

Illinois Center for Advanced Studies of the Universe

INT Workshop 2023 Initial state from small to large system

Jacquelyn Noronha-Hostler University of Illinois at Urbana-Champaign

What influence the connection from initial to final state?

2/30

flow v_n

Initial State What plays a role beyond deformations?

Hydrodynamics Looking under the hood

What effects from hydrodynamics influence the connection between the initial geometrical shape to the final flow harmonics?

What do we need to consider for light nuclei?

How precise are heavy-ions collisions as a tool for measuring nuclear structure?

- Linear response: Given the same medium, if you vary deformations, do you get the same influence on the final flow?
- What influence does beam energy, system size etc play in extraction nuclear structure?
- What role do medium effects play? How much of an uncertainty does this add?

Quantifying initial state geometry $\int r^m e^{in\phi} \rho(r,\phi) r dr d\phi$ $\int r^m \rho(r,\phi) r dr d\phi$ $\varepsilon_{n,m} =$ $\epsilon_{2,2} = 1$ $\epsilon_{3.3} = 1$ $\epsilon_{4,4} = 1$ $\epsilon_{2,2} = 0$ $\varepsilon_{4,4} =$ $\varepsilon_{3,3} = 0$

Quantifying initial state geometry $\int r^m e^{in\phi} \rho(r,\phi) r dr d\phi$ Eccentricity Vector $\mathcal{E}_{n,m}$ $\int r^m \rho(r, \phi) r dr d\phi$ $\mathscr{E}_n = \varepsilon e^{in\phi_n}$ $\epsilon_{2,2} = 1$ $\varepsilon_{3.3} = 1$ $\epsilon_{4,4} = 1$ ϕ_2 $\epsilon_{2,2} = 0$ $\varepsilon_{33} = 0$ $\varepsilon_{44} =$

How does $\mathscr{C}_n \to V_n$

How does $\mathscr{C}_n \to V_n$

We can visually see that there's a linear-ish scaling

11/30

At least for $\varepsilon_2 \rightarrow v_2$, nearly linear scaling in central collisions Note I'm purposefully using lower cases to indicate magnitudes here

Quantification of Mapping $\mathscr{C}_n \to V_n$

12/30

- These are **vectors**: $\mathscr{C}_n = \{\varepsilon_n, \phi_n\}$ $V_n = \{v_n, \psi_n\}$
- Pearson coefficients quantify linear response, much better than just plotting one versus the other. Makes comparisons between systems possible.

$$Q_n = \frac{\langle v_n \varepsilon_n \cos n \left(\psi_n - \phi_n \right) \rangle}{\sqrt{\langle v_n^2 \rangle \langle \varepsilon_n^2 \rangle}}$$

Only v₂{2} v₃{2} are mostly from linear response, v₁ v₄+ come from non-linear response AND mode mixing!
Gardim et al, PRC85(2012)024908,;Gardim,JNH,Luzum,Grassi PRC91(2015)3,034902

Central vs. peripheral collisions

Linear response

$$V_n^{pred} = \gamma_n \mathscr{E}_n$$

Teaney, Yan, PRC83(2011)064904; Gardim, et al, PRC85(2012)024908; PRC91(2015)3, 034902

Linear+cubic response

13/30

$$V_n^{pred} = \kappa_{1,n} \mathscr{E}_n + \kappa_{2,n} |\varepsilon_n|^2 \mathscr{E}_n$$

JNH, Yan, Gardim, Ollitrault Phys. Rev. C 93, 014909 (2016)

Effectiveness of linear response across \sqrt{s} and system size

mapping

Alba, JNH et al, Phys. Rev. C 98 (2018) 3, 034909

14/30

Sievert, JNH Phys. Rev. C 100 (2019) 2, 024904

Connection from $\mathscr{C}_n \to V_n$ strong across beam energy

Connection from $\mathscr{C}_n \to V_n$ weakens for smaller systems

Best linear response in central collisions

15 / 30

Non-linear response

Non-linear response & beam energy $V_n^{pred} = \kappa_{1,n} \mathscr{E}_n + \kappa_{2,n} |\varepsilon_n|^2 \mathscr{E}_n$

At lower beam energies, linear response is less dominate

2 particle correlations

Residual δ is whatever is left in the V_n that we don't get from linear+cubic response. Essentially our unknown influence in V_n

Pearson Coefficient by flow harmonic

18/30

Methodology from Gardim et al, Phys. Rev. C 85 (2012) 024908; Phys. Rev. C 91 (2015) 3, 034902;

centrality (%)

Mapping: Including full $T^{\mu\nu}$ in small systems

Schenke, Shen, Tribedy Phys.Lett.B 803 (2020) 135322

- Deformations change *C_n*, do deformations also affect the mapping (medium) coefficients?
- Linear term the same, cubic response \uparrow by large β_2

Multi-particle cumulants

Measuring 2, 4, 6, ... particle correlations

Accurate within 1% for v_3 in ultra-central collisions

Predictive power of initial state in central collisions (across system size)

Quarks vs nucleons vs α clustering

¹⁶*O*: Lattice effective field theory and hydrodynamics

Types of structure

- OO Wood-Saxon from Sievert, JNH Phys.Rev. C100 (2019) no.2, 024904
- OO+α clustering from lattice effective field theory Moreland et al, *Phys.Rev.C* 101 (2020) 2, 024911
- OO+sub-nucleonic structure (Trento 2.0) Lu, et al, Phys. Lett. B 797, 134863 (2019)

¹⁶*O*: Lattice effective field theory and hydrodynamics

Types of structure

• OO Wood-S JNH Phys.Rev. C100 (20

• OO+α clust lattice effecti Moreland et al, *Phys.Rev.* Experimental: N. Summerfield & A. Timmins Theory: C. Plumberg & JNH Lattice EFT: B-N Lu & D. Lee

• OO+sub-nu Duke Bayesian analysis set-up structure (Trenhard et al, Nature Phys. 15 (2019) 11, 1113-1117 Phys. Lett. B 797, 134863 (2019)

Fluctuations in "square" shape disentangle structure

29/30

Observable distinguishes scale of structure in nucleus

Conclusions and Outlook

- By studying the mapping of flow harmonics, able to quantify how well we can work back to the initial state
- Central collisions always have a strong mapping, but higher flow harmonics have more non-linear effects
- Non-linear response appears with large deformations
- **Outlook**: run ICCING+CCAKE for isobars (with better fits to data/varying medium) to better understand the mapping from initial to final state

Code upgrades to CCAKE (formerly v-USPhydro)

Plumberg, Almaalol, Dore, Mroczek, Salinas San Martin, Spychalla, Carzon, Sievert, JNH

- New upgrades including YAML files, containerization, profiling and optimization
- BSQ conserved charges so 4D EOS (specifically algorithm to handle out-of-bound cells)
- In process: New Israel-Stewart to DNMR terms Almaalol et al, 2209.11210 [hep-th]

4-particle correlations

$v_n(p_T)$ mapping

Hippert et al, Phys. Rev. C 102 (2020) 6, 064909