

INT Workshop 2023

Initial state from small to large system

Jacquelyn Noronha-Hostler
University of Illinois at Urbana-Champaign

What influence the connection from initial to final state?

Measured
experimental through collective flow v_{n}

Initial State

What plays a role beyond deformations?

Hydrodynamics
 Looking under the hood

What effects from hydrodynamics influence the connection between the initial geometrical shape to the final flow harmonics?

What do we need to consider for light nuclei?

How precise are heavy-ions collisions as a tool for measuring nuclear structure?

- Linear response: Given the same medium, if you vary deformations, do you get the same influence on the final flow?
- What influence does beam energy, system size etc play in extraction nuclear structure?
- What role do medium effects play? How much of an uncertainty does this add?

Quantifying initial state geometry

$$
\varepsilon_{n, m} \equiv \frac{\int r^{m} e^{i n \phi} \rho(r, \phi) r d r d \phi}{\int r^{m} \rho(r, \phi) r d r d \phi}
$$

$$
\mathbf{l}^{\varepsilon_{2,2}=1}
$$

$\varepsilon_{4,4}=1$

Quantifying initial state geometry

$$
\begin{array}{r}
\varepsilon_{2,2}=1 \\
\boldsymbol{Q}_{2}
\end{array}
$$

How does $\mathscr{E}_{n} \rightarrow V_{n}$

Eccentricities ε_{2} 's are directly related to the final measured flow observables v_{n} 's

How does $\mathscr{E}_{n} \rightarrow V_{n}$

Eccentricities ε_{2} 's are directly related to the final measured flow observarbles v_{n} 's

We can visually see that there's a linear-ish scaling

At least for $\varepsilon_{2} \rightarrow v_{2}$, nearly linear scaling in central collisions Note I'm purposefully using lower cases to indicate magnitudes here

Quantification of Mapping $\mathscr{E}_{n} \rightarrow V_{n}$

- These are vectors: $\mathscr{E}_{n}=\left\{\varepsilon_{n}, \phi_{n}\right\} \quad V_{n}=\left\{v_{n}, \psi_{n}\right\}$
- Pearson coefficients quantify linear response, much better than just plotting one versus the other. Makes comparisons between systems possible.

$$
Q_{n}=\frac{\left\langle v_{n} \varepsilon_{n} \cos n\left(\psi_{n}-\phi_{n}\right)\right\rangle}{\sqrt{\left\langle v_{n}^{2}\right\rangle\left\langle\varepsilon_{n}^{2}\right\rangle}}
$$

- Only $v_{2}\{2\} \quad v_{3}\{2\}$ are mostly from linear response, $v_{1} v_{4}+$ come from non-linear response AND mode mixing!
Gardim et al, PRC85(20 I 2)024908;Gardim,JNH,Luzum,Grassi PRC9 (2015)3,034902

Central vs. peripheral collisions

Linear response

$$
V_{n}^{\text {pred }}=\gamma_{n} \mathscr{E}_{n}
$$

Teaney,Yan,PRC83(201 I)064904;Gardim,et
al,PRC85(20 | 2)024908;PRC9 I (20 | 5) 3,034902

Linear+cubic response
$V_{n}^{\text {pred }}=\kappa_{1, n} \mathscr{C}_{n}+\kappa_{2, n}\left|\varepsilon_{n}\right|^{2} \mathscr{E}_{n}$

JNH,Yan,Gardim, Ollitrault Phys. Rev. C 93, 014909 (2016)

Effectiveness of linear response across

Perfect \sqrt{s} and system size mapping

Alba, JNH et al, Phys.Rev.C 98 (2018) 3, 034909

Connection from $\mathscr{E}_{n} \rightarrow V_{n}$ strong across beam energy

Sievert, JNH Phys.Rev.C 100 (2019) 2, 024904
Connection from $\mathscr{E}_{n} \rightarrow V_{n}$ weakens for smaller systems

Best linear response in central collisions

Non-linear response

Non-linear response \& beam energy $V_{n}^{\text {pred }}=\kappa_{1, n} \mathscr{C}_{n}+\kappa_{2, n}\left|\varepsilon_{n}\right|^{2} \mathscr{E}_{n}$

No $\mathscr{E}_{n} \rightarrow V_{n}$
correlation

At lower beam energies, linear response is less dominate

2 particle correlations

Residual δ is whatever is left in the V_{n} that we don't get from linear + cubic response. Essentially our unknown influence in V_{n}

Pearson Coefficient by flow harmonic

Methodology from Gardim et al, Phys.Rev.C 85 (2012) 024908; Phys.Rev.C 91 (2015) 3, 034902;

．．中．．$\epsilon_{2}+\epsilon_{4} \epsilon_{2}^{*} \quad$ ．．中．．$\epsilon_{3}+\epsilon_{2}^{2} \epsilon_{1,3}^{*}$
 ．．中．．$\epsilon_{2}+\epsilon_{1,3}^{2} \quad$ ．．中．．$\epsilon_{3}+\epsilon_{4} \epsilon_{1,3}^{*}$

 system size

 system size}
－廿－－all terms－- －－all terms

Schenke, Shen, Tribedy Phys.Lett.B 803 (2020) 135322

What does this mean for deformed ions?

Preliminary!

Carzon, Almaalol, Salinas san Martin, JNH

v_{3} more strongly dependent on non-linear
response
Mapping works well, not strongly dependent on deformation

$$
V_{n}^{\text {pred }}=\kappa_{1, n} \mathscr{C}_{n}+\kappa_{2, n}\left|\varepsilon_{n}\right|^{2} \mathscr{C}_{n}
$$

 $V_{n}^{\text {pred }}=\kappa_{1, n} \mathscr{E}_{n}+\kappa_{2, n}\left|\varepsilon_{n}\right|^{2} \mathscr{E}_{n}$

 $V_{n}^{\text {pred }}=\kappa_{1, n} \mathscr{E}_{n}+\kappa_{2, n}\left|\varepsilon_{n}\right|^{2} \mathscr{E}_{n}$
 Non-linear mapping coefficients

- Deformations change \mathscr{E}_{n}, do deformations also affect the mapping (medium) coefficients?
- Linear term the same, cubic response \uparrow by large β_{2}

Multi-particle cumulants

Measuring 2, 4, 6, ... particle correlations

If only linear response

Accurate within 1% for v_{3} in ultra-central collisions

Predictive power of initial state in central collisions (across system size)

Sievert, JNH Phys.Rev.C 100 (2019) 2, 024904

Quarks vs nucleons vs α clustering

${ }^{16} O$: Lattice effective field theory and hydrodynamics

Types of structure

- OO Wood-Saxon from sievert, JNH Phys.Rev. C100 (2019) no.2, 024904
- $\mathrm{OO}+\alpha$ clustering from lattice effective field theory Moreland et al, Phys.Rev.C 101 (2020) 2, 024911
- OO+sub-nucleonic structure (Trento 2.0) Lu, etal, Phys. Lett. B 797, 134863 (2019)

${ }^{16} O$: Lattice effective field theory and hydrodynamics

Types of structure

- OO Wood-S JNH Phys.Rev. C100 (20
- $\mathrm{OO}+\alpha$ clust lattice effect Moreland et al, Phys.Rev.
- OO+sub-nu Duke Bayesian analysis set-up Structure (TiBernhard et al, Nature Phys. 15 (2019) 11, 1113-1117 Phys. Lett. B 797, 134863 (2019)

Experimental:
N. Summerfield \& A. Timmins Theory: C. Plumberg \& JNH Lattice EFT: B-N Lu \& D. Lee

Fluctuations in "square" shape disentangle structure

Observable distinguishes scale of structure in nucleus

Conclusions and Outlook

- By studying the mapping of flow harmonics, able to quantify how well we can work back to the initial state
- Central collisions always have a strong mapping, but higher flow harmonics have more non-linear effects
- Non-linear response appears with large deformations
- Outlook: run ICCING+CCAKE for isobars (with better fits to data/varying medium) to better understand the mapping from initial to final state

Code upgrades to CCAKE (formerly v-USPhydro)

Plumberg, Almaalol, Dore, Mroczek, Salinas San Martin, Spychalla, Carzon, Sievert, JNH

- New upgrades including YAML files, containerization, profiling and optimization
- BSQ conserved charges so 4D EOS (specifically algorithm to handle out-of-bound cells)
- In process: New Israel-Stewart to DNMR terms
Almaalol et al, 2209.11210 [hep-th]

4-particle correlations

$v_{n}\left(p_{T}\right)$ mapping

