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Introduction by example: Single transients

• Example: GW170817
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Figure 1. UVOIR light curves from the combined dataset (Table 3), along with the spherically symmetric three-component models with
the highest likelihood scores. Solid lines represent the realizations of highest likelihood for each filter, while shaded regions represent the 1�
uncertainty ranges. For some bands there are multiple lines that capture subtle differences between filters. Data originally presented in Andreoni
et al. 2017; Arcavi et al. 2017; Coulter et al. 2017; Cowperthwaite et al. 2017; Díaz et al. 2017; Drout et al. 2017; Evans et al. 2017; Hu et al.
2017; Kasliwal et al. 2017; Lipunov et al. 2017; Pian et al. 2017; Pozanenko et al. 2017; Shappee et al. 2017; Smartt et al. 2017; Tanvir et al.
2017; Troja et al. 2017; Utsumi et al. 2017; Valenti et al. 2017.

Fernández 2014; Metzger 2017). We implement this asym-
metric distribution by correcting the bolometric flux of each
component by a geometric factor: (1 - cos✓) for the blue
component and cos✓ for the red/purple component, where ✓
is the half opening angle of the blue component. Although
this model neglects other important contributions such as
changes in diffusion timescale, effective blackbody temper-
ature, or angle dependence, it roughly captures a first-order
correction to the assumption of spherical symmetry.

3.2. Fitting Procedure

We model the combined dataset using the light curve fit-
ting package MOSFiT (Guillochon et al. 2017a; Nicholl et al.
2017; Villar et al. 2017), which uses an ensemble-based
Markov Chain Monte Carlo method to produce posterior pre-
dictions for the model parameters. The functional form of the

log-likelihood is:
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where Oi, Mi, and �i, are the ith of n observed magnitudes,
model magnitudes, and observed uncertainties, respectively.
The variance parameter � is an additional scatter term, which
we fit, that encompasses additional uncertainty in the models
and/or data. For upper limits, we use a one-sided Gaussian
penalty term.

For each component of our model there are four free pa-
rameters: ejecta mass (Mej), ejecta velocity (vej), opacity (),
and the temperature floor (Tc). We use flat priors for the first
three parameters, and a log-uniform prior for Tc (which is the
only parameter for which we consider several orders of mag-

Villar et al 2017
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Figure 4. Multi-wavelength afterglow light curves overlaid with the Gaussian jet best fit model (solid line) and its 68% uncertainty
range (shaded areas). Radio data are from ATCA (filled symbols) and VLA (open symbols) observations. X-ray data are from Chandra
(filled symbols) and XMM-Newton (open symbols) observations. Downward triangles are 3 � upper limits. The dashed line shows the
expected asymptotic decline / t

�2.5. Data were collected from: Troja et al. 2017, Troja et al. 2018a, Piro, et al. 2019, Hallinan et al.
2017, Lyman et al. 2018, Resmi, et al. 2018, Margutti et al. 2018, Mooley et al. 2018a, and Alexander et al. 2018.

turnover. The total amount of energy in the slower ejecta
above a particular four-velocity u is modelled as a power-
law E(> u) = Einju

�k. This model requires nine param-
eters ⇥cocoon = {Einj, n, p, ✏e, ✏B Mej, umax, umin, k}, where
umax is the maximum ejecta four-velocity, umin the mini-
mum ejecta four-velocity, and Mej the initial cocoon ejecta
mass with speed umax.

As described in Troja et al. (2018a), our Bayesian fit
procedure utilizes the emcee Markov-chain Monte Carlo
package (Foreman-Mackey et al. 2013). For the structured
jet we also include the GW constraints on the orientation ◆
of the system (Abbott et al. 2017b) in our prior for ✓v. The
results of the MCMC analysis are summarized in Table 2.

The best fit jet models is shown in Figure 4. For the corner
plot see the Supplementary data (Figure 8).

3 RESULTS

3.1 A rapid afterglow decline: constraints on the

outflow structure

For jets that fail to break out (“choked jets”), the jet en-
ergy is dissipated into a surrounding cocoon of material.
This scenario is therefore included in our group of ‘co-
coon’ models (Troja et al. 2018a). The post-peak temporal
slope is a shallow decay of ↵ ⇡ 1.0 � 1.2 up to at least

MNRAS 000, 1–8 (2019)
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Nuclear equation of state (as of n=1 BNS)

• (Chirp) mass (one data point  = consistent with galactic)

• (Aligned part of) spin small, consistent with galactic

• Tides and the nuclear EOS
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Multimessenger inference has broad return
• Hubble constant measurements: very sensitive to inclination degeneracy
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4

Figure 2. Inference on H0 and inclination. Pos-
terior density of H0 and cos ◆ from the joint GW-EM
analysis (blue contours). Shading levels are drawn at
every 5% credible level, with the 68.3% (1�, solid) and
95.4% (2�, dashed) contours in black. Values of H0 and
1- and 2� error bands are also displayed from Planck
(Planck Collaboration et al. 2016) and SHoES (Riess
et al. 2016). As noted in the text, inclination angles
near 180 deg (cos ◆ = �1) indicate that the orbital an-
gular momentum is anti-parallel with the direction from
the source to the detector.

of NGC 4993 by correcting for local peculiar mo-
tions.

NGC 4993 is part of a collection of galaxies,
ESO-508, whose center-of-mass recession veloc-
ity relative to the frame of the CMB (Hinshaw et al.
2009) is (Crook et al. 2007) 3327± 72 km s�1. We
correct the group velocity by 310 km s�1 due to
the coherent bulk flow (Springob et al. 2014; Car-
rick et al. 2015) towards The Great Attractor (see
Methods section for details). The standard error on
our estimate of the peculiar velocity is 69 km s�1,
but recognizing that this value may be sensitive
to details of the bulk flow motion that have been
imperfectly modelled, in our subsequent analysis
we adopt a more conservative estimate (Carrick
et al. 2015) of 150km s�1 for the uncertainty on
the peculiar velocity at the location of NGC 4993,
and fold this into our estimate of the uncertainty
on vH . From this, we obtain a Hubble velocity
vH = 3017± 166 km s�1.

Once the distance and Hubble velocity distribu-
tions have been determined from the GW and EM
data, respectively, we can constrain the value of
the Hubble constant. The measurement of the dis-
tance is strongly correlated with the measurement
of the inclination of the orbital plane of the bi-
nary. The analysis of the GW data also depends on
other parameters describing the source, such as the
masses of the components (Abbott et al. 2016a).
Here we treat the uncertainty in these other vari-
ables by marginalizing over the posterior distribu-
tion on system parameters (Abbott et al. 2017a),
with the exception of the position of the system on
the sky which is taken to be fixed at the location of
the optical counterpart.

We carry out a Bayesian analysis to infer
a posterior distribution on H0 and inclination,
marginalized over uncertainties in the recessional
and peculiar velocities; see the Methods sec-
tion for details. Figure 1 shows the marginal
posterior for H0. The maximum a posteri-
ori value with the minimal 68.3% credible in-
terval is H0 = 70.0+12.0

�8.0 km s�1 Mpc�1. Our
estimate agrees well with state-of-the-art de-
terminations of this quantity, including CMB
measurements from Planck (Planck Collabora-
tion et al. 2016) (67.74 ± 0.46 km s�1 Mpc�1,
“TT,TE,EE+lowP+lensing+ext”) and Type Ia su-
pernova measurements from SHoES (Riess et al.
2016) (73.24 ± 1.74 km s�1 Mpc�1), as well as
baryon acoustic oscillations measurements from
SDSS (Aubourg et al. 2015), strong lensing mea-
surements from H0LiCOW (Bonvin et al. 2017),
high-l CMB measurements from SPT (Henning
et al. 2017), and Cepheid measurements from the
HST key project (Freedman et al. 2001). Our mea-
surement is a new and independent determination
of this quantity. The close agreement indicates
that, although each method may be affected by dif-
ferent systematic uncertainties, we see no evidence
at present for a systematic difference between GW
and established EM-based estimates. As has been
much remarked upon, the Planck and SHoES re-



Multimessenger inference has broad return
• Hubble constant measurements: very sensitive to inclination degeneracy


• Observations of jet break that degeneracy 


• Example:  Radio VLBI jet constraints 
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Figure 1: Distance and observing angle constraints to GW170817. Dashed curves running

from top to bottom depict the constraint of 0.25 < ✓obs

⇣
d

41 Mpc

⌘
< 0.45 rad estimated based on

hydrodynamics simulations and synthetic models19. The 95% regions obtained from the MCMC

analysis of the afterglow light curve (LC) and centroid motion through Very Long Baseline In-

terferometry (VLBI) are shown as solid purple (VLBI+LC). The blue contours (VLBI+LC+GW)

is the same, but also combined with the GW analysis for a PLJ model. Also shown as an orange

dashed (solid) contour is the 68 (95%) contour of the posterior distribution of the GW-only analysis

(high spin PhenomPNRT posterior samples)28. We note that the VLBI and light curve data alone

provide a distance estimate independent of all other means.

8

Figure 2: Posterior distributions for H0. The results of the GW-only analysis and the com-

bined GW-EM analysis with a PLJ model are shown. The vertical dashed lines show symmet-

ric 68% credible interval for each model. The 1 and 2-� regions determined by Planck CMB

(TT,TE,EE+lowP+lensing)3 (green) and SH0ES Cepheid-SN distance ladder surveys4 (orange) are

also depicted as vertical bands.
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Introduction by example: Multiple transients

• Example: NS mass distribution
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Introduction by example: Adding non-transients

• Many multi messenger probes of NS / BNS properties, like masses, 
spins, …

• Pulsar observations most numerous -> mass distribution

7

Neutron star mass and aligned spin model

ppmq “ N pm;µ,�q pp�zq “ Bp�z;↵,�q

D. Wysocki (RIT) CBC population rates, masses, spins APS April 2018 – K17.00003 11 / 25

6 J. Alsing, H. O. Silva, E. Berti

considered using multinest nested sampling (Feroz & Hob-
son 2008; Feroz et al. 2009; Buchner et al. 2014).

5 RESULTS: THE INFERRED NEUTRON
STAR MASS DISTRIBUTION

The Bayesian evidences for the space of (truncated) Gaus-
sian mixture models are given in Table 2. The models with
two and three components are preferred by the data com-
pared to the models with one and four Gaussian compo-
nents. The single-component Gaussian is strongly disfa-
vored (with Bayes factors of 2lnK & 10) when compared
against the two and three component models, indicating
very strong evidence against n = 1. The four-component
model is also disfavored although less strongly, with Bayes
factors of 2lnK & 2 compared to the two and three com-
ponent models. Comparing the two and three component
models, the two component model is modestly preferred in
all cases, but the di↵erence in their Bayesian evidences is not
large enough to make a strong preference for either model.

In all cases n = 1, . . . , 4, the model with the maximum
NS mass as an additional free parameter is preferred. In
all cases n > 2, the models with free mmax are preferred
over those with fixed mmax with Bayes factors 2lnK > 3:
there is positive support for a sharp cut-o↵ in the NS mass
distribution at mmax < 2.9M�. This is the first major result
of this paper.

Fig. 1 shows the maximum a posteriori (MAP) mass
distributions for the four models that are most preferred
by the data; the n = 2, 3, 4 models with a sharp cut-o↵ at
mmax < 2.9M�, and the n = 2 model with the cut-o↵ fixed
out at mmax = 2.9M� for comparison. The introduction
of additional Gaussian components above n = 2 modifies
the shape of the second peak, but does not introduce an
additional independent mode, even though this would be
perfectly allowed under the model. The convergence of all
models with n > 2 to a bimodal distribution provides over-
whelming support for a bimodal NS mass distribution, with
no evidence for an additional distinct peak in the distribu-
tion or separation of the lower mass peak into two narrow
components, as suggested in Schwab et al. (2010). This is
consistent with recent literature (Valentim et al. 2011; Özel
et al. 2012; Kiziltan et al. 2013; Antoniadis et al. 2016).

Fig. 2 shows the MAP mass distribution for the n =
2 model with free mmax with 1000 independent posterior
samples plotted over the top to give a visual impression of
the uncertainties on the shape of the distribution. As the
most preferred model, we take this as our fiducial model
moving forward.

The MAP values and 68% credible regions for the pre-
ferred n = 2 component models are given in Table 3.

5.1 Constraints on mmax from the neutron star
mass distribution

As discussed above, we find evidence for a sharp cut-o↵ in
the NS mass distribution under all models considered, with
Bayes factors of 2lnK > 3 for all models n > 2 (Table 2).
The marginal posterior distribution for the maximum NS
mass under the fiducial n = 2 model is shown in Fig. 3.
The inferred posterior is peaked at mmax = 2.12M�, with

model: mmax = 2.9M� mmax < 2.9M�

n = 1 components -35.0 -34.8
n = 2 components -25.8 -22.7
n = 3 components -27.3 -23.9
n = 4 components -30.4 -25.9

Table 2. Log Bayesian evidences 2ln(Z) for the set truncated
Gaussian mixture models considered for the NS mass distribution,
covering n = 1 . . . 4 Gaussian components, each with either fixed
mmax = 2.9M� or keeping mmax < 2.9M� as an additional free
parameter. The four preferred models are highlighted in boldface.
We perform model selection by comparing 2lnKAB = 2lnZA �
2lnZB to the scale of Kass & Raftery (1995) (see §4.2).

Figure 1. Comparison of maximum a posteriori (MAP) NS mass
distributions under di↵erent model assumptions: n = 2 Gaussian
components with mmax < 2.9M� (preferred model; blue-solid),
n = 2 Gaussian components with mmax = 2.9M� (red-dashed),
n = 3 Gaussian components withmmax < 2.9M� (green-dashed),
n = 4 Gaussian components with mmax < 2.9M� (orange-
dashed).

Figure 2. Maximum a posteriori (MAP) NS mass distribution
(red) with 1000 independent posterior samples to give a visual
guide for the uncertainties, under the considered model that is
most preferred by the data; the n = 2 component Gaussian mix-
ture with a sharp cut-o↵ mmax < 2.9M�.

Alsing et al 2018Ozel and Freire 1603.02698

also X-ray NS observations for radius: see AWS yesterday



How our measurements correlate mass/spin/tides

• Prior knowledge about NS (here, spins) strongly impacts 
interpretation of NS masses (and thereby tidal constraints)

8

and 0.012 (90% credibility interval) when marginalized over
mass and equation of state (EoS) uncertainties (see
Appendix F.3 for details). The fastest-spinning Galactic-field
BNS, which contains the 17 ms pulsar J1946+2052 (Stovall
et al. 2018), has Deff in the range [0.012, 0.018] assuming
aligned spin for the pulsar and negligible spin for its
companion, similar to the double pulsar.
For the results reported herein we used the LALINFERENCE

library’s nested sampling algorithm and validated results using
the LALINFERENCE Markov chain Monte Carlo sampling
algorithm and the BILBY (Ashton et al. 2019) library with the
DYNESTY (Speagle 2019) nested sampling algorithm. When
comparing the high-spin prior results using the different
algorithms, we see 13% differences in the median parameter
values and the credible intervals are consistent and reprodu-
cible. Meanwhile, the runs using the low-spin priors show no
such differences.
We show the posteriors for a wider range of source

parameters in Appendix C.

4.1. Neutron Star Matter

Because of its large mass, the discovery of GW190425 suggests
that gravitational-wave analyses can access densities several times
above nuclear saturation (see, e.g., Figure 4 in Douchin &
Haensel 2001) and probe possible phase transitions inside the core
of a neutron star (NS) (Oertel et al. 2017; Essick et al. 2019; Tews
et al. 2019). However, binaries comprised of more massive stars
are described, for a fixed EoS, by smaller values of the leading-
order tidal contribution to the gravitational-wave phasing -̃
(Flanagan & Hinderer 2008). These are intrinsically more difficult
to measure. For GW190425, this is exacerbated by the fairly low
S/N of the event compared to GW170817. Overall, we find that
constraints on tides, radius, possible p–g instabilities (Venumadhav
et al. 2013; Weinberg et al. 2013; Weinberg 2016; Zhou &
Zhang 2017), and the EoS from GW190425 are consistent with
those obtained from GW170817 (Abbott et al. 2017b, 2019e).
However, GW190425is less constraining of NS properties,
limiting the radius to only below 15 km, -̃ to below 1100 and
only ruling out phenomenological p–g amplitudes above 1.3 times
the 90% upper limit obtained from GW170817 at the same
confidence level. The p–g constraints were obtained with a
different high-spin prior than the rest of the results (see
Appendix F.5) but the difference does not significantly change
our conclusions. Spin priors can affect the inference of tidal and
EoS parameters, and we note that the low-spin results are generally
more constrained. Following Agathos et al. (2020), we estimate the
probability of the binary promptly collapsing into a black hole
(BH) after merger to be 96%, with the low-spin prior, or 97%with
the high-spin prior. Repeating the analyses of Chatziioannou et al.
(2017) and Abbott et al. (2019d), we find no evidence of a
postmerger signal in the 1 s of data surrounding the time of
coalescence. We obtain 90% credible upper limits on the strain
amplitude spectral density and the energy spectral density of

q � �1.1 10 Hz22 1 2 and �M c0.11 Hz2 1
: , respectively, for a

frequency of 2.5 kHz. Similar to GW170817, this upper limit is
higher than any expected post-merger emission from the binary
(Abbott et al. 2019d). More details on all calculations and
additional analyses are provided in Appendix F.7.

Figure 3. Posterior distribution of the component masses m1 and m2 in the
source frame for the low-spin (D � 0.05; orange) and high-spin (D � 0.89;
blue) analyses. Vertical lines in the one-dimensional plots enclose 90% of the
probability and correspond to the ranges given in Table 1. The one-dimensional
distributions have been normalized to have equal maxima. A dashed line marks
the equal-mass bound in the two-dimensional plot.

Figure 4. Joint posterior distribution of Deff and q for the low-spin (D � 0.05;
orange) and high-spin (D � 0.89; blue) prior. Vertical lines enclose the 90%
credible interval for Deff and horizontal lines mark the 90% lower limits for q.
The one-dimensional distributions have been normalized to have equal
maxima. For comparison, the effective spins are shown for two Galactic
BNS systems, PSR J1946+2052 (green) and PSR J0737−3039A/B (red), if
extrapolated to their mergers. For PSR J1946+2052, it is assumed that the
primary spin is perpendicular to the orbital plane and that the unmeasured
secondary spin is negligible. Uncertainties in the pulsar q and Deff values,
calculated by marginalizing over mass and equation of state information, are
smaller than the markers except for the mass ratio of PSR J1946+2052, which
is shown with an error bar.
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Outline

• Motivation

• Single transients


• Method review

• Adding ingredients: GW data/model, EM data/model, EOS, …


• Population analysis of (mostly) one set of observables


• Adding heterogeneous additional inputs


• Putting it all together: tools and tricks of the trade
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Single transients: Methods review

• Standard Bayesian: likelihood *  prior


• Usually performed by (some kind of) Monte Carlo integration    -> 
fair draw samples xk
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Single transients: Methods review

• Standard


• Likelihood requires detailed forward model of observation:

• Simplified (inspiral-dominated GW, disk/ejecta EM) approach:


• GW model for binary evolution and merger

• tides from EOS

• Ejecta from binary parameters, EOS/tides, including


• mass, velocity, composition, angular distribution

• (anisotropic) EM model from binary ejecta/disk

11



GW-only analysis (with ‘free’ tides)

• GW systematics of merging NS tricky : tides at end 
• Reanalyses with latest HM models -> different mass ratio? p(q) 
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Kilonova light curves: A surrogate model

• Detailed models (opacity; multicomponent; composition;…); actively-learned library


• Interpolate time, 2-component mass/velocity

13

2

els, calibrated to detailed radiative transfer simulations
[? ? ? ]. For example, Coughlin et al. [? ] used Gaus-
sian process (GP) regression of principal components to
construct a multiwavelength surrogate calibrated to a
fixed three-dimensional grid of simulations [? ], describ-
ing flux Fk from a single component of ejected mate-
rial. This study generated a “two-component” ejecta
model by adding the fluxes of two independent calcu-
lations (F = F1 + F2), ignoring any photon reprocessing
e↵ects. More recently, Heinzel et al [? ] applied this
method to construct an anisotropic surrogate depending
on two components M1,M2 and viewing angle, calibrat-
ing to their own anisotropic radiative transfer calcula-
tions. They also included reprocessing e↵ects, showing
that their previous simplified approach which treats the
radiation from each of the two components of the out-
flow independently introduces biases in inference for the
components’ parameters. These strong reprocessing or
morphology-dependent e↵ects are expected in kilonova
light curves [? ? ? ? ]. Finally, a recent study by
Breschi et al. [? ] favored an anisotropic multicompo-
nent model.

In this work, extending [? ], we apply an adaptive-
learning technique to generate surrogate light curves
from simulations of anisotropic kilonovae. Starting with
a subset of 36 simulations reported in [? ], we use
these adaptive learning methods to identify new sim-
ulations to perform, refining our model with 448 sim-
ulations so far. We apply our surrogate light curves
to reassess the parameters of GW170817. We dis-
tribute the updated simulation archive, our current-
best surrogate models, and our training algorithms at
https://github.com/markoris/surrogate_kne.

This paper is organized as follows. In Section ?? we
describe the kilonova simulation family we explore in this
study and the active learning methods we employ to tar-
get new simulations to perform. We also briefly com-
ment on our model’s physical completeness. In Section
?? we describe the specific procedures we employed to in-
terpolate between our simulations to construct surrogate
light curves. In Section ?? we describe how we com-
pare observations to our surrogate light curves to deduce
the (distribution of) best fitting two-component kilonova
model parameters for a given event. We specifically com-
pare our model to GW170817. In Section ?? we describe
how our surrogate models and active learning fit into the
broader challenges of interpreting kilonova observations.
We conclude in Section ??.

II. KILONOVA SIMULATION PLACEMENT

A. Kilonova simulations

The kilonova simulations described in this work adopt
a similar setup as and expand on the work of [? ]. The
simulations discussed throughout were generated using
the SuperNu [? ] time-dependent radiative transfer code,

FIG. 1. Bolometric luminosities of initial and adap-
tively placed simulations: The top panel shows the log10

bolometric luminosity in CGS units versus time in days for

the simulations we initially used to train our grid. These sim-

ulations all extend out to roughly 8 days. The bottom panel

shows the bolometric light curves for our adaptively placed

simulations overlaid on top of the initial grid light curves.

Most of these simulations extend past 32 days. Both panels

exhibit significant diversity in behavior and timescale.

using tabulated binned opacities generated with the Los
Alamos suite of atomic physics codes [? ? ]. We use
results from the WinNet code [? ] to determine ra-
dioactive heating and composition e↵ects. We employ
the thermalization model of [? ], but use a grey Monte
Carlo transport scheme for gamma ray energy deposition
[? ].
The ejecta model is based on a symmetrically-shaped

ideal fluid expanding in vacuum described by the Euler
equations of ideal hydrodynamics. The assumption of a
radiation-dominated polytropic equation of state allows
for an analytic representation of the ejected mass M and
average velocity v̄ as a function of initial central den-
sity ⇢0, initial time t0, and the velocity of the expansion
front vmax (Equations 11 and 12 in [? ]). When com-
bined with Monte Carlo-based radiative transfer and a
specified elemental composition for the ejecta, the code
produces time- and orientation-dependent spectra. Con-
volving these spectra with standard observational filters
produces light curves such as the ones in Figures ?? and
??.
Real neutron star mergers have (at least) two mech-

anisms for ejecting material, denoted as dynamical and

6

tions increase coverage, we evaluated the median “inter-
simulation” distance, using a simple Euclidean (L2) norm
over log10 Lbol(tk) for several reference times tk. As ex-
pected given the high apparent dimension of our output,
this median distance changes very slowly with n, owing
to the large e↵ective dimension of the output light curves.
The median distance is also larger than the residual error
in our fit, as reported below. The success of our inter-
polation relies not on an overwhelmingly large training
sample, but on the smoothness and predictability of our
physics-based light curves.

III. LIGHT CURVE INTERPOLATION

A. Stitched fixed-time interpolation

To e�ciently interpolate across the whole model space,
we follow a strategy illustrated in Figure 1 of [? ]: we pick
several fiducial reference times tq (and angles); use GP
interpolation to produce an estimate m↵(tq|⇤) versus ⇤;
interpolate in time to construct a continuous light curve
at the model hyperparameters ⇤ at each reference angle;
and then interpolate in angle to construct a light curve
for an arbitrary orientation. For an error estimate, we
stitch together the error estimates in each band to pro-
duce a continuous function of time. Figure ?? shows the
output of our interpolation (smooth lines), compared to
a validation simulation at the same parameters (dashed
lines). Our predictions generally agree, though less so
for the shortest wavelengths at the latest times. Sub-
sequent figures also illustrate the typical GP error esti-
mate, which is usually O(0.1) in log10 L for most bands
and times considered.

B. Trends identified with interpolated light curves

In Figure ?? we show the results of our fit evaluated at
a fixed viewing angle (✓ = 0), varying one parameter at
a time continuously, relative to a fiducial configuration
with Md = Mw = 0.01M�, vw/c = vd/c = 0.05. The
fixed value for the ejected mass of M = 0.01M� was
chosen as the middle ground of the initial grid’s sampled
mass space, which does not introduce any biases toward
lighter or heavier masses. Since no similar central value
was initially available for the velocity parameters, the
lower value was selected in the case of both components.
The slower velocity resulted in the ejecta not dissipating
as quickly and allowed for more variation in the light
curves as the non-static parameter was varied. For this
viewing angle, changes in the amount and velocity of the
dynamical ejecta have relatively modest e↵ect, in large
part because that ejecta is concentrated in the equatorial
plane. By contrast, changes in the mostly polar wind
ejecta has a much more substantial impact on the polar
light curve (✓ = 0). Specifically, increasing the amount
of wind ejecta brightens and broadens the light curve, as

FIG. 4. O↵-sample interpolation with original and re-
fined grid: Example of an interpolated stitched fixed-time

prediction compared to a simulation output created from the

same corresponding input parameters. The top panel shows

our estimate based on the initial 36 simulations; the bottom

panel shows the result after adaptive learning. Di↵erent col-

ors denote di↵erent filter bands, described in the legend. The

dashed lines show full simulation output for each band. The

colored points show our interpolated bolometric magnitude

predictions at the 191 evaluation times. The solid lines show

our final interpolated light curves, interpolating between the

points shown. The largest error in this example occurs for

the g-band at late times. The simulated parameters and

viewing angle for this configuration are Md = 0.097050M�,

Mw = 0.083748M�, vd = 0.197642c and vw = 0.297978c,
viewed on axis (✓ = 0). The exaggerated modulations in the

top panel’s solid lines and dotted curves illustrate interpo-

lation failures, arising from adopting an initially insu�cient

training set.

expected from classic analytic arguments pertaining to
how much material the light must di↵use through [? ?

? ? ]. Similarly, increasing the velocity of wind ejecta
causes the peak to occur at earlier times (di↵usion is
easier) and be brighter.

C. Interpolation in viewing angle

All of the interpolated light curves discussed thus far
have been trained at some fixed viewing angle. In Fig-
ure ??, we explore the interpolation of several families of
models, each of which was trained using simulation data
at a di↵erent viewing angle. The symmetry of the ejecta

interpolation reliable in time

Ristic et al , Phys Rev Research 2021



Kilonova light curves: A surrogate model

• Detailed models (opacity; multicomponent; composition;…); actively-learned library

• Interpolate Includes mass/velocity, angle, wavelength (color)  

• arbitrary observing bands & source redshift
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FIG. 6. Interpolation of g-, y-, and K-band luminos-
ity at di↵erent viewing angles: This figure compares the

g-, y-, and K-band luminosity at select times as a function

of viewing angle. The solid points represent fixed angles at

which the di↵erent families of models were trained. The solid

lines connecting the points indicate the interpolated predic-

tion of the angular variation at some given time in the light

curve. The dashed lines represent the simulation data and

show the true angular variation. The shaded regions denote

the 1� error estimate derived from our Gaussian process fit

versus time, extended in angle.

FIG. 7. Light curve versus time for selected angles
and bands: Comparison to Figure 7 of [? ] indicating an-

gular dependence of light-curve predictions across the g-, z-
and K-bands.

FIG. 8. Average residual as a function of number
of considered time points: A plot of the average residu-

als between on-sample time-interpolated light curves and the

respective simulation data as a function of how many time

points are used to generate the light curves. In each case, we

drew the respective number of samples from a log-uniform dis-

tribution between the start and end time of our light curves.

of interpolators which can be removed without significant
loss of accuracy.

IV. PARAMETER INFERENCE OF
RADIOACTIVELY-POWERED KILONOVAE

In this section, we describe and demonstrate the algo-
rithm we use to infer kilonova parameters given obser-
vations, using the interpolated light-curve model above.
Unless otherwise noted, for simplicity all calculations in
this section assume the kilonova event time and distance
are known parameters. We likewise assume observational
errors are understood and well characterized by indepen-
dent Gaussian magnitude errors in each observation, and
that our model families include the underlying properties
of the source (i.e., we neglect systematic modeling errors
due to the parameters held constant in our simulation
grid: morphology, initial composition, et cetera).

angle interpolation wavelength interpolation 
(vs untrained filter)

Ristic et al , Phys Rev Research 2021

Repository: https://github.com/markoris/surrogate_kne

https://github.com/markoris/surrogate_kne


Kilonova-only analysis

• Can deduce ejecta properties from EM   

• GW170817, one of many examples in literature
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FIG. 13. Comparison to GW170817: The left panel shows the results of interpreting observations of GW170817 using

our surrogate light curve model and adopting a strong angular prior ✓ ' 20deg. In the left panel, the solid black shows

inferences using all observing data, while the red curve omits K-band observations. The right panel shows inferred light curves

corresponding to the full data set analysis (i.e., the light curves correspond to the black contours in the left panel).

including the kilonova associated with GW170817.
All of our input data products, fitted light curves
and the code we used to produce them are available
at https://github.com/markoris/surrogate_kne.
The underlying full simulations are available at
https://ccsweb.lanl.gov/astro/transient/
transients_astro.html.

Though we limited our study to a specific set of as-
sumptions, this analysis is an important stepping stone
towards a better understanding of kilonova systematics.
Recently, several studies have demonstrated that several
physical assumptions can notably impact the deduced
light curve. However, these impacts could have e↵ects
that are partially degenerate with modest shifts in ejecta
properties. To understand the practical impact of these
uncertainties, in future work we will employ our param-
eterized models with these sources of error.

In this work we emphasized inference on only phe-
nomenological kilonova parameters. Several studies have
demonstrated the value in using multimessenger infor-
mation to more tightly constrain parameters like source
inclination (see, e.g., [? ? ? ? ]), even without adopt-
ing strong assumptions about the relationship between
ejecta and progenitor masses. With such assumptions
even stronger constraints have been widely explored. In
future work we will show how the electromagnetic in-
ference strategy applied here can be tightly and e�-
ciently integrated with the RIFT parameter inference en-
gine, enabling concordance inference about multimessen-
ger sources.
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Populations: Methods review

• Standard: Bayes + inhomogeneous Poisson process


• Likelihood requires detailed forward model of population    
including all selection effects              in addition to above!


• Most models: phenomenological on current observations

• Fast                but hard to get sharp physics & generalize for 

other missions


• Realistic generative models: usually Monte Carlo, slow (>~ hours)
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Synthetic GW survey of NS-NS mergers

• What happens if we combine all information, mass/spin/tides?

• We correctly recover the mass distribution

17

Synthetic observed systems Recovery of injected population

Wysocki et al, arxiv:2001.01747 

https://arxiv.org/abs/2001.01747


Synthetic GW survey of NS-NS mergers

• What happens if we combine all information, mass and spin?

• & spin, and identify multiple populations

18

Synthetic observed systems Recovery of injected population
Wysocki et al, arxiv:2001.01747 

https://arxiv.org/abs/2001.01747


How important is joint mass/spin/EOS inference?

• Consider several small surveys of 1, 5, 10, … BNS mergers

• Using a mass/spin model that is compatible with the data, 

recover EOS
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How important is joint mass/spin/EOS inference?

• Consider several small surveys of 1, 5, 10, … BNS mergers

• Using a mass/spin model that is oversimplified, we introduce 

biases in the recovered EOS

20



Adding other, heterogeneous observations

• Often we can’t model the selection/data this carefully.

• Example: Metal-poor stars:


• Selected abundance ratios + correction for selection bias

• Construct phenomenological likelihood

21

in each bin. The 0.2 dex bin size is on the order of the typical
[Eu/Fe] abundance uncertainty (see, e.g., Holmbeck et al.
2020). The ratio of the abundance histograms of the 29 star
sample and 240 star sample in [Eu/Fe] abundance provide a
weight by which to scale the 29 star sample and shape it to be
representative of a broader range of metal-poor stars with r-
process elements that do not presently have Th measurements.
This rescaling inherently assumes that, although the 29 star
sample is not representative in [Eu/Fe], it is representative in
[Th/Eu]. Next, we build the observational sample based on
these weights.

To build our “complete” observational sample, we place the
29 stars in ( )log Sr Dy� versus ( )log Th Dy� abundance
space,7 accounting for measurement error and the rescaling
weights described above. Our estimate for the density is
therefore a weighted two-dimensional kernel density estimate:
p(a)∝∑iwiK(a− ai, Σ), where K(x, Σ) is a normal distribu-
tion, Σ is the diagonal covariance matrix reflecting abundance
errors (typically about 0.2 dex), and wi are the weights
identified via the ratios above. We do not propagate statistical
uncertainty in the scaling weights. In practice, we build this
density estimate via a weighted Monte Carlo procedure. For
each of the 29 stars, we randomly scatter N points drawn from
two Gaussians, representing the two abundance ratios. The
centroid and 1σ spread of the Gaussian correspond to the star’s
abundance measurement and reported 1σ uncertainty (typically
less than 0.2 dex). Then, the two-dimensional Gaussian is
scaled by the weight found previously from the ratio of the
[Eu/Fe] bin counts. Figure 2 shows the combined two-
dimensional histogram after this series of random selections
and rescaling. The original 29 stars are also shown. Note that,
although many stars with Th measurements have comparatively
low Sr/Dy abundances (1.0), the high [Eu/Fe] ratios in these
stars are not very common, as shown in Figure 1. Therefore,
the population of resampled observations with low Sr is
diminished, and the relatively higher Sr/Dy abundance
signature occurs more frequently.

This resampled population is an attempt to describe the
expected Sr/Dy and Th/Dy abundances of metal-poor stars in
the Galaxy that do not presently have measurements for these
elements. We will use this population as the “observations”
from which to build an EOS, essentially requiring that the EOS
effect on NSM ejecta is such that the total NSM yields
reproduce this two-dimensional distribution.

3. Theoretical Model

We can construct a forward model for the r-process
abundances in metal-poor stars from some assumptions about
how and how many NSs merge (a DNS population) and the
physical properties of those NSs (determined by the EOS). To
summarize and visualize how the masses and EOS enter the
elemental yield calculation, Figure 3 shows a schematic of the
input, output, and intermediate steps that relate NS masses and
an EOS to abundance observations in our model. First, a DNS
population and EOS are chosen, with the EOS being the free
parameter. The three different cases we explore in this work
(discussed in the following subsections) differ in the input DNS
distribution. Then, the NS masses and the EOS enter into a
series of analytic functions and nucleosynthesis network
models to finally output total elemental yields for all NSMs
in the DNS population list. Finally, these model output
abundances are compared to the observational abundances
discussed in Section 2 to determine how successful the chosen
EOS is at reproducing the observations. Using a Markov Chain
Monte Carlo (MCMC) algorithm, a new EOS is chosen and
this process repeated to generate a posterior on the unknown
EOS for each (three) of our input DNS variations. We expand
on each of these steps in the following sections.

3.1. DNS Populations

This section describes the DNS populations we use for this
study, which will combine with the EOS input to determine
specific NSM yields. First, we use a theoretical formation
model (population synthesis) to estimate the past history of
NSMs in our Galaxy. We will apply this DNS model to two
cases in this work. Then, we consider the case for the current
DNS population, with the underlying assumption that the r-
process producing NSMs were of systems similar to present-
day DNS systems in the Milky Way.
The continuously updated StarTrack code estimates the

evolution of single and interacting binary stars, both individu-
ally and as populations (Belczynski et al. 2008). Frequently
applied to interpret (and calibrated against) astronomical
observations of several types—including binary pulsars and
gravitational-wave observations—this code provides a useful
benchmark to explore plausible self-consistent models for the
Galactic binary population. After reviewing several recent
studies (Dominik et al. 2012, 2013, 2015; Belczynski et al.
2016a, 2020, 2016b; Wysocki et al. 2018; Drozda et al. 2020),
we choose the M15 model (submodel B) in Belczynski et al.
(2016b) with strong pair-instability (pulsation) SNe and modest
NS natal kicks (σ= 130 km s−1; Wysocki et al. 2018). This
model successfully reproduces compact object merger rates
from the third observing run of the Laser Interferometer
Gravitational-Wave Observatory (LIGO) and Virgo collabora-
tion, remains qualitatively consistent with known constraints
on the maximum NS mass (MTOV), and is consistent with
(most) observed Galactic pulsar masses.

Figure 2. Observational values of ( )log Sr Dy� and ( )log Th Dy� from 29
stars (white points) and the inferred distribution computed by the rescaling
process (colors).

7 Here, ( ) ( )� �A N Nlog log 12A H� , where NA is the number density of
element A.
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(see, e.g., Cameron 2003; Pruet et al. 2004; Surman &
McLaughlin 2004; Winteler et al. 2012; Nishimura et al. 2015;
Mösta et al. 2018; Siegel et al. 2019; Miller et al. 2020). In
addition, even assuming NSMs are the only r-process
formation sites, many incompletely understood mechanisms
are critical ingredients in any forward model to predict the r-
process abundance in the universe, not only in metal-poor stars,
but also in our solar system. For example, the production of the
heavy elements observed in stars fundamentally relies on the
microphysics of nuclei far from stability, the magneto-
hydrodynamics and (neutrino) radiative transfer of merging
compact objects, and an estimate of how often merging NS
binaries form over all cosmic time. A comprehensive answer to
this complex problem requires a full integration of theory with
observation and experiment, both in astrophysics and in nuclear
physics. In this work, we focus on the microphysics in the
production of elements in NSMs: how the nuclear equation of
state (EOS) shapes NSM yields.

Instead of a forward-modeling approach by predicting
expected r-process yields from theory, recent work has used
observed r-process abundances to constrain nuclear physics
inputs. Such “reverse engineering” has been accomplished for,
e.g., predicting the masses of rare-earth nuclei from the solar r-
process abundances, assuming a variety of thermodynamic
conditions (Mumpower et al. 2017; Vassh et al. 2021), and by
solving for the masses of the progenitor merging NSs from
stellar abundance measurements (Holmbeck et al. 2021a). In
this paper, we take a similar reverse-engineering approach to
build an entirely phenomenological EOS inferred by the r-
process abundances in metal-poor stars. Section 2 describes the
population of metal-poor stars and their r-process abundances
from which we will reverse engineer a neutron star EOS. Next,
the theoretical input for our model framework is discussed in
Section 3, including the population of coalescing NS binaries,
descriptions of their ejecta yields, the model for the EOS itself,
and constraints that we will apply on the EOS. Our reverse-
engineering approach and how all of the theoretical and
observational aspects work together to build an EOS is
described in Section 4, and Section 5 presents the results from
our reverse-engineering model.

2. Observations of Metal-poor Stars

The elemental r-process pattern is surprisingly robust for
neutron-rich conditions (such as that found in NSMs; e.g.,
Korobkin et al. 2012; Just et al. 2015), with two significant
exceptions: the lightest r-process elements—38Sr, 39Y, and
40Zr—and the heaviest—90Th and 92U. The near-constancy of
the r-process pattern is observationally supported by the r-
process enhanced, metal-poor stars themselves (Cowan et al.
1999; Sneden et al. 2008). When scaled, the abundance
patterns of these stars are in nearly perfect agreement among
the lanthanide elements, but up to 1 dex of variation can exist at
the extrema of the r-process pattern, i.e., at Sr and Th
(Mashonkina et al. 2014; Siqueira Mello et al. 2014; Ji et al.
2016). These elements can be extremely sensitive to r-process
conditions like the initial electron fraction, ( )� � �Y n n ne n p n

1,
of the ejecta (Eichler et al. 2019; Holmbeck et al. 2019, 2021a).
Therefore, we seek a sample of metal-poor stars with
measurements of Sr and Th to quantify the extent of
composition variation in r-process enhanced metal-poor stars.
We also choose stars with Dy to compare the Sr and Th
production to the lanthanide abundance of the r-process

patterns. Unfortunately, definitive measurements of only 29
stars with these three elements exist currently in the literature.
These 29 stars are the same as in Holmbeck et al. (2021a) and
can be found in Table 2 therein. Requiring Th inherently biases
our sample toward stars that are already highly r-process
enhanced ([Eu/Fe]>+0.7), since these high-enhancement
stars only constitute a minority of metal-poor stars with r-
process elements. If we seek to account for the r-process
abundances in the majority of metal-poor stars, we need to
consider the much larger population of metal-poor stars that do
not have Th measurements.
The R-Process Alliance (RPA) has released Sr, Ba, Eu, and

Fe abundance determinations for nearly 600 stars based on
“snapshot” high-resolution spectra. These abundances are
sufficient to quantify the extent of r-process enhancement
within each star. First, we take stars in all RPA data releases to
date (Hansen et al. 2018; Roederer et al. 2018; Sakari et al.
2018a, 2018b, 2019; Ezzeddine et al. 2020; Holmbeck et al.
2020) and take those that lie within a similar metallicity range
as the initial 29-star sample (−3.3 [Fe/H]−1.5). From
this trimmed list, we then pick stars that have [Ba/Eu]<−0.5
to eliminate those that could have obtained their heavy
elements from the slow neutron-capture process rather than
the r-process. These cuts leave 240 stars with definitive Ba and
Eu measurements (i.e., no upper/lower limits) from the RPA
spanning a wide range of [Eu/Fe] abundances. We take this
sample as representative of the frequency of various levels of r-
process enrichment in the Galaxy. Figure 1 shows our 29 star
sample compared to these 240 r-process stars in the RPA. The
29 stars with Th measurements skew toward higher values of
[Eu/Fe], while the stars in the RPA sample on average favor
lower [Eu/Fe] values. We interpret this skew as observational
in nature; stars already enhanced in r-process elements will
have correspondingly high actinide abundances, allowing Th to
be detected more readily in their spectra. Therefore, we assume
that Th ought to be present in the remaining 240 RPA stars as
well. Ideally, we would use these 240 stars directly, but since
most do not have reported Th measurements, we adjust the 29
star sample to occupy a similar [Eu/Fe] distribution as the
much larger RPA sample.
First, we bin the data in [Eu/Fe] abundance bins of 0.2 dex

and count how many stars in the RPA and 29 star samples are

Figure 1. Normalized [Eu/Fe] histograms of stars with measurements of Sr,
Dy, and Th (purple line) compared to a larger sample of metal-poor stars.
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Adding other, heterogeneous observations

• Often we can’t model the selection/data this carefully.

• Example: Metal-poor stars:


• Forward model r-process elements abundances: get EOS model
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4. MCMC Method

Above we have connected theoretical merger outflows to
stellar r-process abundance observations through a four-
parameter, spectral-decomposition EOS. In this section, we
describe how we will find the EOS parameters (GH) that, given a
particular DNS population (M15 and the Alsing et al. 2018
distribution), best match observed r-process abundances in
metal-poor stars. We use an MCMC method to sample these
parameters and find the spectral-decomposition representation
that would best reproduce the abundance distribution. In our
calculation, we only reconstruct an abundance distribution, not
the overall amount of r-process material. Therefore, all scale
factors associated with uncertainties in the total amount of
material ejected and in the DNS merger rate factor out of our
conclusions.

We build an EOS from
GHa as described in Section 3.2 and

choose a prior on
GHa such that R1.4 is uniform. In terms of this

coordinate system, our likelihood has four factors: a lower limit
on MTOV from pulsar observations; an optional upper limit on
MTOV from GW170817; a constraint on the symmetry energy,
L; and, finally, an estimate of the likelihood of current
observations, given our model. The first three terms in the
likelihood are represented as a product of cumulative
distribution functions:

( ) ( )w �CDF 1 CDF CDF . 6M Lobs PSR TOV$

The first CDF represents the applied constraints on the lower
limit of MTOV from the mass measurement of PSR J0740
+6620:

( ( ))� MCDF CDF , 2.072, 0.07 .PSR TOV &

The second term corresponds to an optional upper limit on
MTOV, covering the cases we explore here.

⎧⎨⎩
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Lastly, the constraint on L is given a very broad CDF from
theory:

( ( ))[ ( ( ))]� �L LCDF CDF , 30, 5 1 CDF , 100, 5 .L & &

We use CDFs instead of a hard limit so that the parameter
space still has a finite probability of exploring even extreme
regions.

Because we have already performed a nonparametric
estimate of the abundance distribution from the underlying
observations, we cannot compare our forward model to each
individual observation with single-event log-likelihoods (e.g.,

( )p xln k ). Instead, we start with the KL divergence (Kullback &
Leibler 1951) to estimate the population-averaged difference in
log-likelihood when drawing a fixed number of events from
this sample. The average per observation increment in log-
likelihood will be (see, e.g., O’Shaughnessy 2013)

( ∣ )� § � D P Qln ,KL$

where P is the observations, Q is the model, and DKL is the KL
divergence between the two:

⎜ ⎟⎛⎝ ⎞⎠( ∣ ) ( ) ( )
( )¨�D P Q dx P x

P x
Q x

ln .KL

To account for the effective number of observations entering
into the divergence from the original RPA sample, we can
multiply this log-likelihood by an overall constant. Because
this expression will go to infinity if the two distributions do not
have matching support, we for practical applications instead
use the Jensen−Shannon (JS) divergence (Lin 1991):

( ∣ ) ( ∣ )� �D D P M D Q M
1
2

1
2

,JS KL KL

where M= (P+Q)/2. Thus, for the likelihood of r-process
abundances, we use

( )w �e , 7r
n Deff JS$

where we adopt neff= 20. The total likelihood when we include
other constraints on the EOS is therefore � robs$ $ $ :

( ) ( )� � �eCDF 1 CDF CDF . 8M L
n D

PSR TOV
eff JS$

All that is left now is to run the MCMC sampler to explore
the

GHa parameter space. For 32 walkers, a burn-in stage of 500
steps is more than sufficient for convergence. After burn-in, we
allow the MCMC sampler to continue for another 3000 steps,
resulting in nearly 100,000 individual samples for our three
cases: the M15 model for the DNS population (1) with and (2)
without a constraint on MTOV, and (3) the Alsing et al. (2018)
DNS distribution with the MTOV constraint.

5. Results and Discussion

Figures 5 and 6 show the EOS and mass–radius curves,
respectively, for the MCMC posteriors of our three cases using
the functions available to LALSUITE. The maximum-likelihood
solutions for each case are shown as thick lines, while 100
random samples from the posterior distributions are shown as
thin, faint lines. The median and standard deviation of the
MTOV, R1.4, and L for each of the three posteriors are listed in
Table 1. The entire posterior distributions for the three cases
can be found at Holmbeck et al. (2021b). In Figure 5, the
inferred EOS from GW170817 is shown in gray (Abbott et al.
2019). The contours in Figure 6 show posterior distributions

Figure 5. Posterior samples (thin lines) and maximum likelihood (thick lines)
NS EOSs for the case in which a constraint on MTOV is used (teal) and when
there is no such constraint (pink). The gray band indicates the 50% (darker) and
90% (lighter) confidence intervals for the EOS inferred from GW170817.
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from NICER and XMM-Newton measurements (PSR J0030
+0451 from Miller et al. 2019 and PSR J0740+6620 from
Miller et al. 2021). Neither constraints on the EOS from
GW170817 nor on the NS radius from the NICER/XMM-
Newton measurement were included in our model.

5.1. M15: with MTOV and no MTOV

For the two cases that use the M15 model for the DNS
population, Figure 5 shows some agreement with the EOS
derived for GW170817. The two sets of posterior samples are
tightly constrained at low densities (perhaps due to the
constraint on L), but diverge at higher densities. This
divergence is unsurprising since NSs are reasonable probes
of the low-density EOS, and only the most massive NSs offer
insight into densities greater than 6ρ0 (Lattimer 2012).

The mass–radius curves derived for these EOSs in Figure 6
are slightly softer than the NICER/XMM-Newton median
value, though there is still reasonable agreement within 2σ of
their derived radii. Including agreement with the NICER/
XMM-Newton in the likelihood function does not significantly
change these results. Both M15 cases lead to EOS solutions
narrowly grouped in mass–radius at M∼ 1.35 Me, most likely
do the high frequency of DNSs with M1= 1.35 Me in the M15
model (see Figure 4). However, for the “no MTOV” case, the
posterior solutions sometimes violate causality, as indicated by
the pink curves extending into the gray region in Figure 6. The
two families of solutions are nearly identical in the ejecta
parameters they predict, indicating some degeneracy when the
spectral-decomposition parameters are propagated to ejecta and
abundance observables through the NS mass–radius relation-
ships. For the most common case in the StarTrack model of a
1.35–1.1Me merger, both cases predict a wind mass of about
9× 10−2 Me and a much smaller dynamical mass of about
6.5× 10−3 Me. The two cases also give the same dynamical
ejecta Ye of about 0.17. Therefore, a 1.35–1.10Me merger
would likely produce the same kilonova signature with
either of the two maximum-likelihood solutions in the
with-/no-MTOV cases. For a 1.40–1.35Me merger, the

predicted wind mass differs by about 20% between the two
solutions, which could leave a distinguishable signature in the
associated kilonova.
Figure 7 shows the Th/Dy and Sr/Dy abundances and the

difference between the model and observations produced by the
maximum-likelihood solution for the “with MTOV” case. The
model reasonably reproduces the most prominent feature in the
abundance space of Figure 2 occurring at Sr/Dy≈ 1.25 and
Th/Dy≈−1.15, though the peak Th/Dy is somewhat lower.
A couple of distinguishable artifacts also appear in the output
abundances: first, a “spur” at high Sr/Dy. This feature
commonly occurs for quite low-mass, low-asymmetry mergers.
Because of their low total mass, the wind outflows from the
long-lived remnant accretion disk drive the Sr abundances to
high values. That said, the dynamical masses for mergers with
M1∼ 1.2 Me and q 0.9 will be small, but not zero. Although
the dynamical mass may be very low, actinide production can
still be sufficiently high to contribute a significant fraction of
the total Th that is ejected. This spur therefore represents a
limiting case in which low asymmetries and low masses drive
not only high Sr production, but also a low-mass tidal tail that
is rich in actinides.
Second, with the ejecta equations employed here, there

appears to be a diagonal floor in which the ejecta cannot
simultaneously be rich in Sr/Dy and deficient in Th/Dy.
Conditions producing this lower edge are ones with q 0.9 and
total masses M1+M2≈ 2.6–2.9. At the very lowest Th/Dy are
mergers with M1,2∼ 1.45 Me. Conditions close to the solar
abundances are typically produced by mergers with M1,2∼ 1.3
Me. These conditions produce long-lived remnants that have
the same wind compositions and relatively small wind ejecta
masses. Going from the upper right of the edge to the lower left
(i.e., increasing the total binary mass), the contribution by the
dynamical ejecta is increased. In nearly symmetric cases, low
tidal deformabilities lead to dynamical 〈Ye〉 values that struggle
to produce significant amounts of Th, but have a high yield of
Dy. Their low-Th and high-Dy abundances on average bring
the total Th/Dy and Sr/Dy yields down from pure-wind
abundances as the NS masses increase. Therefore, this edge can
be thought of as the limiting wind composition case with an
increasing amount of moderately low-Ye dynamical ejecta
contributing to the total outflows. Both the high-Sr/Dy spur
and the low-Th/Dy floor indicate limits in the computational
method from both the compositions and the total ejecta masses.
However, it is worth noting that the extension of the
“observations” into the low-Th/Dy, high-Sr/Dy region—
below the diagonal floor—are not populated by an actual
observational measurement in a metal-poor star. Rather, recall
the distribution was given a random spread to account for
observations that statistically could have these particular
abundance combinations in our attempt to build a complete
sample by removing some observational bias. Therefore, it may
be possible that no such combination exists in metal-poor stars
that have primarily r-process origins of their heavy element

Figure 6. Posterior samples (thin lines) and maximum likelihood (thick lines)
mass–radius curves for the case in which a constraint on MTOV is used (teal)
and when there is no such constraint (pink). For comparison, two existing
theoretical EOSs (SFHO, dotted, and DD2, dashed) are shown, along with
recent pulsar measurements from NICER (shaded contours). The upper-left
gray shaded region indicates where causality is violated (R > 2.9 GM).

Table 1
Median and One-sigma Confidence Interval for Neutron Star and EOS

Properties for Each Case

Model MTOV (Me) R1.4 (km) L (MeV)

with MTOV 2.17 ± 0.03 12.25 ± 0.03 44 ± 4
no MTOV 2.46 ± 0.15 12.28 ± 0.04 46 ± 5
Alsing+ 2.18 ± 0.02 13.47 ± 0.41 64 ± 9
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Summary

• Motivation

• Single transients


• Method review

• Adding ingredients: GW data/model, EM data/model, EOS, …


• Population analysis of (mostly) one set of observables


• Adding heterogeneous additional inputs


• Putting it all together: tools and tricks of the trade [as time permits]
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Tricks of the trade

• Surrogate generative models, or (easier) 
• Interpolate (marginal) likelihoods of costly models


• Numerical relativity vs GW

• GW PE
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FIG. 4: Mixing models for a single analysis This figure shows the inferred parameters for source RIT-2, in a format similar to Figure 1.
The colored curves represent 90% credible intervals derived only using IMRPHENOMD (blue), NRSur7dq2 with ` = 2 modes only (green),
or using a mixture of models (red). In the mixture approach, we employ NRSur7dq2 with modes up to `max = 2 in its region of validity
(1/q > 0.5 and ai < 0.8) and IMRPHENOMD elsewhere.

rior distribution using the iterative procedure described above
for model A (e.g., SEOBNRv4) and then, using all the test
points proposed during the iterative scheme, derive the corre-
sponding posterior for model B. This approach provides not
only the posterior distributions but also the ingredients needed
for a detailed investigation into the origin of any discrepan-
cies: the point-by-point differences between lnLmarg↵(A)

and lnLmarg↵(B), as a function of model parameters. Once
differences are identified, the ability to quickly produce a sin-
gle scalar diagnostic for model differenes (lnLmarg) enables
detailed and easily-understood diagnostics as users change
one feature of their calculation at a time (e.g., mode content;
data conditioning or noise model).

Figure 5 shows a concrete illustration of this strategy,

applied when interpreting the nonprecessing binary source
model RIT-2. In this case, parameter inference was performed
using a fiducial model to generate a sequence of ever-finer
evaluation grids. The net grid was then applied to two other
models, leading to different predictions. Because these mod-
els all rely on the same input grid �↵, we can directly diagnose
which features drive differences in our posterior distributinos.
For example, in this case (Figure 5) this strategy helps us as-
sess the relative role of restricted �i versus model differences
such as higher modes in changing inferences about �e↵ and
hence M, q.



Tricks of the trade

• Surrogate generative models, or (easier) 
• Interpolate (marginal) likelihoods of costly models


• Numerical relativity vs GW

• GW PE

• Compact binary formation vs GW observation
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Figure 2. Likelihood versus kick: GWTC-1 and GWTC-2: The left two panels show results for GWTC-1; the right
include both GWTC-1 and GWTC-2 events. Top panels: The log of the expected number of detections at a particular kick
velocity. The scattered points are values calculated by StarTrack models. The dashed line is the mean prediction of the
Gaussian Process interpolator, where the shaded regions are regions of �. The horizontal dotted lines are the number of GW
observations in the respective catalogs. Bottom panel : The likelihood distribution of the kick parameter, considering the merger
rate as well as the distribution of LIGO observations in GWTC-1. Again, the scattered points represent StarTrack Models, the
dashed line represents the mean prediction, and the region of � is shaded.

in their normalization). The simulations cover a broad
range of possibilities, including models which are consis-
tent with most gravitational wave observations reported
in GWTC-2 event rates don’t work yet, can’t say this

Di↵erent parameters have striking and strong impacts
on di↵erent populations. For example, Figure 5 shows
how the detection rate changes versus the parameters
in our study. For BHBH, the merger rate is principally
determined by fa. For NSNS, the merger rate is pinci-
pally determined by �. For BHNS, both fa and � signif-
icantly impact the merger rate, with a subdominant but
important impacts from �. Figure 5 also immediately
suggests what combinations of parameters are required
to reproduce current event counts. For these models, a
very low fa is required to suppress the BBH merger rate.
At low fa, a substantial natal kick is needed to avoid
substantially overproducing NSBH binaries. With only
two reported observations so far, the BNS merger rate is

highly uncertain, and the observed counts are consistent
with (but in modest tensino with) what’s expected for
low fa and modest kicks.

Note that while the reported number of BH-BH ob-
servations seems very strongly constraining, systematic
uncertainties highlighted in the previous section associ-
ated with subdominant parameters and input uncertain-
ties imply that the absolute merger rate must be inter-
preted with caution. Similarly, even adopting the rapid
SN engine and even not aggressively adjusting physics as-
sociated with the pair instability gap, the reported chirp
mass distribution can encompass most of the observa-
tions reported to date, only significantly being challenged
by the high chirp mass of GW190521.

now what information do we learn about SHAPE? Is
there anything we can say at this point, or is it too weakly
constrained? What’s our overall conclusion



Tricks of the trade

• Surrogate generative models, or (easier) 
• Interpolate (marginal) likelihoods of costly models


• Focus on generative models (which make multiple predictions)

• Use fast likelihoods (gaussian, GMM, etc) for large-scale input
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Good enough for tides too…

5

Figure 2. Illustrations of Gaussian fits for interesting events (e.g., where the peak likelihood is o↵set from equal
mass). The one-dimensional figures along the diagonal of each corner plot show the inferred marginal likelihood Gaussian
approximation (red), KDE approximation (purple), and reweighted original posterior samples (blue), where the reweighting
converts to a uniform prior in Mc, ⌘,�e↵ . The two dimensional marginalizations show the 25%, 50%, and 75% contour for the
reweighted catalog (dotted), the KDE (solid), and the Gaussian (dashed). These events are all well-fit, including the high-mass
event GW190521; see Figure 1 for quantitative measures of similarity.

locities around 100km/s. Nominally, this peak reflects
two factors, which arise from the model’s predictions
as weighted by GW search selection e↵ects: the ex-
pected number of detections should be consistent with
the observed count; and the expected mass distribution
of observations should be consistent with the models’
selection-weighted predictions. However, in our simple
application, the mass distribution of the M13-M19 mod-
els varies relatively litter, so the strong peak in the over-
all likelihood principally reflects the point where the ob-
served count is close to the expected count.

V. CONCLUSIONS

Motivated by well-studied analytic approximations, we
introduced a straightforward but powerful technique to
approximate existing posterior distributions via a Gaus-
sian likelihood. We demonstrated this approach performs
surprisingly well with just 3 key dimensions (Mc, ⌘,�e↵)
for all events reported in GWTC-1 and GWTC-2. In

subsequent work, we show this approximation continues
to perform well when all intrinsic degrees of freedom,
distance, and tides are included in previously reported-
events. While these previous observations do not signif-
icantly constrain several these degrees of freedom, when
future observations better constrain additional dimen-
sions like transverse spins, we anticipate this approach
will continue to perform well. This extremely compact
and analytically-tractable representation of GW obser-
vations will enable end-users to perform unbiased and
robust analyses with many inputs.

With modest extension to estimate the eigenvalues and
eigenvectors of these Gaussians, via ansatz or interpola-
tion, this work also provides a straightforward path to-
wards generating extremely realistic synthetic GW cata-
logs. Such catalogs have wide application to investigate
GW population astrophysics.



Coming soon: Concordance

• Currently:   GitHub.com/oshaughn/Concordance

• Meta-library integrating multiple inference libraries and tools


• Multiple levels of complexity: from novice to expert

• “Annotation” mode: add GW,ejecta, EM predictions

• Single event inference: bootstrap RIFT / EM_PE

• Multievent parameterized inference: bootstrap PopModels, NAL, 

…

• Multievent generative model inference: New (Delfavero/Wysocki)
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Kilonova light curves: An r-process prior

• What if GW170817 is fiducial and must reproduce r-process 
abundances?

• Limits disk/wind ratio

28

5

FIG. 5. Posterior distributions for samples generated when

using the grizyJHKS bands considered in [? ] (black) and

samples generated using the same bands along with the r-

process prior from Figure ?? (red). There is a clear shift .

ical ejecta would be required, consistent with other con-
temporary modeling and results references

For each set of initial assumptions, the inferred con-
straint on Mw/Md therefore also strongly constrains the
ingredients powering the associated kilonova. For ex-
ample, Figure ?? shows the results of inferring the pa-
rameters of GW170817, using only our prior constraints
on Mw/Md (and weak constraints on the binary orien-
tation relative to our line of sight). Figure ?? shows
how these constraints propagate into joint electromag-
netic inference. The solid black contours show inferences
derived without using constraints on Mw/Md; the red
contours show inferences supplemented with this insight,
for a specific set of initial assumptions. Even allowing
for extremely conservative systematic uncertainties on
these inputs (e.g., assuming Mw/Md’s optimal value is
uniformly distributed between 10 and 0.1) these prior
abundance constraints should still provide useful insight
into kilonova ejecta modeling.

Each set of our intput assumptions about ejecta com-
position and physics makes a prediction about r-process
abundances. As shown by the last column in Table ??,
some of our input assumptions fit better than others.
Given substantial systematic uncertainties associated in
the many assumptions in our study, we approach these
nominal residuals with considerable cautions. However,
the minimum residuals presented in Table ?? suggest
that the “wind2” model is a notably better fit to the
solar mass-fraction pattern. The sharply-divided separa-

tion of the two wind models’ lowest residuals implies that
the “wind1” model is less indicative of r-process nucle-
osynthesis from neutron star mergers. More importantly,
the separation between the models also implies that new
models for the wind ejecta composition need to be con-
sidered in comparison to the “wind2” model. The results
of Table ?? indicate the need for further studies involving
updated wind ejecta composition modeling informed by
GRMHD disk simulations [? ].

IV. CONCLUSION

We have presented an approach for incorporating nu-
clear physics-based composition e↵ects as a prior for our
kilonova parameter inference framework. With the as-
sumption that the general population of neutron star
mergers will follow consistent r-process nucleosynthesis
patterns, our approach allows for identification of best-
fitting kilonova component compositions compared to
the Solar abundance. Given the model assumptions dis-
cussed in the text, our analysis finds that the best fits of
nuclear physics appear to have the most detailed physics
considerations.
write me- may need to comment on marginalizing over

model inputs

what did we learn? what is new? what was confirmed?
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Multimessenger inference

• EM inference (and joint with GW)


• Costly: emulators [of best models] & efficient computation important!


• Multicomponent models, including afterglow, necessary for archival work
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Figure 2. Lightcurves for both one and two component
models from Kasen et al. (2017). The shown lightcurves
correspond to a maximum likelihood �2 fit to the data.
Shaded regions represent the assumed 1mag error budget.
The source of the photometry is summarized in Section .

4 days. Conversely, a 2-component model (blue shaded
region) can reproduce both early and late-time behavior
in all bands. Using photometric data, we can distinguish
between the two types of ejecta with di↵erent velocities
and lanthanide fractions. These two components are
not strongly di↵erentiated using bolometric information
alone. In our 2-component photometric analysis, we find
that the more massive ejecta component has a higher
lanthanide fraction. The amount of blue (lanthanide-
poor) ejecta is also notable, log10(Mej/M�) = �1.59
(Mej = 0.026M�), forming a significant fraction of the
total ejecta. We return to the implications for this in
the summary.

For the first time, we will also compare the spec-
tra of AT2017gfo against theoretical kilonova predic-
tions to compute posteriors. As discussed in Pian et
al. (2017) and Smartt et al. (2017), the first X-Shooter
and PESSTO EFOSC2 spectra are bright and blue,
with rapid cooling just a day later. We fit the spec-

tra of AT2017gfo directly (Pian et al. 2017; Smartt et
al. 2017) in figure 3. In line with the uncertainties
of the photometric lightcurves, we use an upper error
bar of 2.5⇥ the spectral value, and a lower error bar
of 1/2.5⇥ the spectral value. This model uncertainty
is added in quadrature with the statistical error in the
measured spectra. Except for the early epoch when the
predicted spectra declines slightly too quickly in the red,
broad agreement in the overall shape between the kilo-
nova model and the X-shooter spectra is obtained. In-
deed, the model reproduces the spectra within the es-
timated uncertainty. The fit to the spectra results in
log10(Mej/M�) = �1.48 (Mej = 0.033M�) for a sin-
gle component, and log10(Mej1/M�) = �2.03 (Mej =
0.010M�), log10(Mej2/M�) = �1.63 (Mej = 0.023M�)
for the two component model. Overall, we find that the
ejecta properties based on the lightcurves and based on
the spectra are very similar. This shows that at the
level of model uncertainties considered here, for a suc-
cessful kilonovae model, it is possible to use either the
lightcurves or the spectra, but the integrated informa-
tion of the bolometric luminosity are insu�ciently in-
formative to constrain ejecta properties. We show in
Appendix D that spectra based on the lightcurve fits
(and vice-versa) give reasonable fits as well.

INFERRING SOURCE PROPERTIES

Finally, we want to use our analysis to obtain infor-
mation about the binary parameters, such as the total
mass, mass ratio, and tidal deformability. The idea fol-
lows the discussion in Coughlin et al. (2017): namely
that information about the ejecta properties can be
translated to constraints on the system parameters by
fits such as those from Dietrich & Ujevic (2017). In
this work, we improve on the fit of Dietrich & Ujevic
(2017), which connects the intrinsic binary parameters
with dynamical ejecta properties extracted from full 3D
numerical relativity simulations. These new fits are de-
scribed in Appendix E. We emphasize that numerical
relativity simulations do not extend significantly past
the moment of merger, and so they cannot capture the
wind-driven ejecta expected at later times. We there-
fore for this study assume that the total ejecta mass is
parameterized by the total ejected mass given by numer-
ical relativity simulations with a scale factor such that

Mej = A⇥M
NR
ej with A > 1. (1)

We sample uniform in A with broad enough priors so
as to not a↵ect the posteriors such that we only restrict
A⇥M

NR
ej to be less than the total mass.

This fit allows us to directly tie the measured ejecta
mass and velocity to properties of the binary, includ-
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Figure 3. X-shooter spectra (black lines) in units of
log10(ergs/s/A) at the available epochs (in units of days on
the far left) and one and two component model fits to the
spectra (Pian et al. 2017; Smartt et al. 2017). The shown
spectra correspond to a maximum likelihood �2 fit to the
data. Shaded regions correspond to an assumed 1mag error
budget. The gray shaded regions mark ignored regions due
to atmospheric transmission.

ing the mass ratio and equation of state. Based on
this fit and the numerical relativity simulations that un-
derly it, the total amount of dynamical ejecta will be
largest when the NS involved are less compact. There-
fore, based on our estimates for the total amount of
ejecta required to explain the kilonova as reported in
Table 1, we expect that a self-consistent analysis of EM
and GW data will disfavor NSs that are too compact
and hence allow us to constrain the nuclear equation of
state.
Incorporating information from gravitational-wave

parameter estimation, namely a chirp mass Mc of
Mc = 1.188M� (Abbott et al. 2017a) and an upper
limit on the tidal deformability of ⇤̃ . 640 4 we are

4
The exact value of ⇤̃ . 640 arises from the fact that as

stated in Abbott et al. (2017a) an analysis of GW170817 with the

SEOBNRv4 ROM NRtidal waveform model Bohe et al. (2017);

Figure 4. Corner plot for the constraining the mass ra-
tio q, and tidal deformability ⇤̃ assuming a chirp mass of
Mc = 1.188M� and based on the ejecta estimated obtained
from the lightcurve fitting. We include estimates for the tidal
deformability for a set of possible EOSs as orange lines show-
ing that too soft EOSs are ruled out by our analysis. The
numbers represent the 90% limits on the parameters.

able to place constraints on the mass ratio and tidal
deformability of the system. Fig. 4 summarizes our
findings. We find that the mass ratio of GW170817 is
with 90% confidence smaller than q . 1.38, while the
90% lower bound on the tidal deformability is ⇤̃ & 197.
This lower bound shows that more compact EOSs such
as WFF1 are disfavored, see Fig. 4. These results can
be compared to estimates obtained from a reanaly-
sis of GW170817 (De et al. 2018), which incorporates
quasi-universal relations for the tidal deformability and
obtains 90% lower bounds on the tidal deformability
⇤̃ & 117 and 90% upper bounds on the mass ratio
q . 1.51. Our analysis shows that even without the use
of quasi-universal relations tighter constraints on the
binary parameters can be obtained from EM observa-
tions if bounds on the tidal deformability and the chirp
mass can be inferred from GW astronomy. Although
broadly consistent, we obtain a more conservative lower
bound on the tidal deformability than (Radice et al.
2018), who find lower bounds of ⇤̃ & 400 to form disks
and ejecta massive enough to create bright EM observ-

Dietrich et al. (2017a, 2018) gives an 80% tighter bound than the

PN based TaylorF2 model for which ⇤̃ = 800 was stated.

Coughlin et al 2018 [multimessenger AT2017gfo]  arxiv:1805.09371]



What about for EOS?
• Must connect source to ejecta!


• to avoid bias, requires input to connect ejecta, dynamics [no simplified 
“existence of HMNS”  or “the ejecta must be…” arguments]


• Can make strong assumptions and turn the crank … but output depends 
on input!

2

FIG. 1: Flow chart of the analysis showcasing how the analysis of GW170817, AT2017gfo, and GRB170817A. At the bottom
of the panel, we show KDE posterior distributions of the tidal deformability (left panel) and the mass ratio (right panel). The
final multi-messenger result is shown as a shaded region, where the 90% confidence interval is shaded darker. For the mass
ratio, we assume a 90% upper limit and for the tidal deformability we mark the 5 and 95 percentiles.

and related a fraction of the ejected material to dynami-
cal ejecta. Based on the analysis, the tidal deformability
was limited to ⇤̃ > 197.

In addition, there have been studies placing limits on
the maximum NS mass of a stable TOV star, MTOV.
Those studies are orthogonal to the works constraining
the tidal deformability since both quantities (⇤̃,MTOV)
test di↵erent parts of the NS EOS. Ref. [19] places a 90%
upper limit on the mass of a non-rotating NS of 2.17M�,
[20] report a maximum TOV mass of 2.160.170.15M�, and
[21] provide an estimate for the maximum mass of
2.15 � 2.25M�. All these constraints have been derived
by assuming the formation of a BH after the merger of

GW170817 and incorporating the measured chirp mass
inferred from the GW analysis. We employ for our anal-
ysis the maximum mass constraint derived in [19].

In this article, we will perform an analysis combin-
ing information from three separate sources: GW170817,
GRB170817A, and the kilonova AT2017gfo to perform a
multi-messenger Bayesian parameter analysis of a neu-
tron star merger. The flowchart in Fig. 1 highlights the
interplay between the di↵erent observable signatures and
presents the joint posteriors obtained on the tidal de-
formability ⇤̃, the binary mass ratio q, and the maximum
mass of a stable non-rotating neutron star MTOV.

Coughlin et al 1812.04803



Performing and combining analyses: a review 

• Joint likelihood for all selected events [inhomogeneous poisson]


• Features

• Combines information from multiple events


• Likelihoods can be heterogeneous (e.g., EM + GW info)


• Automatically produces revised predictions for every event


• Models, priors can fold in arbitrary astrophysics


• Extensions can include “foreground/background” models, etc
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Standard methods and their challenges
• Reweighted samples: An efficient, hierarchical evaluation method


• Complications: Limited density and size


• Proposed distribution can be too narrow


• Always occurs for dimensional reduction 


• What if some population of BBHs have zero spin, equal mass, … ?


• What about comparing EOS to data? 


• Not infrequently occurs, unless you truncate your priors to explicitly avoid it! 

• Proposed distribution can be offset from an event


• Finite sample size & priors : samples cover limited area, can be quite small


• With many events, some are outliers … few(er) samples may have support
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Higher modes have an impact (relative to mod-GR)

• Can influence conclusions 

• Less important at low and comparable mass
33

Abbott et al PRD 94 064035 (2016) 
GW150914: directly comparing to NR (=with higher modes)

No higher modes
With higher modes
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