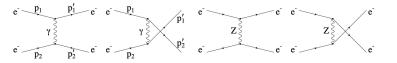
Extraction of the Weak Mixing Angle at the EIC

Michael Nycz

EW and BSM Physics at the EIC

Collaborators

Radja Boughezal, Alexander Emmert, Tyler Kutz, Sonny Mantry, Frank Petriello, Kağan Şimşek, Daniel Wiegand, and Xiaochao Zheng

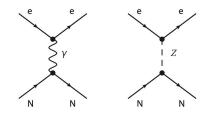


Outline

- 1. Planned future $\sin^2(\theta_w)$ measurements
- 2. Electroweak and BSM Physics at the EIC
- 3. $\sin^2(\theta_W)$ at the EIC
- 4. Simulation
- 5. Projected Results
- 6. Future Plans
- 7. Summary

The MOLLER Experiment

- A_{PV} in Møller scattering
- "Ultra-precise measurement of $\sin^2(\theta_w)$ "


The MOLLER Experiment

- A_{PV} in Møller scattering
- "Ultra-precise measurement of $\sin^2(\theta_w)$ "

$$e^{-}$$
 p_1 p_1' e^{-} e^{-} p_1 p_1' e^{-} $e^$

The P2 Experiment

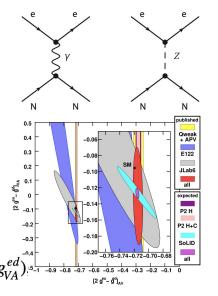
- A_{PV} in elastic e-p scattering
- "Future high-precision measurement of the electroweak mixing angle"

Ultra-Precise Weak Mixing Angle Make a "cut" on measurements with uncertainty ~ 0.0003X or better

*Krishna Kumar: BSM Searches at the Intensity Fronteir

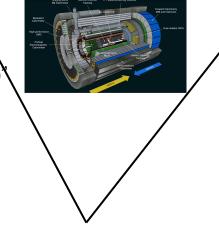
The MOLLER Experiment

- A_{PV} in Møller scattering
- "Ultra-precise measurement of $\sin^2(\theta_w)$ "


e^{-} p_1 p_1' e^{-} e^{-} p_1 p_1' e^{-} $e^$

PVDIS with SoLID

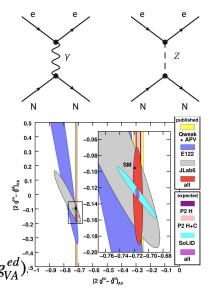
- A_{PV} in DIS e-d scattering
- Isoscalar Dueteron
 - Cancellation of structure function effects
- Simultaneous fit of $(2g_{AV}^{eu} g_{AV}^{ed})$ and $(2g_{VA}^{eu} g_{VA}^{ed})^{1/2} = 1 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.7 0.6 0.5 0.$


The P2 Experiment

- A_{PV} in elastic e-p scattering
- "Future high-precision measurement of the electroweak mixing angle"

The MOLLER Experiment

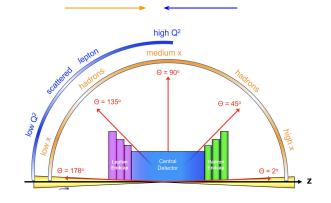
- A_{PV} in Møller scattering
- "Ultra-precise measurement of $\sin^2(\theta_w)$ "



PVDIS with SoLID

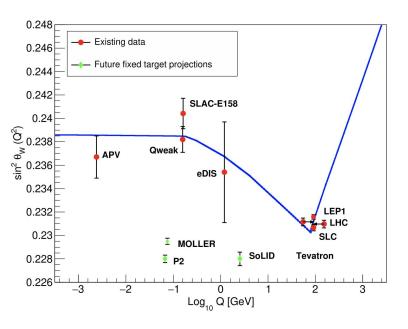
- A_{PV} in DIS e-d scattering
- Isoscalar Dueteron
 - Cancellation of structure function effects
- Simultaneous fit of $(2g_{AV}^{eu} g_{AV}^{ed})$ and $(2g_{VA}^{eu} g_{VA}^{ed})$

The P2 Experiment


- A_{PV} in elastic e-p scattering
- "Future high-precision measurement of the electroweak mixing angle"

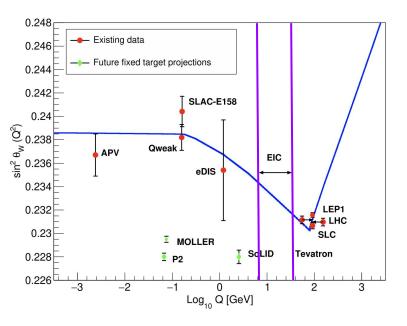
Electroweak & BSM Physics at the EIC

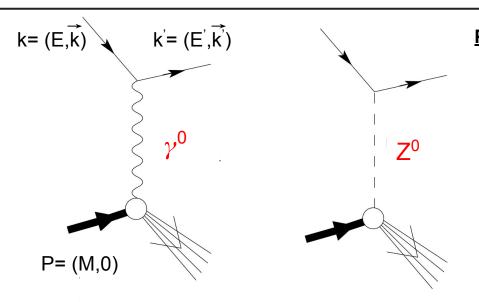
Primary focus of the EIC


- Origin of nucleon spin & nucleon mass
- 3-dimensional structure of protons and nucleons
- Beam and detector design
 - Synergistic Electroweak & BSM physics
- EW & BSM physics opportunities
 - CFLV (talks by Emanuele Mereghetti & Andrew Hurley)
 - Dark photon search
 - > Provide constraints on $\sin^2(\theta_w)$ over a wide Q^2 range

- ✤ Wide kinematic coverage
- ✤ High luminosity~ 1x10³⁴
- Polarized e⁻ and hadron beams ⁷

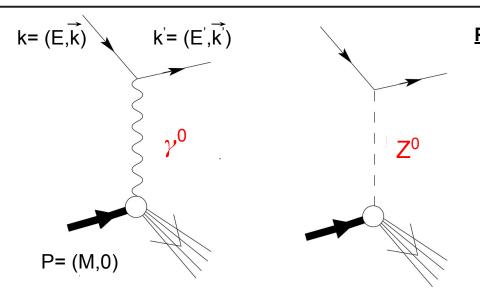
Weak Mixing Angle at the EIC


- PVDIS experiments
 - > Extraction of $\sin^2(\theta_w)$ from the isoscalar deuteron
 - cancelation of structure function effects
- High precision data at EIC may make extraction of sin²(θ_W) from the proton*<u>EIC</u>
 <u>Yellow Report</u>


J Arrington et al 2023 J. Phys. G: Nucl. Part. Phys. 50

Weak Mixing Angle at the EIC

- PVDIS experiments
 - > Extraction of $\sin^2(\theta_w)$ from the isoscalar deuteron
 - cancelation of structure function effects
- High precision data at EIC may make extraction of sin²(θ_w) from the proton*<u>EIC</u>
 <u>Yellow Report</u>
- Energy range between those achievable in fixed-target and collider experiments
 - Over a range of Q² values not yet explored


J Arrington et al 2023 J. Phys. G: Nucl. Part. Phys. 50

Parity-Violating Deep Inelastic Scattering Asymmetry

$$\boldsymbol{A_{PV}^{(e)}} \equiv \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{d\sigma_e}{d\sigma_0}$$

 $\sigma_{\rm R,L}$: cross sections of right- and left-handed electrons

Parity-Violating Deep Inelastic Scattering Asymmetry

$$\boldsymbol{A_{PV}^{(e)}} \equiv \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{d\sigma_e}{d\sigma_0}$$

11

 $\sigma_{\rm R,L}$: cross sections of right- and left-handed electrons

 $\frac{d^{2}\sigma_{0}}{dxdy} = \frac{4\pi\alpha^{2}}{xyQ^{2}} \Big\{ (1-y) \Big[F_{2}^{\gamma} - g_{V}^{e}\eta_{\gamma Z}F_{2}^{\gamma Z} + \Big(g_{V}^{e^{2}} + g_{A}^{e^{2}} \Big)\eta_{Z}F_{2}^{Z} \Big] + xy^{2} \Big[F_{1}^{\gamma} - g_{V}^{e}\eta_{\gamma Z}F_{1}^{\gamma Z} + \Big(g_{V}^{e^{2}} + g_{A}^{e^{2}} \Big)\eta_{Z}F_{1}^{Z} \Big] - \frac{xy}{2} (2-y) \Big[g_{A}^{e}\eta_{\gamma Z}F_{3}^{\gamma Z} - 2g_{V}^{e}g_{A}^{e}\eta_{Z}F_{3}^{\gamma Z} \Big] \Big\} \\ \frac{d^{2}\sigma_{e}}{dxdy} = \frac{4\pi\alpha^{2}}{xyQ^{2}} \Big\{ (1-y) \Big[g_{A}^{e}\eta_{\gamma Z}F_{2}^{\gamma Z} - 2g_{V}^{e}g_{A}^{e}\eta_{Z}F_{2}^{Z} \Big] + xy^{2} \Big[g_{A}^{e}\eta_{\gamma Z}F_{1}^{\gamma Z} - 2g_{V}^{e}g_{A}^{e}\eta_{Z}F_{1}^{Z} \Big] + \frac{xy}{2} (2-y) \Big[g_{V}^{e}\eta_{\gamma Z}F_{3}^{\gamma Z} - \Big(g_{V}^{e^{2}} + g_{A}^{e^{2}} \Big)\eta_{Z}F_{3}^{Z} \Big] \Big\}$

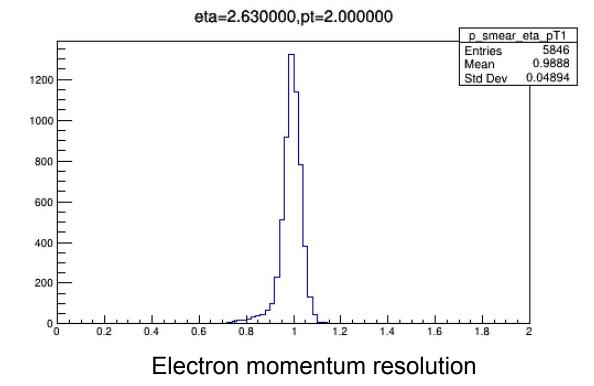
$$\boldsymbol{A_{RL}^{e^-}} = \frac{|\lambda|\eta_{\gamma Z} \left[g_A^e 2y F_1^{\gamma Z} + g_A^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2} \right) F_2^{\gamma Z} + g_V^e (2-y) F_3^{\gamma Z} \right]}{2y F_1^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2} \right) F_2^{\gamma} - \eta_{\gamma Z} \left[g_V^e 2y F_1^{\gamma Z} + g_V^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2} \right) F_2^{\gamma Z} + g_A^e (2-y) F_3^{\gamma Z} \right]}$$

Where

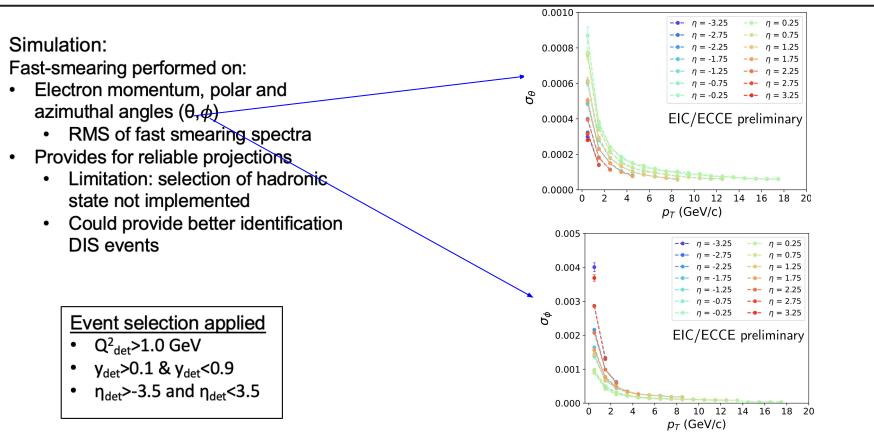
 $g_A^{e(q)}$ and $g_V^{e(q)}$: axial and vector neutral weak couplings of the electron (quark)

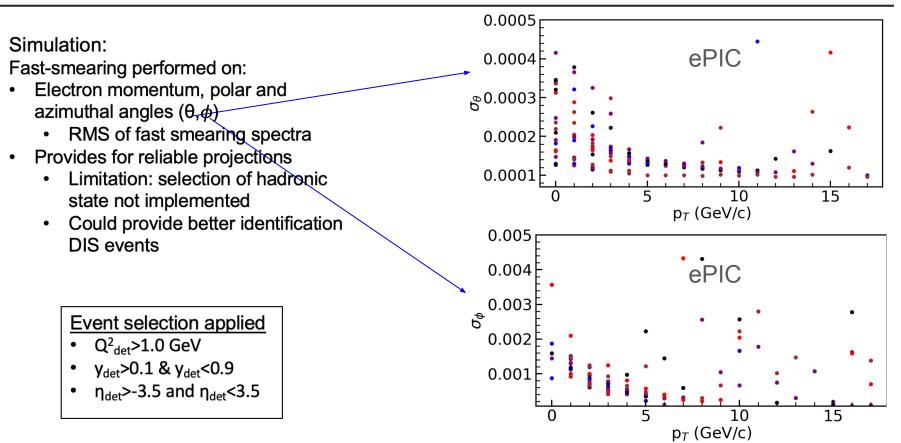
Background and Status of Ongoing Projections

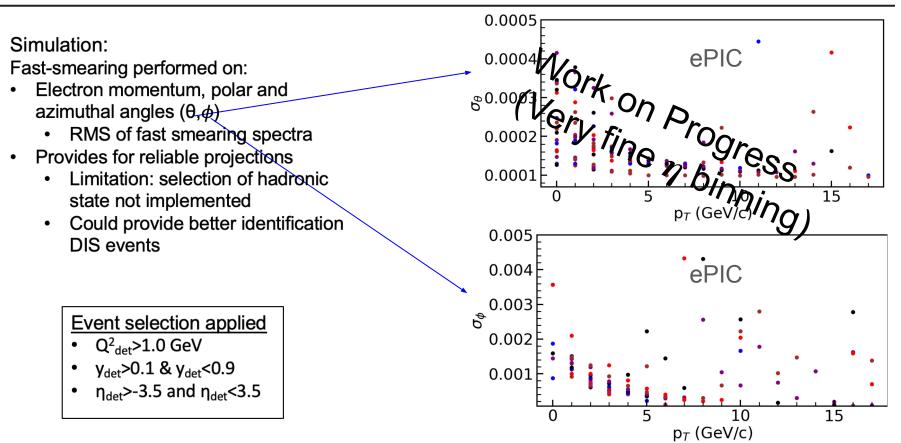
- Initial estimates performed for the EIC Yellow Report
- Updated for ECCE detector
 - ➤ Utilized "fast smearing" from single e⁻ simulation
 - Statistical, beam polarimetry,& PDF uncertainties
- Updated (in progress for ePIC)
 - Unfolding uncertainties
- Proceeding to include results from full simulation
 - Projection for the upcoming ePIC


Weak Mixing Angle Projections at the EIC

- 1. Single electron gun simulation
- 2. DJANGOH event generator
- 3. Pseudo-data generation
 - a. Statistical, Experimental, and PDF uncertainties
- 4. $\sin^2(\theta_w)$ extraction from fit


What will be shown


- 1. Previous detailed study for ECCE
- 2. Ongoing work for ePIC


- Djangoh event generator
 - Fast-smearing from single e⁻ gun simulation
- Modified Djangoh to calculate counts and size of A_{PV}
- Events unfolded to leptonics truth using R-matrix inversion method
- Best way to treat uncertainty of unfolding & bin migration?
- 20 M events per energy setting
- Inclusive electrons detected using tracking Ecal systems

ECCE

Weak Mixing Angle Projections at the EIC

- 1. Single electron gun simulation
- 2. DJANGOH event generator
- 3. Pseudo-data generation
 - a. Statistical, Experimental, and PDF uncertainties
- 4. $\sin^2(\theta_w)$ extraction from fit

Simulated Settings

Electron Energy [GeV]	Proton Energy [GeV]	Annual Luminosity [fb ⁻¹]	Electron Energy [GeV]	Deuteron Energy [GeV]	Annual Luminosity [fb ⁻¹]
5	41	4.4	5	41	4.4
5	100	36.8	5	100	36.8
10	100	44.8	10	100	44.8
10	275	100	10	137	100
18	275	15.4	18	137	15.4
18	275	100			

Pseudo-Data

- 1. In each bin (\sqrt{s}, Q^2, x)
 - Nominal PDF set used to calculate A_{PV}^{theo}

 $\sin^2 \theta_W = 0.231$ used in generation of pseudo-data

2. Pseudo-experimental asymmetry generated utilizing the statistical and systematic uncertainties

$$(A_{PV})_{b}^{pseudo} = (A_{PV})_{SM,b}^{theo} + r_{b} \sqrt{\sigma_{stat}^{2} + \left[(A_{PV})_{SM,b}^{theo} \left(\frac{\sigma_{sys}}{A}\right)_{b}\right]^{2} + r' \sqrt{\left[(A_{PV})_{SM,b}^{theo} \left(\frac{\sigma_{pol}}{A}\right)_{b}\right]^{2}}$$

$$Uncorrelated$$

$$uncertainties$$

$$Uncorrelated$$

$$uncertainties$$

$$Uncorrelated$$

$$Uncorrela$$

Experimental Uncertainties

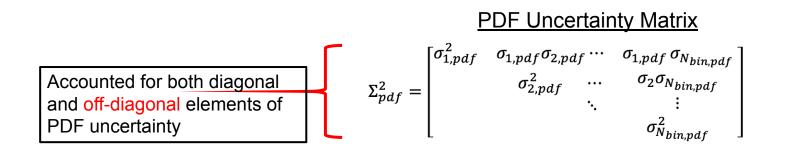
- Statistical: $dA_{stat} = \frac{1}{\sqrt{N}}$
- Systematics
 - Background: $\frac{\sigma_{bg}}{A} = 1\%$
 - Polarimetry: $\frac{\sigma_{pol}}{A} = 1\%$ (e⁻ beam polarization = 80%)

Diagonal Terms

$$\sigma_b^2 = \sigma_{\text{stat},b}^2 + \left[(A_{\text{PV}})_{\text{SM},0,b}^{\text{theo}} \left(\frac{\sigma_{\text{sys}}}{A} \right)_b \right]^2 + \left[(A_{\text{PV}})_{\text{SM},0,b}^{\text{theo}} \left(\frac{\sigma_{\text{pol}}}{A} \right)_b \right]^2$$
Off-Diagonal Terms

$$\sigma_b = (A_{\text{PV}})_{\text{SM},0,b}^{\text{theo}} \left(\frac{\sigma_{\text{pol}}}{A} \right)_b$$

$$\Sigma_{0}^{2} = \begin{bmatrix} \frac{\text{Experimental Uncertainty}}{\sigma_{1}^{2}} & \sigma_{1}\sigma_{2} & \cdots & \sigma_{1}\sigma_{N_{bin}} \\ \sigma_{2}^{2} & \cdots & \sigma_{2}\sigma_{N_{bin}} \\ & \ddots & \vdots \\ & & & \sigma_{N_{bin}}^{2} \end{bmatrix}$$


PDF Uncertainties

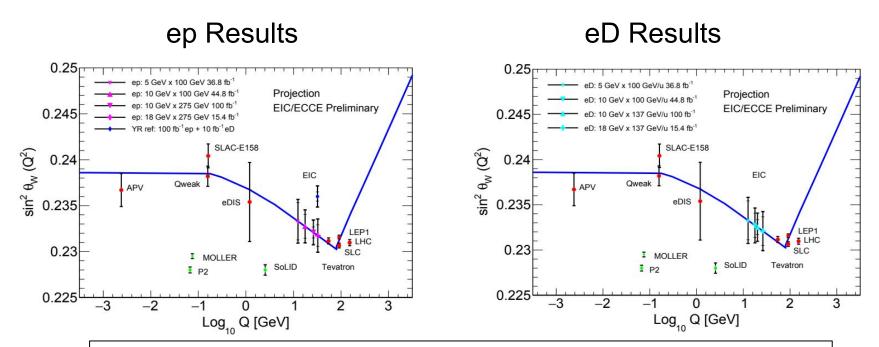
 PDF uncertainties were determined following the prescription of each PDF set (CT18NLO, MMHT2014, NNPDF31)

• Hessian

$$(\Sigma_{pdf}^2)_{bb'} = \frac{1}{4} \sum_{m=1}^{N_{pdf/2}} (A_{SM,2m,b}^{theo} - A_{SM,2m-1,b}^{theo}) (A_{SM,2m,b'}^{theo} - A_{SM,2m-1,b'}^{theo})$$

• Replica

$$\left(\Sigma_{pdf}^{2}\right)_{bb'} = \frac{1}{N_{pdf}} \sum_{m=1}^{N_{pdf}} \left(A_{SM,m,b}^{theo} - A_{SM,0,b}^{theo}\right) \left(A_{SM,m,b'}^{theo} - A_{SM,0,b'}^{theo}\right)$$


Weak Mixing Angle Projections at the EIC

- 1. Single electron gun simulation
- 2. DJANGOH event generator
- 3. Pseudo-data generation
 - a. Statistical, Experimental, and PDF uncertainties
- 4. $\sin^2(\theta_w)$ extraction from fit

Extraction of the Weak Mixing Angle

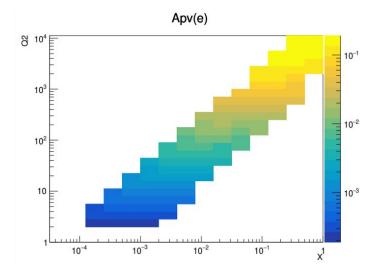
$$A_{RL}^{e^-} = \frac{|\lambda|\eta_{\gamma Z} \left[g_A^e 2y F_1^{\gamma Z} + g_A^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right) F_2^{\gamma Z} + g_V^e (2 - y) F_3^{\gamma Z}\right]}{2y F_1^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right) F_2^{\gamma} - \eta_{\gamma Z} \left[g_V^e 2y F_1^{\gamma Z} + g_V^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right) F_2^{\gamma Z} + g_A^e (2 - y) F_3^{\gamma Z}\right]}$$
• Extraction of $\sin^2 \theta_W$ from minimization of the χ^2
 $\chi^2 = \left[A^{pseudo-data} - A^{theory}\right]^T (\Sigma^2)^{-1} \left[A^{pseudo-data} - A^{theory}\right]^{25}$

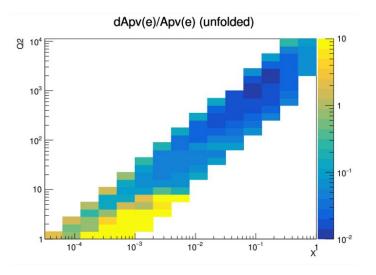
• A^{theory} is a function of $\sin^2 \theta_W$ via the weak neutral couplings
• Single parameter fit to extract $\rightarrow \sin^2 \theta_W$

R. Boughezal et al., Neutral-current electroweak physics and SMEFT studies at the EIC, Phys. Rev. D

Statistical and beam polarimetry uncertainties dominate; moderate precision in an unmeasured energy region, multi-year run would help Combining ep + eD results, approach the sensitivity of Yellow Report: ~±0.00097

ep Results

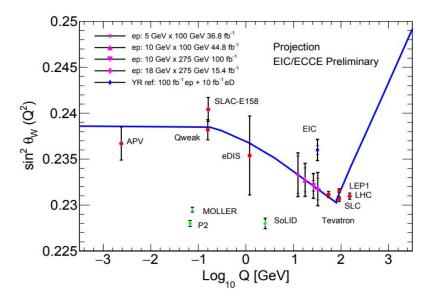

eD Results


Beam type and energy	$ep \ 5 \times 100$	$ep \ 10 \times 100$	$ep \ 10 \times 275$	$ep \ 18 \times 275$	$ep \ 18 \times 275$
Label	P2	P3	P4	P5	P6
Luminosity (fb^{-1})	36.8	44.8	100	15.4	(100 YR ref)
$\langle Q^2 \rangle ~({ m GeV}^2)$	154.4	308.1	687.3	1055.1	1055.1
$\langle A_{PV} \rangle \ (P_e = 0.8)$	-0.00854	-0.01617	-0.03254	-0.04594	-0.04594
$(\mathrm{d}A/A)_\mathrm{stat}$	1.54%	0.98%	0.40%	0.80%	(0.31%)
$(\mathrm{d}A/A)_{\mathrm{stat+syst(bg)}}$	1.55%	1.00%	0.43%	0.81%	(0.35%)
$(dA/A)_{1\%pol}$	1.0%	1.0%	1.0%	1.0%	(1.0%)
$(\mathrm{d}A/A)_\mathrm{tot}$	1.84%	1.42%	1.09%	1.29%	(1.06%)
Experimental		n			
$d(\sin^2 \theta_W)_{\text{stat+syst(bg)}}$	0.002032	0.001299	0.000597	0.001176	0.000516
$d(\sin^2 \theta_W)_{\rm stat+syst+pol}$	0.002342	0.001759	0.001297	0.001769	0.001244
with PDF					
$d(\sin^2 \theta_W)_{tot,CT18NLO}$	0.002388	0.001807	0.001363	0.001823	0.001320
$d(\sin^2 \theta_W)_{tot,MMHT2014}$	0.002353	0.001771	0.001319	0.001781	0.001270
$d(\sin^2 \theta_W)_{tot,NNPDF31}$	0.002351	0.001789	0.001313	0.001801	0.001308

Beam type and energy	$eD 5 \times 100$	$eD \ 10 \times 100$	$eD \ 10 \times 137$	$eD \ 18 \times 137$	$eD~18\times137$
Label	D2	D3	D4	D5	N/A
Luminosity (fb^{-1})	36.8	44.8	100	15.4	(10 YR ref)
$\langle Q^2 \rangle ~({ m GeV}^2)$	160.0	316.9	403.5	687.2	687.2
$\langle A_{PV} \rangle \ (P_e = 0.8)$	-0.01028	-0.01923	-0.02366	-0.03719	-0.03719
$(\mathrm{d}A/A)_\mathrm{stat}$	1.46%	0.93%	0.54%	1.05%	(1.31%)
$(\mathrm{d}A/A)_\mathrm{stat+bg}$	1.47%	0.95%	0.56%	1.07%	(1.32%)
$(\mathrm{d}A/A)_{\mathrm{syst},1\%\mathrm{pol}}$	1.0%	1.0%	1.0%	1.0%	(1.0%)
$(\mathrm{d}A/A)_\mathrm{tot}$	1.78%	1.38%	1.15%	1.46%	(1.66%)
Experimental					
$d(\sin^2 \theta_W)_{\rm stat+bg}$	0.002148	0.001359	0.000823	0.001591	0.001963
$d(\sin^2 \theta_W)_{\rm stat+bg+pol}$	0.002515	0.001904	0.001544	0.002116	0.002414
with PDF	\$8 ²				
$d(\sin^2 \theta_W)_{tot,CT18}$	0.002558	0.001936	0.001566	0.002173	0.00247
$d(\sin^2 \theta_W)_{tot,MMHT2014}$	0.002527	0.001917	0.001562	0.002128	0.002424
$d(\sin^2 \theta_W)_{tot,NNPDF31}$	0.002526	0.001915	0.001560	0.002127	0.002423

Ongoing and Future Plans

- Completion of $\sin^2(\theta_w)$ projection using ePIC detector
 - Studying unfolding uncertainties



Ongoing and Future Plans

- Completion of $\sin^2(\theta_w)$ projection using ePIC detector
 - Studying unfolding uncertainties
- Utilizing full simulation instead of "fast smearing"
 - Pythia 8 vs DJANGOH
- Discussion
 - Represention of results
 - Consider multi-year run?
 - Suggestions?

Summary and Outlook

- Detailed study of the extraction of $\sin^2(\theta_W)$ at the EIC for both the proton and deuteron
- Overall uncertainties larger than those in Yellow Report
- The EIC can play a role in Electroweak and BSM physics
 - Covering energy scale between fixed target and collider experiments
 - Unexplored region
- Ongoing studies and future projections for ePIC detector
 - Expected results in 2 weeks and 2-3 month time scale

Thank You