

The EoS of dense nuclear matter from Bayesian analysis of heavy-ion collision data

Manjunath Omana Kuttan, Jan Steinheimer, Kai Zhou, Horst Stöcker

Density dependent EoS in UrQMD

EPJ C 82.5 (2022): 1-12, EPJ C 82.10 (2022): 1-12

- A density dependent potential enters the QMD equations: $\dot{\mathbf{r}}_i = \frac{\partial \mathbf{H}}{\partial \mathbf{p}_i}, \quad \dot{\mathbf{p}}_i = -\frac{\partial \mathbf{H}}{\partial \mathbf{r}_i}.$
 - > The potential energy term in the systems Hamiltonian \mathbf{H} is density dependent.
- The potential energy $V(n_B)$ is related to the pressure as:

$$P(n_B) = P_{
m id}(n_B) + \int_0^{n_B} n' rac{\partial U(n')}{\partial n'} dn' \ , \ U(n_B) = rac{\partialig(n_B\cdot V(n_B)ig)}{\partial n_B}$$

 $U(n_B)$ \Rightarrow single particle potential, $P_{id}(n_B)$ \Rightarrow pressure of an ideal Fermi gas of baryons

constraining the potential energy $V(n_B) \Rightarrow$ constraining the EoS

Parameterisation of the potential energy

The experimental data

- Proton observables (mid rapidity)
 - > Elliptic flow : 10 data points
 - E895, CERES, FOPI, STAR, HADES
 - Mid-central collisions
 - Transverse kinetic energy: 5 data points
 - E802, NA49, STAR
 - Central collisions

The data,
$$\mathbf{D}=\{v_2^{exp},\langle m_T
angle^{exp}-m_0\}$$
 is used to constrain the parameters $\boldsymbol{ heta}$.

Gaussian Process models

- Bayesian inference involves numerous UrQMD simulations
 - ➢ UrQMD ~80 s/event
 - $v_2 \sim 12000$ events- 10 energies, $< m_T > -m_0 = 1000$ events- 5 energies
 - For a parameter set ~125000 events* 80 s = ~2700 hrs
 - MCMC requires random walk through 1000s of parameter sets
 - not feasible to run UrQMD for MCMC
- Gaussian Process models are trained as fast emulators
 - trained on 200 randomly generated EoSs
 - ➤ tested on 50 EoS
 - > validation $r^2 \sim 0.9$

5

10 v₂ values

Closure tests

- UrQMD observables for this EoS is the "data"
 a. uncertainty similar to experimental data
- 3. Construct the posterior
- 4. Compare with the "ground-truth"
- Tight constraints up to 4n₀
 - \succ large uncertainty above $4n_0$
 - yet mean closely follows "ground-truth"
- Two curves extracted:
 - "MAP": mode of posterior
 - "MEAN": mean of posterior

Both MEAN and MAP closely follows "ground-truth" upto 6n₀

Result from experimental data

- Posterior from experimental data
 - > 10 measurements of v_2
 - > 5 measurements of $< m_T > -m_0$
- Tight constraints upto 4n₀
 - MEAN, MAP suggests stiff EoS
 - > No phase transition

Sensitivity to choice of observables

- Only 13 data points are used
 - \sim <m_T>-m₀ at 3.83, 4.29 GeV not used
- Significant differences in posterior
 - softening at 3- 5n₀
 - phase transition
- Beyond 3n₀ strong dependence to choice of observables

Reconstructed EoSs: v₂, <m₇>-m₀

- better v_2 predictions at high energies when 2 data points are removed
 - > but also results in lower $< m_t > -m_0$
- large $< m_t > -m_0$ values for the stiff EoS (extracted using all data points)
- possible tension in data at ~4 GeV!
 - Measurement uncertainty? or limitation of the model?

Reconstructed EoSs: dv_1/dy , c_s^2

- ♦ dv₁/dy data was not used for inference
 - yet consistent with reconstructed EoSs
 - especially with all 15 data points

- 15 points, predicts a stiff EoS
 - consistent with astrophysical constraints
 - broad peak structure
- 13 points, drastic drop in c_s^2
 - > first order phase transition

Summary

- Can we reconcile data from current and previous experiments?
 - Bayesian inference on data from several experiments
- Can we find a flexible common parametrization of the EOS, applicable to neutron star and HIC simulations?
 - > A polynomial parameterization of the density dependence of EoS is used
- What other observables could enable the extraction of the EOS?
 - \sim v₂, <m_t>-m₀ of protons are used for inference
 - > any observable that can be calculated using the model could be used
 - Use more observables in future

Summary

- Are the nuclear matter EOSs from astrophysics consistent with HIC observables in the range rho < 4.0rho_0?</p>
 - inference using all 15 data points:
 - constraints the EoS upto 4n₀
 - stiff EoS upto 4n₀, no phase transition
 - consistent with BNSM constraint, dv₁/dy data
 - > strong dependence on choice of observables for $> 3n_0$
 - tension in data at ~4 GeV
 - measurement uncertainty or model limitation?

What improvements on the constraints on the EOS can we expect from future heavy-ion experiments?

For stricter, robust constraints on the EoS below $4n_0$, significant improvements and consistency in flow measurements are necessary for E_lab = 2-10 A GeV

Backup slides

Potentials for training GP models

GP models: performance

16

Manjunath Omana Kuttan

GP models: performance

Manjunath Omana Kuttan

Closure tests

Manjunath Omana Kuttan

INT Workshop INT-22-84W

Microscopic transport with density dependent potential

- Non-equilibrium MD part of UrQMD is used
- UrQMD:
 - > Propagation of hadrons on classic trajectories
 - stochastic binary scattering , color string formation, resonance excitation and decays
 - Imaginary part of interactions:
 - geometric interpretation of cross section
 - Experiment, detailed balance
 - Hadronic cascade
 - effective EoS of HRG with respective dof
- Real part of interactions in UrQMD
 - QMD + density dependent potential
 - Unlike other mean field models, QMD is an n-body theory of interactions between n nucleons

Microscopic transport with density dependent potential

A density dependent potential enters QMD equations

 $\dot{\mathbf{r}}_i = rac{\partial \mathbf{H}}{\partial \mathbf{p}_i}, \quad \dot{\mathbf{p}}_i = -rac{\partial \mathbf{H}}{\partial \mathbf{r}_i}.$

The total hamiltonian function is sum over all hamiltonians of the i baryons

$$\mathbf{H} = \sum_i H_i, \;\; H_i = E_i^{kin} + V_i$$

This include KE and total potential energy V $\mathbf{V} = \sum_i V_i \equiv \sum_i Vig(n_B(r_i)ig)$

The change in momentum for baryon 'i' is then

The local interaction density $n_B at r_k$ is calc by assuming each particle as gaussian wave packet

$$egin{aligned} n_B(r_k) &= n_k = \sum_{j,j
eq k} n_{j,k} \ &= ig(rac{lpha}{\pi}ig)^{3/2} \sum_{j,j
eq k} B_j \exp\left(-lpha(\mathbf{r_k}-\mathbf{r_j})^2
ight) \ &lpha$$
=1/2L, L= 2 fm²

 $egin{aligned} \dot{\mathbf{p}}_i &= -rac{\partial \mathbf{H}}{\partial \mathbf{r}_i} = -rac{\partial \mathbf{V}}{\partial \mathbf{r}_i} \;\; n_{\{i,j\}} \equiv n_B(r_{\{i,j\}}) \ = & -\left(rac{\partial V_i}{\partial n_i} \cdot rac{\partial n_i}{\partial \mathbf{r}_i}
ight) - \left(\sum_{j
eq i} rac{\partial V_j}{\partial n_j} \cdot rac{\partial n_j}{\partial r_i}
ight) \ \end{aligned}$

Force on ith baryon depends on change in potential energy at point r_i due to local gradient of $n_B(r_i)$ and change in potential at positions r_i of all baryons j due to change in r_i

-solved in timestep 0.2fm/c

Manjunath Omana Kuttan

05/12/2022 - 09/12/2022

$$egin{aligned} P(n_B) &= P_{ ext{id}}(n_B) + \int_0^{n_B} n' rac{\partial U(n')}{\partial n'} dn' \,, \, U(n_B) &= rac{\partial ig(n_B \cdot V(n_B)ig)}{\partial n_B} \ \mu_B'(n_B) &= \mu_B^{id}(n_B) + U(n_B) \ \epsilon(n_B) &= -P(n_B) + \mu_B' n_B + sT \end{aligned}$$