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Outline

§ Examine effects of discretization and perturbations phase structure
of 2d classical XY model

§ Compare discretizations of XY model using HOTRG
– Angular discretization (ZN clock model)
– U(1) character expansion

§ Structure of TN formulations
– Role of core and interaction tensors

§ Perturbed XY model
– Interpolates between XY and ZN models
– Study effect of small perturbation on phase structure
– How large is the effect of small perturbation?
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XY model discretizations

§ 2d XY model

§ Angular discretization (N states) → ZN clock model

§ U(1) character expansion discretization (D = 2S+1 states)
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Tensor network simulations

§ HOTRG method
– D (N for ZN model) = initial number of states
– Dcut = maximum states (after SVD)

§ Observables
– Specific heat

– Second derivative from 7-point polynomial fit

– Magnetization using impurity tensor method
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ZN clock discretizationU(1) character expansion

Specific heat of discretized XY model
Dcut = 40
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• Peak converges well for D ≥ 5
• Low temperature converges well for 

D ≥ 15
• Specific heat peak doesn’t match 

phase transition (Tc), but similar 

• One peak for N ≤ 4
• Two peaks for N ≥ 5
• Upper peak converges well for N ≥ 7
• Larger difference from XY at low T 

for same number of states (D=N)



Magnetization of discretized XY model
Dcut = 40   h = 10-4
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U(1) character expansion ZN clock discretization

• Ordered phase appears in ZN model, but not XY



Finding phase transitions

§ Specific heat, magnetic susceptibility not reliable indicators of lower phase 
transition in ZN (N≥5) model

§ Cross derivative (Y. Chen, K. Ji, Z. Y. Xie, J. F. Yu 2020)

§ Seems to be good indicator of phase transitions

§ Obtained from fit of magnetization to polynomial in T
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Cross derivative of discretized XY model
Dcut = 40   h = 10-4
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U(1) character expansion ZN clock discretization

• Gives clear peaks at phase transitions



Tensor network components

§ Typically start with interaction and local terms

§ Expand interaction in some basis

§ Gives a core tensor of (for 2d)

Spin models
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Tensor network components

§ XY model tensor components (U(1) character basis)

§ Clock model tensor components (ZN character basis)

§ Can mix core and interaction tensors from different models

10

!"# = %"#&"(()
*"#+, = &"-#.+-, (ℎ 0→2 %"-#.+-,

!"# = %"#3
4
&".45(()

*"#+, =3
4
&"-#.+-,.45((ℎ)

0→23
4
%"-#.+-,.45



Specific heat for mixed XY/ZN models
Dcut = 40
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• 2 peaks appear with 
periodic core
(Z5 and XY+periodic core)

• Only one peak apparent 
with XY core

• Phase structure 
determined by symmetry 
of core tensor 
(Y. Meurice 2019)



Discretization as a choice of basis

§ Core, interaction decomposition not unique
§ For example, can move local term into interaction

§ Core tensor then determined only by basis

§ ZN clock model as approximation to interaction term using a rectangular step 
function basis, each over distinct angular range of 2!/N, zero elsewhere
– Evaluating interaction at center of each interval reproduces clock model

§ Could choose other sets of basis functions, expansion approximations
§ Evaluating error in discrete approximation to interaction term may help

determine which basis is best (does this consider symmetries?)
– RMS error for ZN basis is larger than U(1) character basis

§ Could use this to optimize basis for given model
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Moving between XY and ZN models

§ Previously looked at ZN for increasing N
§ Instead consider fixed N

– interpolate between periodic, non-periodic core tensor

§ Perturbed XY model (Jose, Kadanoff, Kirkpatrick, Nelson 1977)

§ Interested in behavior of lower phase transition for small hN
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Perturbed model N=5
Dcut = 40   h = 1e-5

14

Magnetization Cross derivative



Perturbed XY model RG analysis
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§ RG analysis using Villain approximation
in JKKN paper

§ For fixed hN > 0, found
– 2 critical temperatures for N > 4
– At N=4 collapse to single Tc

§ Value of T2(hN → 0) not clear from 
RG analysis

§ Interested if non-zero, and how large

§ If large, infinitesimal perturbation 
has large effect on phase diagram
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Determining peaks of cross derivative

§ Calculated <m> with spacing !T = 0.004

§ Fit 11 consecutive points to 4th order polynomial
– Plots of cross derivative from derivative of polynomial at center of interval
– Peak location from zero of 2nd derivative of polynomial

§ Consider only peak fits where peak is well within interval

§ Peak temperature and height averaged over fit intervals
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Cross derivative peak example
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• Dcut=81 not enough

• Peak temperature 
consistent for 
Dcut=91, 101

• Dcut=91 seems 
sufficient for Tc

• Peak height still 
moving lower a bit

• Lowest h5 = 0.2,
simulations became 
unstable around 
h=1e-7 for h5 < 0.2



Cross derivative peak fits
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• ~4 points fell well 
within fit interval

• Peak determined 
from average,
error from variance

• Error is systematic 
error of fit

• For peak height 
additional error 
from Dcut



Lower peak temperature
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• Dcut = 81 not accurate 
enough at small h

• Dcut = 91 and 101 
agree within errors

• Used Dcut = 91 for 
most of remaining 
results



Lower peak height
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Lower peak temperature versus h
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• Tpeak rises at lower h, 
falls at lower h5

• Fit Tpeak to power-law in h

to extract Tc(h5)
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Lower critical temperature versus h5

§ Error bars too large
for power-law fit

§ Trending down at 
lower h5

§ Still far from 0,
but unable to do
reliable extrapolation
with this approach
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Peak temperature versus h5
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• First fit to h5 at fixed h

• power-law in h5

• Then extrapolate 
Tpeak(h5 → 0) to h = 0
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Extrapolated peak temperature versus h
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§ Power-law fit extrapolates
to Tpeak(h5 → 0) = 0.44(3)

§ About half the temperature 
of XY Tc ~ 0.89

§ Small perturbation
seems to have
large effect on
phase diagram



Peak height

	2

	3

	4

	5

	6

	7

	8

1e-07 1e-06 1e-05

S
p
1

h

h5	=	1.0
h5	=	0.7
h5	=	0.5
h5	=	0.4
h5	=	0.3
h5	=	0.2

25

• Need to check that 
system is critical 
(peak height 
diverges) as h→0

• Fit peak heights to
power-law

• Check if gamma is
nonzero as h5 →0
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Peak height scaling
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• Power-law exponent

• Trending down as
h5 decreases,
but still far from 0

• Consistent with 
critical transition as 
h5 → 0

• Need smaller h5 to 
verify
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Summary

§ XY truncation using U(1) character expansion has less effect on low energy 
behavior than angular discretization

§ Expansion basis for TN construction determines core tensor symmetries, 
which in turn has large effect on phase structure

§ Choosing basis that preserves symmetries
– Does that also minimize error in truncated interaction expansion?

§ Studied location of lower-T phase transition in perturbed XY model
as function of h5

– consistent with non-zero Tc (~ 0.5 TXY) as h5 → 0

§ Small symmetry-breaking perturbations can have large effect on phase structure
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