10−7 2.7×10−6 5.1×10−5 1.5×10−4

h(3He) 2.1×10−8 4.8×10−7 2.5×10−6 24.7×10−5 1.4×10−4

α(4He) 6.0×10−12 6.7×10−10 7.9×10−9 6.4×10−8 2.3×10−6

ing a temperature dependent effective resonance energy
Eij(T ) in each ij channel. The cluster-meson couplings
are obtained from the best fit of the RMF cluster frac-
tions, defined as Xj = Ajnj/n, to these data, taking the
FSU parametrization. The fit is done choosing a suffi-
ciently low density close to the cluster onset where the
virial EoS is still valid and at the same time the inter-
action already has non-negligible effects, see Table I. We
have considered densities between 10−6 fm−3 and 10−4

fm−3, though, for small temperatures, 10−4 fm−3 is close
to the limit of validity of the VEoS. Still, we expect that
at these densities the VEoS is a good approximation. In
this low density domain, the binding energy shift δBj of
Eq. (13) is completely negligible and does not affect the
particle fractions (see also Figure 2 below), therefore it
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FIG. 1. (Color online) The mass fractions as a function of the density, when considering di↵erent energy bands for the
tetraneutron, for T = 4 (left) and 10 (right) MeV, and two di↵erent scalar couplings for the clusters, xs = 0.92 (top) and
xs = 0.85 (bottom).

while the vector coupling is given by

gvj = Ajgv. (15)

Aj corresponds to the number of nucleons in cluster
j. The xs factor can vary from 0 to 1. In a previous
work, its value was fixed to xs = 0.85 ± 0.05 from a fit
to the Virial EoS. In later works, the value was found to
be higher, xs = 0.92 ± 0.02, when a fit to experimental
data was considered [11, 12]. In this work, and as we will
see, we will use both couplings to test its e↵ect in the
clusters abundances. The dissolution of the clusters will
be a↵ected by a combination of both the binding energy
shift, �Bj , and this factor xs. Substituting eqs. (12), (9)
and (14) in eq. (11), we obtain

Bj = Ajgs�0 (xsj � 1) +B0

j + �Bj . (16)

For the two extreme cases, we have

Bj = B0

j + �Bj , if xsj = 1 , (17)

Bj = B0

j + �Bj �Ajgs�0 , if xsj = 0 . (18)

This implies that a larger xsj corresponds to a larger
binding energy, and, consequently, the dissolution of the

cluster will occur at larger densities. If xs = 1, the disso-
lution is totally defined by the binding shift �Bj . Notice
that at finite temperature, the clusters dissolve at a den-
sity well above the one for which Bj ⇠ 0. For this reason
the tetraneutron survives even as a resonance. The larger
the temperature the more the fraction of clusters is de-
fined by their mass and isopsin, and not by the binding
energy.
With the same set of couplings determined in the last

section, we calculate the chemical equilibrium constants

Kc[j] =
⇢j

⇢
Nj
n ⇢

Zj
p

(19)

where ⇢j is the number density of cluster j, with neutron
numberNj and proton number Zj , and ⇢p, ⇢n are, respec-
tively, the number densities of free protons and neutrons.
Even though there are no experimental Kc for the

tetraneutron, we will calculate it for the other clusters,
considering calculations where we do and do not include
the 4n. This may give a hint on the abundance of the
clusters, and the presence or not of the tetraneutron.
Let us also refer to the another point that must be

discussed. The tetraneutron, just as the other light clus-
ters, is treated as a point-like particle, and one may ask



Exp Constraint: Equilibrium constants    

•In Qin et , PRL 108, 172701 (2012), Kc were calculated with 
data from HIC:  

•At the time, unique existing constraint on in-medium modifications 
of light clusters at finite T.

• This analysis was performed using ideal gas considerations.

14



Exp Constraint: Equilibrium constants    

• Our theoretical model describes quite well 
experimental data, except for deuteron
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• x_s first fitted to 
the Virial EoS, 
model-ind 
constraint, only 
depends on exp B 
and scattering 
phase shifts. 
Provides correct 
zero-density limit 
for finite-T EoS.

PRC 97, 045805 2018

• Yellow bands: 
exp data from 
Qin et al 


• Red points: RMF 
model calculated 
at (T,rho,yp) of 
exp data with  

2

Bj = B0
j + �Bj � Ajgs�(1� xs) (1)

Bj = B0
j + �Bj , xs = 1 , (2)

Bj = B0
j + �Bj � Ajgs� , xs = 0 (3)

0  xs  1xs = 0.85± 0.05 (4)
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Yellow bands from Qin et al, PRL 108, 172701 (2012)



• The temperature, proton fraction and density as a function of Vsurf, for 
the intermediate mass system.

Experimental chemical equilibrium 
constants with INDRA data  
• Experimental data includes 4He, 3He, 3H, 2H, and 6He.

• 3 experimental systems: 136Xe+124Sn, 124Xe+124Sn, and 124Xe+112Sn.

• Vsurf is the velocity of 
the emitted particles at 
the nuclear surface, so 
fastest particles 
correspond to earliest 
emission times.

R. Bougault et al, for the INDRA collab, 
J. Phys. G 47, 025103 (2020)
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PRL 125, 012701 (2020);

J.Phys.G 47, 105204 (2020)



Experimental determination of 
chemical equilibrium constants   

• Since we are in 
thermodynamical 
equilibrium, the free 
volume occupied by the 
clusters should be the 
same! 

• This is not surprising because we are using an expression for the 
volume where we consider an ideal gas of classical clusters..

• But they aren’t….

• Weak point: T and density are NOT directly measured, but deduced 
from experimental multiplicities, using analytical expressions that 
assume the physics of an ideal gas…
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FIG. 1. System 124Xe+124Sn: The chemical equilibrium con-
stants of each cluster as a function of the surface velocity vs.
The error bars only include statistical and systematic exper-
imental errors, see ref.[1]. The solid lines are the ideal gas
limit given by eq.(20). The brown band shows the area where
data might be contaminated.

binding energies BAZ , which is in contradiction with the
very purpose of the analysis. Moreover, if in medium
corrections were indeed negligible, the measured chemi-
cal constants would agree with the ideal gas prediction.
This latter can be easily worked out from Eq.(1) consid-
ering that, for an ideal gas of clusters, ⇢AZ = ANAZ/Vf ,
with NAZ given by Eq.(16):

K
id

c
(A,Z) = A

✓
2⇡~2
T

◆ 3(A�1)
2

✓
MAZ

mA

◆3/2 (2JAZ + 1)

2A

exp


BAZ

T

�
. (20)

Chemical constants obtained from the analysis of the
124Xe+124Sn system are displayed in Fig. 1. The only dif-
ference with respect to the results published in Ref. [1]
is the slightly di↵erent expression for the temperature
Eq.(17), which however does not produce any e↵ect on
the scale of the figure. The error bars are due to the
experimental errors associated with the measurements.
The solid lines represent the ideal gas limit, given by
eq.(20). The brown band shows the range where the ex-
perimental data might be contaminated, since the proton
spectra is not well reproduced by the fit in order to de-
duce the mass of the evolving source. Therefore, we will
not show in the Figures of the next sections the data
below vsurf = 4 cm/ns.

We can see that the measured chemical constants are
systematically lower than this limit, and the e↵ect in-
creases with increasing density, showing that binding en-
ergy shifts are necessary. A qualitatively similar devia-
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FIG. 2. System 124Xe+124Sn: The volumes of the clusters as
a function of Vsurf . The brown band shows the area where
data might be contaminated.

tion from the ideal gas limit was also found in NIMROD
data [8, 10].

It is therefore clear that a correction is needed to Eq.(6)
for the analysis to be consistent. If in-medium corrections
at a given temperature and density only depend on the
baryonic number of the particle, then their e↵ect will
cancel out when taking isobaric ratios and double ratios
as in Eqs.(11) and (17). However, this is not the case for

the volume V
(AZ)

f
, Eq.(12), which in turn a↵ects both

the evaluation of the densities ⇢AZ and the evaluation of
the total baryonic density ⇢B .

The need of an in-medium correction to the ideal gas
expression Eq.(12) is further shown by Fig. 2. This
figure displays the value of the free volume obtained
from Eq.(12) as a function of the sorting variable vs for
the 136Xe+124Sn, using di↵erent particle species. Since
a vs bin represents a specific thermodynamic condition
(⇢B , T, yp), if everything was consistent, we should find
the same volume whatever the cluster species considered,
which is clearly not the case except for the A = 3 iso-
bars, which lead to identical volume estimations. Quali-
tatively similar results were obtained with the NIMROD
data [10], showing that the incompatibility among the
di↵erent volume estimations is not an experimental prob-
lem, but it rather points towards an inconsistency in the
analysis method.

To solve this inconsistency, in the next section we in-
troduce a modification in Eq.(6) allowing for possible in-
medium e↵ects.
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Considering in-medium effects   

• We should take into account the interactions between clusters:

• How to solve this problem? 

18
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Figure 2. 124Xe+124Sn system: the free volume, as estimated from the yields of differ-
ent cluster species, as a function of vsurf . Results for 3H and 3He are indistinguishable.
The grey band shows the area where data might be contaminated by emission from the
spectator source.

3. Bayesian analysis

Since the different in-medium effects that contribute to the determination of cluster multiplici-
ties can be seen as a shift of the cluster binding energy [10, 25, 26], it is reasonable to suppose
that the correction can be de!ned as a Boltzmann factor:

CAZ = exp
[
− ∆AZ

T(A− 1)

]
, (21)

with∆AZ given by

∆AZ = a1Aa2 + a3|I|a4 , (22)

where ai, i = 1, . . . , 4 are free parameters. The dependence on the cluster species is given
by the term ∆AZ , which, for each thermodynamic condition (T, ρ, yp) identi!ed by a bin
in vsurf , can in principle depend on the two good quantum numbers of each cluster, A and
I = (2Z − A)/2. The in"uence of the functional expression for the correction∆AZ is studied in
section 4.1.

It is important to stress that∆AZ can be interpreted as a reduction of the binding energy only
in the framework of the classical simpli!ed ideal expression equation (6). Indeed the presence
of a nuclearmedium affects nucleons both in bound, unboundand resonant states [26], and∆AZ

should be understood as a global effective correction accounting for all the missing quantum
and interaction effects, such as Pauli blocking, effective masses, couplings to the mesons, etc.
This correction modi!es the expression of the free volume V f as it can be estimated from the
abundance of a given (AZ) species:

Vf = h3R
A−Z
A−1
np CAZ exp

[
BAZ

T(A− 1)

]
·
(
2JAZ + 1

2A
ỸA11("p)
ỸAZ("pA)

) 1
A−1

, (23)

where the temperature T is still estimated by equation (16). The unknown parameters "a =
ai(ρ, yp, T), i = 1− 4 can be !xed by imposing that the volumes obtained from the exper-
imental spectra ỸAZ via equation (23) of the different (A, Z) nuclear species in a given vsurf ,
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• We introduce a correction factor that modifies the binding energies 
of the clusters:

Heavy baryons in hot stellar matter with light nuclei and hypernuclei

Tiago Custódio, Helena Pais, and Constança Providência
CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal.

The production of light nuclei and hypernuclei together with heavy baryons, both hyperons and
�-baryons, in low density matter as found in stellar environments such as supernova or binary
mergers is studied within relativistic mean-field models. Five light nuclei were considered together
with three light hypernuclei. The presence of both hyperons and �-baryons shift the dissolution of
clusters to larger densities and increase the abundance of clusters. This e↵ect is larger the smaller
the charge fraction and the higher the temperature. The couplings of the �-baryons were chosen
imposing that the nucleon e↵ective mass remains finite inside neutron stars.

I. INTRODUCTION

Neutron stars (NS) are born in highly energetic events
called core-collapse supernovae (CCS). Right after the
core-collapse, the proto-neutron star reaches high tem-
peratures of the order of tens of MeV. However, in a
matter of a few seconds, neutrinos and photons di↵use
out of the star, and the star cools down to less than 1
MeV, reaching its ground-state configuration in chemi-
cal equilibrium (also known as �-equilibrium) [? ]. The
star will remain in equilibrium unless it is perturbed by
some external phenomena, such as a collision with an-
other NS. In these type of events, both CCS and neu-
tron star mergers (NSM), �-equilibrium is not necessar-
ily achieved, and temperatures as high as 50 to 100 MeV
may be attained [? ]. At such high temperatures, exotic
degrees of freedom such as hyperons and ��isobars may
appear at much lower densities, as compared to the NS
case. In fact, a finite temperature allows for the presence
of excited states of the nucleons, which can then be con-
verted into heavier baryons at lower densities. Therefore,
to describe such events, it is necessary to consider a wide
range of charge fractions, temperatures and densities.

In the NS inner crust, heavy neutron-rich clusters
(pasta phases) [? ? ? ] should form, immersed in a
gas of neutrons and electrons [? ? ]. Light clusters, such
as 2H, 3H, 3He, 4He, 6He, are also expected to be present
for temperatures above 1 MeV [? ]. As the density in-
creases even further, these heavy clusters will eventually
melt at densities of ⇠ 0.5n0. This sets the transition to
the core of the star. In this region, the composition of
the star corresponds to uniform nuclear matter made of
neutrons, protons, electrons and muons [? ]. In the inner
core of the star (densities of the order of ⇠ 2n0), exotic
degrees of freedom such as hyperons and delta isobars,
or even deconfined quark matter, may appear [? ].

Btot
AZ = BAZ ��AZ , (1)

Hyperons, together with the nucleons, form the the
spin�1/2 baryonic octet. ��isobars are spin�3/2
baryons formed by u and d quarks, that usually decay
via the strong force into a nucleon and a pion. These
exotic degrees of freedom will appear at high densities,
reducing the pressure of the system, when the increasing

chemical potentials of the nucleons approach the e↵ective
mass of hyperons and �s, so that the nucleons start to
be converted into these new degrees of freedom [? ? ? ?

].

Besides reducing the Fermi pressure, the introduction
of hyperons decreases the free energy of matter [? ? ].
These authors also showed that, at low densities, hyper-
ons can compete with light clusters, implying that the
minimization of the free energy should also allow for the
appearance of hyperons at these densities. In Ref. [? ],
the possible appearance of hyperons in the density re-
gion of the non-homogeneous matter that forms the in-
ner crust of a NS was analyzed. Temperatures below the
melting temperature of the heavy clusters that form this
region were considered, i.e T . 15 MeV. It was found that
only very small amounts of hyperons, like ⇤ fractions be-
low 10�5, were present in the background gas. The low-
density EoS of stellar matter including light clusters and
heavy baryons was also studied in Ref. [? ]. In addition
to hyperons, the author also considered ��baryons, pi-
ons, and the presence of a representative heavy cluster.
It was shown that, depending on temperature and den-
sity, the composition of matter may shift from a greater
abundance of light clusters to a heavy-baryon predomi-
nance.

In a recent work [? ], the calculation of the abundance
of purely nucleonic light clusters (2H, 3H, 3He, 4He and
6He) and hyperclusters (3⇤H,

4
⇤H,

4
⇤He) as well as hyper-

ons was performed in the framework of relativistic mean-
field models for finite temperature and fixed proton frac-
tion. In the present work, we intend to include��isobars
and use two relativistic mean-field models, FSU2H [? ]
and DD2 [? ]. The introduction of clusters is going to
follow the approach first presented in Ref. [? ], where the
e↵ect of the medium on the binding energy of the clus-
ters is considered through the introduction of a binding
energy shift, together with a universal coupling of the
scalar ��meson to the di↵erent clusters, that was cho-
sen so that the equilibrium constants of the NIMROD
experiment [? ] were reproduced. In Refs. [? ? ], this
theoretical approach [? ] was applied to the description
of the INDRA data [? ], where an experimental analysis
of data was also done including in-medium e↵ects. It was
verified that, due to the inclusion of the in-medium e↵ect
in the experimental analysis, the equilibrium constants



Considering in-medium effects   
• a1, a2, a3, and a4 parameters are random variables that need to be 

determined.

• How to do that? Bayesian analysis.

• They are going to be calculated such that the volumes of the clusters,


 

are the same, so that the thermodynamical conditions are fulfilled.
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FIG. 1. (Color online) System 124Xe+112Sn. (Top) Free vol-
ume estimated from the different clusters as a function of
vsurf from Eq. (3). Lines: ideal gas limit CAZ = 1. Note: the
lines of 3H and 3He overlap. Symbols: bayesian determination
of the in-medium correction. (Bottom) Chemical equilibrium
constant of 4He as a function of the density, estimated from
the data with the ideal gas prescription for the volume (lower
set of points), and with the corrected one (upper set). For
comparison, the predictions of Ref. [21] with a coupling such
as to fit the uncorrected results from Ref. [12] are shown as a
continuous band labelled xs = 0.85 ± 0.05, and the ideal gas
prediction is shown by a dashed line.

The posterior distribution is obtained by imposing the
volume observation with a likelihood probability as fol-
lows:

Ppost(!a) = N exp

(

−

∑

AZ(V
(AZ)
f (!a)− V̄f (!a))2

2V̄f (!a)2

)

.(5)

Here, N is a normalization, V (AZ)
f (!a) is the free volume

obtained from the (A,Z) cluster using Eq. (3) with the
specific choice !a for the parameter set of the correction,
and V̄f (!a) is the volume corresponding to a given param-
eter set !a, averaged over the cluster species.
The posterior expectation values of the volume as esti-

mated from the multiplicities of each cluster from Eq. (3),
with the associated standard deviations, are shown as
symbols in Fig. 1. It is clear that when we include the
correction, the volumes decrease and the estimations ob-
tained from the different cluster species are compatible
within error bars. Concerning the functional dependence
of the correction, we can observe that we have as many
parameters as different independent volume estimations,
meaning that we are allowing independent corrections for
the different nuclear species. It would be interesting to
have chemical constant measurements for other nuclear
species, such as to check if a universal dependence of the
in-medium effects on A and I, as it is supposed in differ-
ent theoretical models [15–17], is supported by the data.
The bottom panel of Fig. 1 shows the corresponding

modification of the 4He chemical equilibrium constant in
the system 124Xe+112Sn. Similar results are obtained for
the other particles and the other systems (not shown). In
this Figure, the standard deviations associated to the ex-
perimental equilibrium constants are joined by full lines.
The estimation with CAZ = 1 as in [12], already shown
in Ref. [18], is given by the lower set of points 1, while the
higher data set gives the result employing the posterior
distribution of CAZ from Eq. (5). We can see that both
the average and the standard deviation of the estimation
are increased. Concerning the effect on the average, a re-
duction of the volume corresponds to an increase of the
baryonic density, up to a factor of two, and therefore an
increase of the chemical equilibrium constants with re-
spect to the estimation employing the ideal gas assump-
tion (see Eq. (1)). Concerning the variance, while in the
previous analysis no experimental error was associated to
the volume estimation, the bayesian determination of the
volume distribution allows a more realistic estimation of
the systematic uncertainties of both density and chemical
constants, with increased error bars. Realistic uncertain-
ties might be even slightly larger on the low density side,
because we cannot exclude that the in-medium effects
could lead to an increased proper size of the clusters VAZ .
The results of the different systems almost perfectly over-
lap, confirming the expectation that chemical constants
are isospin-independent (not shown). If we compare the
experimental chemical constants with the ideal gas ex-
pectation Eq. (2) (dashed line in Fig. 1), we can observe
an important suppression of 4He clusters at high density.
But this suppression is less pronounced than the one ob-
tained with the previous analysis, with important conse-
quences on the present estimation of in-medium effects
for theoretical applications in the astrophysical context,
as we now discuss.

1 It has to be noticed that the definition of chemical constants in
Ref. [18] differs by a factor A with respect to the one of Refs. [12,
14, 17]. To allow an easier comparison with previous works, we
have here adopted the definition of Ref. [12]. Due to the different
definitions, in Fig. 9 of Ref. [18], the NIMROD data should have
been multiplied by a factor A for a direct comparison.

• The posterior distribution is obtained by imposing the volume observation  
with a likelihood probability:   

•  To minimize assumptions, we take flat priors  
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universal reduction of the scalar attractive field to the
nucleons bound in clustered states, can be tuned so as
to obtain a reasonably good description of the chemical
constants. The suppression effect is smaller than the one
obtained from the comparison to the equilibrium con-
stants of Ref. [12], where ideal gas expressions were used
to extract the thermodynamical parameters, but still cor-
responds to important in-medium modifications of the
binding energies.
Under well-defined thermodynamic conditions, as

given by the temperature T , total baryon density ρB
and proton fraction yp, equilibrium chemical constants
Kc(A,Z) of a cluster of mass (charge) number A (Z),
are defined in terms of he number of clusters per volume,
i.e. the particle densities ρAZ , or of mass fractions ωAZ

as :

Kc(A,Z) =
ρAZ

ρZ11ρ
A−Z
10

=
ωAZ

AωZ
11ω

A−Z
10

ρ−(A−1)
B . (1)

An experimental measurement of such constants requires
the detection of particles and clusters from a statistical
ensemble of sources, and an estimation of the associated
thermodynamic parameters (T, ρB, yp).
Under the assumption that chemical equilibrium holds

at the different time steps of the emission from the ex-
panding source produced in central 136,124Xe+124,112Sn
collisions, the Coulomb corrected particle velocity vsurf
in the source frame can be used to select statistical en-
sembles of particles corresponding to different emission
times, and therefore different thermodynamic conditions
[12]. A detailed comparison between the four reactions
was performed in Ref. [19], verifying the statistical char-
acter of the emission. A strong argument confirming the
crucial hypothesis of chemical equilibrium as a function of
time was given in Ref. [18], observing that the extracted
thermodynamic parameters as a function of vsurf are in-
dependent of the entrance channel of the reaction.
The detected multiplicities YAZ(vsurf ) allow a direct

experimental determination of the mass fractions ωAZ =
AYAZ/AT , as well as of the total source mass AT (t) as a
function of the emission time, but the measurement of the
baryonic density ρB(t) = AT /VT additionally requires an
estimation of the source volume, at the different times of
the expansion. This latter is given by the free volume
Vf with the addition of the proper volume VAZ of the
clusters which belong to the source at a given time, VT =
Vf +

∑

AZ VAZωAZAT /A, with VAZ = 4πR3
AZ/3, where

RAZ is the experimental radius of each cluster.
The free volume can be extracted from the differ-

ential cluster spectra ỸAZ($p) = YAZ(vsurf )/(4πp2∆p),
which can be related to differential cluster densities as
fAZ($p) = ỸAZ($p)/Vf [12, 18]. Supposing an ideal gas
of classical clusters with binding energies BAZ in ther-
modynamic equilibrium at temperature T in the grand-
canonical ensemble, the differential mass densities read:

f id
AZ($p) =

gAZ

h3
exp

[

1

T

(

BAZ −
p2

2MAZ
+ Zµp +Nµn

)]

,

(2)

with MAZ = Am−BAZ , gAZ = 2SAZ + 1 the mass and
spin degeneracy of cluster (A,Z), m the nucleon mass,
and the superscript stands for “ideal”. In-medium ef-
fects are expected to suppress the cluster densities [14],
with respect to Eq. (2), ρAZ = CAZρidAZ , where the in-
medium correction CAZ < 1 can depend on the ther-
modynamic conditions, the cluster species and their mo-
mentum [14]. If we normalize the cluster spectrum by
the proton and neutron spectra at the same velocity, the
unknown chemical potentials µn,p cancel, and the free
volume Vf can be independently estimated from the dif-
ferent cluster species as:

Vf = h3R
A−Z

A−1
np CAZ exp

[

BAZ

T (A− 1)

]

(

gAZ

2A
Ỹ A
11($p)

ỸAZ(A$p)

)
1

A−1

,

(3)
where the free neutron-proton ratio Rnp is estimated
from the multiplicities of the A = 3 isobars , Rnp =
(Y31/Y32) exp [(B32 −B31)/T ], and BAZ are the experi-
mentally known vacuum binding energy of the clusters.
The presence of in-medium corrections is clearly con-

firmed by the experimental data, as shown by Fig. 1,
which displays the value of the free volume obtained from
Eq. (3) for the 124Xe+112Sn system, using different par-
ticle species. A clear hierarchy is observed as a function
of the cluster mass if CAZ = 1 is assumed, corresponding
to the ideal gas limit. It is clear from Eq. (3) that to
have consistent estimations of the volume, the deuteron
requires a larger correction with respect to the heavier He
isotopes. The volume splitting increases with decreasing
vsurf , showing that the in-medium effects additionally
depend on the thermodynamic conditions. Fully com-
patible results are obtained from the other three data
sets (not shown).
The correction factors CAZ are, therefore, introduced

as a modification of the cluster binding energies due to
the presence of the medium. We introduce a very general
four-parameters expression as:

CAZ(ρB , yp, T ) = exp

[

−
a1Aa2 + a3|I|a4

THHe(A− 1)

]

, (4)

where the temperature is estimated through the iso-
baric double isotope ratio Albergo formula [20], and it
is indicated as THHe. The unknown parameters $a =
{ai(ρB, yp, T ), i = 1 − 4} are taken as random variables,
with a probability distribution fixed by imposing that
the volumes obtained from the experimental spectra ỸAZ

of the different (A,Z) nuclear species in a given vsurf
bin, correspond to compatible values. To minimize the
a-priori assumptions, we take in each vsurf bin uninfor-
mative flat priors, Pprior($a) = θ($amin − $amax), within an
interval largely covering the physically possible reduc-
tion range of the binding energy, 0 ≤ a1 ≤ 15 MeV,
0 ≤ a3 ≤ a1, −1 ≤ a2 ≤ 1, 0 ≤ a4 ≤ 4.

19

Experimental determination of chemical constants 12

Vf as it can be estimated from the abundance of a given (AZ) species:

Vf = h3R
A�Z
A�1
np CAZ exp

"
BAZ

T (A� 1)

#

·
 
2JAZ + 1

2A
Ỹ A

11
(~p)

ỸAZ(~pA)

! 1
A�1

, (23)

V (AZ)

f
= h3R

A�Z
A�1
np exp

"
BAZ ��AZ

T (A� 1)

#

·
 
2JAZ + 1

2A
Ỹ A

11
(~p)

ỸAZ(~pA)

! 1
A�1

(24)

where the temperature T is still estimated by eq.(16). The unknown parameters

~a = {ai(⇢, yp, T ), i = 1 � 4} can be fixed by imposing that the volumes obtained from

the experimental spectra ỸAZ via Eq.(23) of the di↵erent (A,Z) nuclear species in a

given vsurf , correspond to compatible values. Because of the presence of experimental

uncertainties, we cannot simply solve Eq. (23) for the ~a parameters to impose a strictly

identical volume for the di↵erent species. Even if the experimental errors were negligible,

the correlation between vsurf and the volume is not a one-to-one correlation because

of the physical dispersion of the vsurf variable. For these reasons, we consider the

unknown ~a parameters as random variables. We take in each vsurf bin flat priors,

Pprior(~a) = ✓(~amin � ~amax), within an interval largely covering the physically possible

reduction range of the binding energy, 0  a1  15 MeV, 0  a3  a1 MeV,

�1  a2  1, 0  a4  4.

The posterior distribution is obtained by imposing the volume observation with a

likelihood probability as follows:

Ppost(~a) = N exp

0

@�
P

AZ(V
(AZ)

f
(~a)� V̄f (~a))2

2V̄f (~a)2

1

A . (25)

Here, N is a normalization, V (AZ)

f
(~a) is the free volume obtained from the (A,Z) cluster

using Eq.(23) with the specific choice ~a for the parameter set of the correction, and V̄f (~a)

is the average volume corresponding to a given parameter set ~a from Eq.(20).

The prior (posterior) probability distribution of any physical quantity X is then

readily calculated as:

P (X = X0) =
Z
d~aP (~a)� (X(~a)�X0) , (26)

where P (~a) is the prior (posterior) distribution of the correction parameters. Similarly,

expectation values can be calculated as:

hXi =
Z
d~aP (~a)X(~a) , (27)

and the correspondent standard deviations as,

�X =
q
hX2i � hXi2 . (28)

The left part of Fig. 3 shows the prior and posterior distribution of the total volume

VT in two chosen velocity bins, vsurf = 4.1 cm/ns (6th bin) and vsurf = 5.9 cm/ns (15th

bin). In red, we also show the probabilities calculated without the correction factor,



• The points show the posterior expectation values for the volumes:

Experimental chemical equilibrium 
constants with INDRA data  

as THHe. The unknown parameters a⃗ ¼ faiðρB; yp; TÞ; i ¼
1–4g are taken as random variables, with a probability
distribution fixed by imposing that the volumes obtained
from the experimental spectra ỸAZ of the different ðA; ZÞ
nuclear species in a given vsurf bin correspond to compatible
values. To minimize the a priori assumptions, we take in
each vsurf bin uninformative flat priors, Ppriorða⃗Þ ¼ θða⃗min−
a⃗maxÞ, within an interval largely covering the physically
possible reduction range of the binding energy, 0 ≤ a1 ≤
15 MeV, 0 ≤ a3 ≤ a1, −1 ≤ a2 ≤ 1, 0 ≤ a4 ≤ 4.
The posterior distribution is obtained by imposing

the volume observation with a likelihood probability as
follows:

Ppostða⃗Þ ¼ N exp
!
−
P

AZ½V
ðAZÞ
f ða⃗Þ − V̄fða⃗Þ%2

2V̄fða⃗Þ2

"
: ð5Þ

Here, N is a normalization, VðAZÞ
f ða⃗Þ is the free volume

obtained from the ðA; ZÞ cluster using Eq. (3) with the
specific choice a⃗ for the parameter set of the correction, and
V̄fða⃗Þ is the volume corresponding to a given parameter set
a⃗, averaged over the cluster species.
The posterior expectation values of the volume as

estimated from the multiplicities of each cluster from
Eq. (3), with the associated standard deviations, are shown
as symbols in Fig. 1. It is clear that when we include the
correction, the volumes decrease and the estimations
obtained from the different cluster species are compatible
within error bars. Concerning the functional dependence of
the correction, we can observe that we have as many
parameters as different independent volume estimations,
meaning that we are allowing independent corrections for
the different nuclear species. It would be interesting to have
chemical constant measurements for other nuclear species,
such as to check if a universal dependence of the in-
medium effects on A and I, as it is supposed in different
theoretical models [15–17], is supported by the data.
The bottom panel of Fig. 1 shows the corresponding

modification of the 4He chemical equilibrium constant in
the system 124Xeþ 112Sn. Similar results are obtained for
the other particles and the other systems (not shown). In
this figure, the standard deviations associated to the
experimental equilibrium constants are joined by full lines.
The estimation with CAZ ¼ 1 as in Ref. [12], already shown
in Ref. [18], is given by the lower set of points [22], while
the higher dataset gives the result employing the posterior
distribution of CAZ from Eq. (5). We can see that both the
average and the standard deviation of the estimation are
increased. Concerning the effect on the average, a reduction
of the volume corresponds to an increase of the baryonic
density, up to a factor of 2, and therefore an increase of the
chemical equilibrium constants with respect to the estima-
tion employing the ideal gas assumption [see Eq. (1)].
Concerning the variance, while in the previous analysis no
experimental error was associated to the volume estimation,
the Bayesian determination of the volume distribution
allows a more realistic estimation of the systematic uncer-
tainties of both density and chemical constants, with
increased error bars. Realistic uncertainties might be even
slightly larger on the low-density side, because we cannot
exclude that the in-medium effects could lead to an
increased proper size of the clusters VAZ. The results of
the different systems almost perfectly overlap, confirming
the expectation that chemical constants are isospin inde-
pendent (not shown). If we compare the experimental
chemical constants with the ideal gas expectation Eq. (2)
(dashed line in Fig. 1), we can observe an important
suppression of 4He clusters at high density. But this
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FIG. 1. System 124Xeþ 112Sn. Top: Free volume estimated
from the different clusters as a function of vsurf from Eq. (3).
Lines show the ideal gas limit CAZ ¼ 1. Note that the lines of 3H
and 3He overlap. Symbols show the Bayesian determination of
the in-medium correction. Bottom: Chemical equilibrium con-
stant of 4He as a function of the density, estimated from the data
with the ideal gas prescription for the volume (lower set of points)
and with the corrected one (upper set). For comparison, the
predictions of Ref. [20] with a coupling such as to fit the
uncorrected results from Ref. [12] are shown as a continuous
band labeled xs ¼ 0.85' 0.05, and the ideal gas prediction is
shown by a dashed line.
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• When we apply the correction, the volumes converge.
20
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• We obtain densities larger than 
the ideal gas limit.


• The 3 data systems are 
compatible.
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Figure 6. Symbols: double isotope ratio temperature THHe (black), global proton
fraction (multiplied by a factor of 10) (purple), baryon density (multiplied by a factor of
100) (green) as a function of the experimental quantity vsurf for the three experimental
systems. The uncertainties reflect both the correction and the experimental errors. The
solid lines report the ideal gas limit, and were obtained from eq. (20) with eq. (12).
The grey band shows the area where data might be contaminated by emission from
the spectator source.

see that the existence of an in-medium correction goes in the direction of increasing the

density, and the effect is the same for the three systems.
Still, it is important to stress that the temperature is evaluated with the Albergo

THHe thermometer of Eq.(16). As we have discussed in Section 2, this expression

corresponds to the true thermodynamical temperature T only if the in-medium

corrections to the ideal gas of clusters expression Eq. (15) cancel in the double ratio.

This is in principle not the case if the correction does not scale linearly with the particle

numbers. Our Bayesian analysis does not allow us to determine the deviation of Eq.(16)
from the true thermodynamic temperature, and this can only be done in the framework

of a specific model. One such model will be considered in Section 5.

4.1. Different parameter sets for the in-medium effect correction

The correction given by Eq.(22) is a four-parameter set, function of the number of

nucleons A and isospin I. This functional form has a certain degree of arbitrariness,
and the expression is not unique. In principle, the correction can depend on all the

good quantum numbers of the clusters, namely A, I, and the charge Q. However, the

volumes extracted from 3H and 3He are fully compatible already in the uncorrected

points: analysis

lines: ideal gas
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from INDRA   

• This work shows that there are in-medium 
effects:


• We obtain a higher x_s as compared to a the 
previous fit of Qin et al data: 


• The higher the x_s, the bigger the binding 
energies (and the smaller effect of the 
medium), and the higher the dissolution  
densities of the clusters.

22

4

In Ref. [17], a novel approach for the inclusion of in-
medium effects in the equation of state for warm stellar
matter with light clusters was introduced. This model
includes a phenomenological modification in the scalar
cluster-meson coupling, and includes an extra term in the
effective mass of the clusters, which acts as an exclusion-
volume effect. The scalar coupling acting on nucleons
bound in a cluster of mass A is defined as gs(A) = xsAgs,
with gs the scalar coupling of homogeneous matter, and
xs a free parameter. A constraint on this parameter was
obtained in the low-density regime from the Virial EoS,
but a precise determination of xs needs an adjustment at
densities close to the Mott density corresponding to the
dissolution of clusters in the medium. The parameter
xs measures how much the medium affects the binding
of the cluster. The smaller the xs, the stronger the in-
medium effect, and the smaller the dissolution density of
the cluster.
The chemical equilibrium constants obtained with this

model were compared with the NIMROD results [12] ob-
tained assuming an ideal gas expression for the determi-
nation of the nuclear density [17, 21], and a satisfactory
agreement was obtained for all clusters but the deuteron
using xs = 0.85± 0.05.
The prediction of this model is shown, for the ther-

modynamic conditions explored by the Xe+Sn systems,
in the bottom panel of Fig. 1. We can see that the cal-
culation can reproduce the INDRA data, only if these
latter are analyzed using the same hypotheses as in [12]
(lower set of points). This suggests that the two sets
are compatible, which points towards the validity of the
statistical equilibrium hypothesis for both of them. How-
ever, it is also clear that the estimation xs = 0.85± 0.05
overestimates the in-medium effects, once the consistent
inclusion of the CAZ is accounted for.
To estimate the effect of the correction, and, at the

same time, determine the value of the in-medium param-
eter xs in a consistent way, we have compared the model
of Refs. [17, 21] with this new analysis.
In order to make this comparison, we fix the tempera-

ture in each (ρB, yp) point by imposing that the isotopic
thermometer THHe evaluated in the theoretical model,
correctly reproduces the measured THHe value. A small
difference between the input temperature of the theory,
and the one estimated in the same calculation via the
double ratios, is obtained, which does not exceed 10%
at the highest temperature. Indeed, the Albergo ther-
mometer [20] used to estimate the temperature is only
valid under the assumption that the in-medium correc-
tions to Eq. (2), cancel in double isobar ratios, which is,
in principle, not the case, if the correction does not scale
linearly with the particle numbers. The resulting chem-
ical constants are compared to the experimental ones in
Fig. 2. As we can observe, the deuteron chemical con-
stant behavior is now reproduced, and the chemical con-
stants of 3He and 3H are almost superposed. Very similar
results are obtained for the other two experimental en-
trance channels (not shown).
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FIG. 2. (Color online) System 136Xe+124Sn: The equilib-
rium constants as a function of the density. The full lines
join the 1− σ uncertainty intervals. The grey bands are the
equilibrium constants from a calculation [21] where we con-
sider homogeneous matter with five light clusters, calculated
at the average value of (T , ρexp, ypgexp), and considering clus-
ter couplings in the range of xsi = 0.92±0.02. The color code
represents the global proton fraction.

In Refs. [17, 21], we used xs = 0.85 in order to repro-
duce the results of Qin et al. [12]. With this improved
analysis, a higher value xs > 0.85 is needed, correspond-
ing to smaller corrections and a larger dissolution density.
An optimal value can be extracted as xs = 0.92 ± 0.02.
This value seems to reproduce reasonably well the whole
set of experimental constants, and we have checked that
it is still within the Virial EoS limits. This can be un-
derstood from the fact that the virial limit only concerns
very low densities, where the predictions with the two
different values of xs are very close (see Fig. 1).
The effect of the different estimation for the scalar cou-

pling can be better appreciated from Table I, which re-
ports the predictions of the model for the (ρB, T, yp) tra-
jectory estimated in Ref. [12], for which a large set of
models and model assumptions was tested in Ref. [16].
We can see that, if we impose the consistent analysis of
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• Later, we used other RMF models to fit to the 
same INDRA data. The values of     found for 
FSU2R and DDME2 were very close to the 
previous one found using the FSU model.

T. Custódio et al, 
EPJA 56, 295 (2020)
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densities below ≈ 0.02 fm−3. We may, therefore, expect
that a fit to the INDRA data is giving information on the
abundances of light clusters corresponding to a pair (T ,
nB). Although the proton fraction is also changing along
with T and nB, it takes values in a very narrow range,
0.39-0.42, very close to yp = 0.41 used to calculate the
cluster abundances in Fig. 7.

Models FSU2R and DDME2 show very similar frac-
tions also above ≈ 0.05 fm−3, in particular, at the max-
imum of the distributions and at the dissolution density,
which we define as the density above which the fractions
are below 10−4. However, SFHo predicts dissolution den-
sities ∼ 30% larger than the other two models.

Having this in mind, we plot in Fig. 8 the mass frac-
tion of the α−particle as a function of the density for
the three models previously considered, and a temperature
of 10 MeV and a fixed proton fraction of 0.41. For each
model, we choose the range of the σ−coupling that best
fits the INDRA data. We confirm that the α-abundances
predicted by the three models coincide up to ≈ 0.06 fm−3.
Moreover, for FSU2R and DDME2 we do have a complete
superposition of the bands, indicating a similar prediction
for the dissolution density. SFHo, however, shows a higher
dissolution density, ∼ 30% larger.

The present results seem to indicate that a good re-
production of the equilibrium constants obtained from the
experimental data could imply a unique prediction for the
cluster abundances, and, in particular, of the dissolution
density only if we could have some extra experimental
constraints at a slightly higher density.

4 Conclusions

We have analyzed the appearance of light clusters in warm
non-homogeneous matter at densities below saturation den-
sity in the framework of RMF models. We used six models
that properly describe nuclear matter properties, and pre-
dict stars with more than two solar masses, two of which
with density-dependent couplings, and the other four with
non-linear mesonic terms. Light clusters were included
as point-like particles that are affected by the medium
through their couplings to the mesons. For these cou-
plings, we have considered: (a) the results of [29], where,
for the σ-meson coupling, a universal coupling propor-
tional to Aixsgσ, with xs to be fixed on experimental data,
was proposed; (b) the couplings determined in [49,50] ex-
tracted from the INDRA [48] experimental data.

Except for the model SFHo, we have found that differ-
ent models predict similar abundances of clusters. Overall,
for the density-dependent models we have obtained 15% to
20% smaller dissolution densities, but far from the disso-
lution density, the abundances are similar with respect to
the non-linear models. For SFHo, taking the same scalar
cluster-meson coupling, the dissolution densities are ap-
proximately the double, and the cluster abundances are
larger. It is, therefore, expectable that simulations that
use SFHo to describe supernova explosions or binary NS
mergers will have larger contributions of light clusters. In
order to reproduce the equilibrium contants obtained from

heavy ion collisions, a smaller coupling of the light clus-
ters to the σ-meson has to be considered. We conclude that
the clusterization effect, in particular the amount and the
chemical composition of clusters, depends on the behavior
of the model in the corresponding density range. Taking
universal couplings for the clusters highlights the differ-
ences. The present heavy ion constraints are not enough
to distinguish between models like DDME2 and FSU2R,
but clearly shows that SFHo requires a different treat-
ment.

In the present comparison, we have considered besides
the lighter clusters d, t, h, and α, also the heavier cluster
6He. In asymmetric matter, it was shown that the con-
tribution of this cluster is quite important in a range of
densities not far from the dissolution density. A discussion
of the role of heavier clusters at the densities and temper-
atures studied in the present work has been presented in
[30]. Moreover, we believe there is a need of experimental
measurements for heavier clusters in order to discriminate
the different models.

The gRMF formalism presented here allows to take
cluster formation into account for hot and dense nuclear
matter, in particular stellar matter. For the contribution
of nucleon quasiparticles (n, p) different parametrizations
within the RMF are possible. We considered several mod-
els, and some of them were calibrated to the INDRA data,
namely FSU2R, DDME2, and SFHo. The coupling param-
eter xs for the interaction with the σ field can be intro-
duced as a global quantity for all clusters. It determines
the density where the respective clusters are dissolved. We
have shown that if xs is fitted to equilibrium constants de-
termined from experimental data, different models predict
similar abundances up to the densities and temperatures
explored by INDRA data. The dissolution densities, how-
ever, differ: while two of the models, FSU2R and DDME2
predict similar behavior at dissolution, the third model,
SFHo, gives dissolution densities that are at least 30%
larger. In the future, a more careful analysis will be un-
dertaken using statistical methods to extract these quan-
tities. Besides, a microscopic approach to this coupling
parameter may show a dependence on the respective nu-
cleus, as well as on thermodynamic parameters, like the
temperature. This may indicate that the model applied
in the present study needs to take these dependences into
account. This point is left for future developments.
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8 Tiago Custódio et al.: Light clusters in warm stellar matter: calibrating the cluster couplings

102

104

106

108

1010

1012

1014

 0.01  0.03  0.05  0.07

6He

4He

3H, 3He

2H

136Xe+124Sn

FSU2R

Kc
(A

Z)
±σ

 (f
m

3(
A-

1)
)

nB (fm-3)

xs=0.91±0.02

 0.4

 0.41

 0.42

 0.43

102

104

106

108

1010

1012

1014

 0.01  0.03  0.05  0.07

6He

4He

3H, 3He

2H

136Xe+124Sn

DDME2

Kc
(A

Z)
±σ

 (f
m

3(
A-

1)
)

nB (fm-3)

xs=0.93±0.02

 0.4

 0.41

 0.42

 0.43

102

104

106

108

1010

1012

1014

 0.01  0.03  0.05  0.07

6He

4He

3H, 3He

2H

136Xe+124Sn

SFHo

Kc
(A

Z)
±σ

 (f
m

3(
A-

1)
)

nB (fm-3)

xs=0.83±0.03

 0.4

 0.41

 0.42

 0.43

Fig. 6. (Color online) The equilibrium constants as a function of the density. The full lines represent the experimental results
of the INDRA collaboration, with 1σ uncertainty. The grey bands are the equilibrium constants from a calculation [30] where
we consider homogeneous matter with five light clusters for the FSU2R EoS (left), the DDME2 EoS (middle) and SFHo EoS
(right), calculated at the average value of (T , nBexp

, ypexp), and considering cluster couplings in the range of xs = 0.91 ± 0.02
(FSU2R), xs = 0.93 ± 0.02 (DDME2) and xs = 0.83± 0.03 (SFHo). The color code represents the global proton fraction.
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Fig. 7. (Color online) The abundances of all the clusters con-
sidered as a function of the density for T = 5 MeV (left) and
T = 10 MeV (right) and a fixed proton fraction of 0.41 for
FSU2R with xs = 0.91 (top), DDME2 with xs = 0.93 (mid-
dle), and SFHo with xs = 0.83 (bottom).

analysis of the experimental data within the FSU model,
and in order to reproduce data, it was necessary to take
xs = 0.92 ± 0.02, a result very close to the one obtained
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Fig. 8. (Color online) The mass fraction of the α−particle as
a function of the density for T = 10 MeV and a fixed proton
fraction of 0.41 for FSU2R with xs = 0.91±0.02, DDME2 with
xs = 0.93± 0.02, and SFHo with xs = 0.83 ± 0.03.

with FSU2R and DDME2. For SFHo, and as we saw be-
fore, we need a smaller coupling xs to fit this data.

Choosing the scalar cluster-meson coupling ratio that
best fits the INDRA data, we calculate the clusters abun-
dances for FSU2R, DDME2 and SFHo, for yp = 0.41 and
T = 5 and 10 MeV, see Fig. 7. All models predict similar
abundances of all the clusters considered up to a density
≈ 0.05 fm−3 for T = 5 MeV and ≈ 0.06 fm−3 for T = 10
MeV. This result is very interesting: in fact, as shown in
[50], the INDRA data explore densities up to ≈ 0.06 fm−3,
however these larger densities are attained at a temper-
ature ≈ 9 MeV. Matter at T = 5 MeV corresponds to



Mass fractions and dissolution density 
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• Looking at the mass fractions, we 
find that different models predict 
similar abundances.


• rho_diss(FSU2R)=[0.0758:0.0857] 

• rho_diss(DDME2)=[0.0741:0.0851] 

T. Custódio et al, 

EPJA 56, 295 (2020)

In a near future:

• New data is expected where similar analysis can be implemented. 

• PhD students Tiago Custódio and Alex Rebillard-Soulié working on 
the subject from the theoretical (EoS) and experimental (data 
analysis) points of view, respectively.
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FIG. 1. (Color online) Fraction of deuteron, Xd, triton, Xt, helion, Xh, and α, Xα, as a function of the density for FSU, T = 4
MeV (a) and 10 MeV (b), with proton fraction yp = 0.5, taking δB = 0, xsj = 0.85±0.05, (variation indicated by the spreading
of the bands), and comparing with results of the Virial EoS from [20]. Solid vertical black lines are given by ρλ3

n = 1/10. For
more details, check the text.

equilibrium constants with the recent experimental re-
sults published in Ref. [18]. All the calculations are
performed for the FSU [21] model, at finite fixed tem-
peratures and for fixed proton fractions yp which de-
scribes the ratio of the total proton density to the baryon
density. For this model, the values of the nucleon cou-
pling constants are g2s = 112.1996, g2v = 204.5469, and
g2ρ = 138.4701 and the nuclear saturation density is

ρ0 = 0.148 fm−3. Further constants (the meson masses
and the couplings of the non-linear meson terms) are
found in Ref. [21]. This model has been chosen be-
cause it describes adequately the properties of nuclear
matter at saturation and subsaturation densities. It has
the drawback of not predicting a two solar mass NS. How-
ever, it is possible to include excluded volume like effects
above saturation density making the EoS hard enough at
high density [22, 23]. We have tested the formalism with
two other models that have good properties at satura-
tion density and below, and, besides, describe two solar
mass NS, the NL3ωρ [24] and the TM1ωρ models [25, 26]
with the symmetry energy slope L ∼ 55 MeV. The re-
sults obtained were within the uncertainty bands of our
approach and, therefore, we do not include them in the
present study. A more complete thermodynamical study
will be left for a future work.

A. Low-density limit and cluster-meson couplings

We will first take as reference the virial EoS (VEoS)
[20]. There, the account of continuum correlations (scat-
tering phase shifts), which is necessary to obtain the cor-
rect second virial coefficient, was performed by introduc-

TABLE I. Virial cluster fraction, Xj , for the light clusters
triton, helion and α, at different densities, ρ, for T = 4 and
10 MeV used in the present work and taken from Ref. [20].
The densities are in units of 10−6fm−3.

ρ 1.1 5.3 12.0 52.5 91.2

Xj

cluster T = 4 MeV

t(3H) 1.3×10−6 3.0×10−5 1.5×10−4 2.6×10−3 6.8×10−3

h(3He) 1.1×10−6 2.5×10−5 1.3×10−4 2.1×10−3 5.7×10−3

α(4He) 2.7×10−8 2.9×10−6 3.2×10−5 2.4×10−3 1.1×10−1

cluster T = 10 MeV

t(3H) 2.3×10−8 5.2×10−7 2.7×10−6 5.1×10−5 1.5×10−4

h(3He) 2.1×10−8 4.8×10−7 2.5×10−6 24.7×10−5 1.4×10−4

α(4He) 6.0×10−12 6.7×10−10 7.9×10−9 6.4×10−8 2.3×10−6

ing a temperature dependent effective resonance energy
Eij(T ) in each ij channel. The cluster-meson couplings
are obtained from the best fit of the RMF cluster frac-
tions, defined as Xj = Ajnj/n, to these data, taking the
FSU parametrization. The fit is done choosing a suffi-
ciently low density close to the cluster onset where the
virial EoS is still valid and at the same time the inter-
action already has non-negligible effects, see Table I. We
have considered densities between 10−6 fm−3 and 10−4

fm−3, though, for small temperatures, 10−4 fm−3 is close
to the limit of validity of the VEoS. Still, we expect that
at these densities the VEoS is a good approximation. In
this low density domain, the binding energy shift δBj of
Eq. (13) is completely negligible and does not affect the
particle fractions (see also Figure 2 below), therefore it

4

10-3

10-2

10-1

 1

10-6 10-5 10-4 10-3

X j

ρ (fm-3)

FSU, T=4 MeV
yp=0.5

δBj=0

α

2H

3H

3He

VEoS

(a)

2H
3H

3He
α

10-3

10-2

10-1

 1

10-5 10-4 10-3 10-2

X j

ρ (fm-3)

FSU, T=10 MeV
yp=0.5

δBj=0

VEoS

α

2H

3H

3He

(b)

2H
3H

3He
α

FIG. 1. (Color online) Fraction of deuteron, Xd, triton, Xt, helion, Xh, and α, Xα, as a function of the density for FSU, T = 4
MeV (a) and 10 MeV (b), with proton fraction yp = 0.5, taking δB = 0, xsj = 0.85±0.05, (variation indicated by the spreading
of the bands), and comparing with results of the Virial EoS from [20]. Solid vertical black lines are given by ρλ3
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equilibrium constants with the recent experimental re-
sults published in Ref. [18]. All the calculations are
performed for the FSU [21] model, at finite fixed tem-
peratures and for fixed proton fractions yp which de-
scribes the ratio of the total proton density to the baryon
density. For this model, the values of the nucleon cou-
pling constants are g2s = 112.1996, g2v = 204.5469, and
g2ρ = 138.4701 and the nuclear saturation density is

ρ0 = 0.148 fm−3. Further constants (the meson masses
and the couplings of the non-linear meson terms) are
found in Ref. [21]. This model has been chosen be-
cause it describes adequately the properties of nuclear
matter at saturation and subsaturation densities. It has
the drawback of not predicting a two solar mass NS. How-
ever, it is possible to include excluded volume like effects
above saturation density making the EoS hard enough at
high density [22, 23]. We have tested the formalism with
two other models that have good properties at satura-
tion density and below, and, besides, describe two solar
mass NS, the NL3ωρ [24] and the TM1ωρ models [25, 26]
with the symmetry energy slope L ∼ 55 MeV. The re-
sults obtained were within the uncertainty bands of our
approach and, therefore, we do not include them in the
present study. A more complete thermodynamical study
will be left for a future work.

A. Low-density limit and cluster-meson couplings

We will first take as reference the virial EoS (VEoS)
[20]. There, the account of continuum correlations (scat-
tering phase shifts), which is necessary to obtain the cor-
rect second virial coefficient, was performed by introduc-

TABLE I. Virial cluster fraction, Xj , for the light clusters
triton, helion and α, at different densities, ρ, for T = 4 and
10 MeV used in the present work and taken from Ref. [20].
The densities are in units of 10−6fm−3.

ρ 1.1 5.3 12.0 52.5 91.2

Xj

cluster T = 4 MeV

t(3H) 1.3×10−6 3.0×10−5 1.5×10−4 2.6×10−3 6.8×10−3

h(3He) 1.1×10−6 2.5×10−5 1.3×10−4 2.1×10−3 5.7×10−3

α(4He) 2.7×10−8 2.9×10−6 3.2×10−5 2.4×10−3 1.1×10−1

cluster T = 10 MeV

t(3H) 2.3×10−8 5.2×10−7 2.7×10−6 5.1×10−5 1.5×10−4

h(3He) 2.1×10−8 4.8×10−7 2.5×10−6 24.7×10−5 1.4×10−4

α(4He) 6.0×10−12 6.7×10−10 7.9×10−9 6.4×10−8 2.3×10−6

ing a temperature dependent effective resonance energy
Eij(T ) in each ij channel. The cluster-meson couplings
are obtained from the best fit of the RMF cluster frac-
tions, defined as Xj = Ajnj/n, to these data, taking the
FSU parametrization. The fit is done choosing a suffi-
ciently low density close to the cluster onset where the
virial EoS is still valid and at the same time the inter-
action already has non-negligible effects, see Table I. We
have considered densities between 10−6 fm−3 and 10−4

fm−3, though, for small temperatures, 10−4 fm−3 is close
to the limit of validity of the VEoS. Still, we expect that
at these densities the VEoS is a good approximation. In
this low density domain, the binding energy shift δBj of
Eq. (13) is completely negligible and does not affect the
particle fractions (see also Figure 2 below), therefore it



Conclusions

•Our model reproduces both virial limit and Kc from HIC data.


• INDRA data was analysed based on a new method, with in-medium 
effects.


•By fitting to a theoretical RMF model, a larger scalar coupling than 
the one found in a previous study, NOT including in-medium effects in 
the data analysis, was found.


•This implies bigger binding energies => larger melting densities => 
MORE clusters in CCSN matter!!  


• Clusters are relevant and should be explicitly included in EoS for 
CCSN simulations and NS mergers.

Thank you!


