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Outline

= Examine effects of discretization and perturbations phase structure
of 2d classical XY model

» Compare discretizations of XY model using HOTRG
— Angular discretization (Zy clock model)
— U(1) character expansion

= Structure of TN formulations
— Role of core and interaction tensors

» Perturbed XY model
— Interpolates between XY and Zy models
— Study effect of small perturbation on phase structure
— How large is the effect of small perturbation?
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XY model discretizations

= 2d XY model

H=-— Z cos(6, — 6,) — hz cos(0,)

<xy>

= Angular discretization (N states) — Zy clock model

21k
0, E{T;k = O...N—l}

» U(1) character expansion discretization (D = 2S+1 states)

s
o B Cos(0x—6y) - Z 1, (B)eik(x=0)
k=-S5
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Tensor network simulations

» HOTRG method (Z.Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, T. Xiang 2012)

— D (N for Zy model) = initial number of states
— Dyt = maximum states (after SVD)

= Observables
— Specific heat
Cy = —T0:F

F=-(nZ)/(BV)

— Second derivative from 7-point polynomial fit

— Magnetization using impurity tensor method

(m) = ~ (% cos(6x))
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Specific heat of discretized XY model
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U(1) character expansion

Peak converges well forD = 5

Low temperature converges well for
D=>15

Specific heat peak doesn’t match
phase transition (T;), but similar
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Z\ clock discretization

* One peakforN <4

 Two peaks forN =5

« Upper peak converges well for N =27
» Larger difference from XY atlow T

for same number of states (D=N)
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Magnetization of discretized XY model
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Z\ clock discretization

» Ordered phase appears in Zy model, but not XY
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Finding phase transitions

» Specific heat, magnetic susceptibility not reliable indicators of lower phase
transition in Zy (N=25) model

» Cross derivative (Y. Chen, K. Ji, Z. Y. Xie, J. F. Yu 2020)
0°F o{m)

ohoT  OT

= Seems to be good indicator of phase transitions

» Obtained from fit of magnetization to polynomial in T
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Cross derivative of discretized XY model
D, =40 h=104
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* Gives clear peaks at phase transitions
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Tensor network components
Spin models

= Typically start with interaction and local terms

H= Z H, (6, 06,) + Z Hy(6y)

(xy) X

» Expand interaction in some basis

e PR % N Moy fu (095 (0)
a,b

» Gives a core tensor of (for 2d)

Capea = | d067PHO)1, ()9, (0. (0)ga(0)

Argonne &



Tensor network components

» XY model tensor components (U(1) character basis)

Mgy = 6apla(B)
h—0

Capca = Ia—b+c—d(,3h) — Og—ptc—d

» Clock model tensor components (Zy character basis)

Mgy, = Sab z Ia+kN(,8)
k
h—-0
Cabca = 2 ly—pic—a+kn(Bh) — 2 Oa—b+c—d+kN
k k

= Can mix core and interaction tensors from different models
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Specific heat for mixed XY/Z, models

Dcut =40 L 75
' & :q‘ ° XY,DiS -
<4 €4 € B XY,D=5 periodic core
« 2 peaks appear with 1.50 1 « « @ XY core,Z5 interaction
4 Z5
periodic core :
(Zs and XY+periodic core) 1.25 «
|
1.00 -
* Only one peak apparent 5
with XY core 0.75 -
* Phase structure 0.50
determined by symmetry
of core tensor 0.251
(Y. Meurice 2019) 0.00-

T
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Discretization as a choice of basis

= Core, interaction decomposition not unique
» For example, can move local term into interaction

1 '
Hi(0:,6)) = H(0x,0) + 55 [HL(00) + HL(8,)] e P 60 = " M, £(0,),(6)
a,b

= Core tensor then determined only by basis

Canea = | 40£.(0)9,(0)f-(0)ga(®)

= Zy clock model as approximation to interaction term using a rectangular step
function basis, each over distinct angular range of 2r/N, zero elsewhere
— Evaluating interaction at center of each interval reproduces clock model

» Could choose other sets of basis functions, expansion approximations

= Evaluating error in discrete approximation to interaction term may help
determine which basis is best (does this consider symmetries?)
— RMS error for Zy basis is larger than U(1) character basis

= Could use this to optimize basis for given model
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Moving between XY and Z, models

= Previously looked at Zy for increasing N

» |nstead consider fixed N
— interpolate between periodic, non-periodic core tensor

Capca = Z ax(hy)lg—p+c—a+in (BH)
K

» Perturbed XY model (Jose, Kadanoff, Kirkpatrick, Nelson 1977)

H=-— Z cos(Oy — 0y) — hz cos(0y) — hy z cos(N6,)

<xy> x

ay(hy) « —Ik('BhN) = {5" =0 (XY)

Io(Bhy) ~ |1 :hy > o (ZN)

» |Interested in behavior of lower phase transition for small hy
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Perturbed model N=5
D, =40 h=1e-5
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Cross derivative
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Perturbed XY model RG analysis

» RG analysis using Villain approximation ‘hs

in JKKN paper
1—cos(6; — 6,) ~ (6, —6,)"/2

= For fixed hy > 0, found
— 2 critical temperatures for N > 4
— At N=4 collapse to single T,

= Value of To(hy — 0) not clear from
RG analysis

= Interested if non-zero, and how large

= If large, infinitesimal perturbation
has large effect on phase diagram
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Determining peaks of cross derivative

» Calculated <m> with spacing AT = 0.004

= Fit 11 consecutive points to 4th order polynomial
— Plots of cross derivative from derivative of polynomial at center of interval
— Peak location from zero of 2nd derivative of polynomial

= Consider only peak fits where peak is well within interval

» Peak temperature and height averaged over fit intervals
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Cross derivative peak example
hs=0.2 h=2e-7

4.5 | | | | | |
* D.,+=81 not enough

» Peak temperature
consistent for
Deut=91, 101

* D.,=91 seems
sufficient for T;

cross derivative

* Peak height still
moving lower a bit

2 D= 81 ——
DCUt= 91 +

 Lowest hs; =0.2, Deyt=101 —*—
1.5 | | | | | |

simulations became 068 069 07 071 072 073 074 0.75
unstable around

h=1e-7 for hy < 0.2
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Cross derivative peak fits

hs=0.2 h=1e-7

* ~4 points fell well
within fit interval

 Peak determined
from average,
error from variance

« Erroris systematic
error of fit

* For peak height
additional error
from Dy

cross derivative
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T
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Lower peak temperature
hs = 0.2
0.725 n — —— ]

* D, =81 not accurate 0.72 |k T i
enough at small h
0.715 - i

* D¢yt =91 and 101

agree within errors . 071Ff -
2
« Used Dy = 91 for = 0705 | -
most of remaining
results 0.7 I n
0.695  D¢yt= 81 —+ i
DCUt= 91 HH
Deyt=101 %
069 | 1 1 1 L 1 a1 gl 1 1 1 L1
le-07 le-06 le-05
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Lower peak height
hs = 0.2

peak height

Deyt=101

2.2
le-07 le-06 le-05
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Lower peak temperature versus h

0.82
Toeak rises at lower h, 0.8
falls at lower hg

0.78

* Fit Tyeak to power-lawinh 4 46

T.(hs) — Tpear < h® |—§ 0.74 |

0.72 |

h5 = 10 —t—

0.7  hs =0.7 > |

hg = 0.5 ——%—
| h5 = 04 =

0.68 he = 0.3

| h5 = 02 —o—

to extract T.(hs)

0.66 1 1 || 1 1 1 1 1 ||
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Lower critical temperature versus h;

= Error bars too large

for power-law fit 0.84 | | | | | | |
0.83 - —
» Trending down at 0.82

lower hg 0.81

= Still far from O, 0.8
but unable to do ~ 0.79
reliable extrapolation 0.78

with this approach 0.77

0.76
0.75
0.74

22 Argonne &




Peak temperature versus h;

0.8 -
0.78
* First fit to hs at fixed h 0.76 |-
0.74

* power-law in hs 0.72 -
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* Then extrapolate
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Extrapolated peak temperature versus h

= Power-law fit extrapolates
to Tpeak(hs — 0) = 0.44(3)

= About half the temperature

of XY T, ~ 0.89
7
= Small perturbation <
seems to have ®
large effect on Ty

phase diagram
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le-07
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Peak height

Need to check that
system is critical
(peak height
diverges) as h—0

Fit peak heights to
power-law

height o« h™Y

Check if gamma is
nonzero as hs —0

25
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Peak height scaling

0.14 | | , . .
« Power-law exponent B
0.135 |
height < h™Y
0.13 - -

« Trending down as 0
hs decreases, E 0.125 _
but still far from0 o

0.12 | % _
* Consistent with

critical transition as 0.115 } _
Deye= 91 —+—
hs — 0 Der=101
0.11 | | | | |
- Need smaller hs to 0 0.2 0.4 0.6 0.8 1 1.2
verify hs
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Summary

= XY truncation using U(1) character expansion has less effect on low energy
behavior than angular discretization

= Expansion basis for TN construction determines core tensor symmetries,
which in turn has large effect on phase structure

» Choosing basis that preserves symmetries
— Does that also minimize error in truncated interaction expansion?

» Studied location of lower-T phase transition in perturbed XY model
as function of hg
— consistent with non-zero T, (~ 0.5 Txy) as hs — 0

= Small symmetry-breaking perturbations can have large effect on phase structure
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