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Trajectum

— vf2}
— vef4}
va{2}
vaf2}
— vs{2}

0.10r Trajectum

m New heavy ion code developed in PRELIMINARY,

Utrecht/MIT/CERN.

m Contains initial stage, hydrodynamics and*
freeze-out, as well as an analysis suite.

0.04]

0.02

m Easy to use, example parameter files
. . . 00 5
distributed alongside the source code. % 20 a0 £y %

centrality [%]

m Fast, fully parallelized.
m Figure (20k oversampled PbPb events at
2.76 TeV) computes on a laptop in 21h.
m Bayesian analysis requires O(1000) similar
calculations to this one.

m Publicly available at sites.google.com/
view/govertnijs/trajectum/.
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Introduction s eralized TRENTo formula S g led pre-hydrodynamic stage
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Components of Trajectum

Initial conditions ~ — Hydrodynamics —> Particlization >

Equation of State
PDE solver and «+—  Particle Content
Transport Coefficients
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Introduction
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Hydrodynamics

m Define (g = diag(1,-1,-1,-1)):
AW = gl —yly”, VR =AM, D=u'V,, o =vry),
with () symmetrizing and removing the trace.
m We solve viscous hydrodynamics without currents, i.e.
0, TH =0, TH =eutu” —(P+ A" 47t
m 7 and I1 follow the 14-moment approximation:
—TWAZA[”;DWO‘/B =7t — 2ot 4+ 5,V - u

— ¢77r(<1"7r”>°‘ + Tmﬂ'((x“a”m — ArnMo??,

—T|-|D|_| =N + CV - U+ 5|‘||‘|V ~ull — )\nﬂ—ﬂ'uyduyir_ R
|| et
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Particlization

m At the freeze-out temperature 7., we turn the fluid back into
particles.

m Particles are sampled thermally, and boosted with the fluid velocity
ut,

m We use the PTB prescription to match 7#¥ and I1 across the
transition, so that T*¥ is smooth.

m After particlization, we use SMASH as a hadronic afterburner.

[Pratt, Torrieri, 1003.0413; Bernhard, 1804.06469]
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Bayesian analysis

m We want to fit 25 parameters
to 653 data points.

m Two problems:

m Even the fastest models are
too slow.

m The parameter space is
large.

m The first problem is solved by
replacing the model with an
emulator trained on model
simulations.

m The second problem is solved
by using Markov Chain Monte
Carlo (MCMC), which
samples the posterior using
importance sampli

Govert Nijs.
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Input parameters

QGP properties

Model
—————— Heavy-ion collision
spacetime evolution

Gaussian process emulator
Surrogate model

—

Bayesian calibration

Infer model parameters
from data

Posterior distribution
Quantitative estimates
of each parameter

Experimental data
Heavy-ion collision
observables

[Bernhard, 1804.06469]
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Data used in our most recent fit: integrated observables
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Data used in our most recent fit: spectra

&N/dprdy [GeV~']
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Data used in our most recent fit: pr-differential v,
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Bulk viscosity over entropy density (/s

— printonly pr < 0.75 GeV pr<1.0GeV — pr<14GeV — pr<1.8GeV — pr<22GeV
7 90
3.5 \ 451
—00.5 0 0.5 83] 018 1.5 G0 0.05 0.1
s [fmi/c] (¢/8)max
m Lower bulk viscosity than other groups.
m This is mostly due to the inclusion of pr-differential observables.
m It is important to fit to as wide a range of data as possible (within
reason).
m We varied the highest p7r bin included to check that our result was
robust.
[GN, van der Schee, Giirsoy, Snellings, 2010.15130] IIII #:2;:7::;
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Our evolving understanding of the initial state

2016

w8

2019

TRENTO-based Bayesian analyses [=To0

m Initial conditions took a circle journey since 2016:
m Small nucleon size at first, then larger, now small
again.
m Energy deposition went from T% o (Ta75)%** to
T% o \/TaTg, and now back to T% o (7a78)*>.
m Pre-hydrodynamic stage increased in complexity
from no dynamics, to free streaming, and now to a
parameterized interpolation between weak and strong
coupling.
m Progress was enabled by Bayesian analysis.
m We focus on the latest of these analyses:

AE /dy(r = 0%) (Ge

Trajectum-22.
[Giacalone, 2208.06839]
Ui
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Nucleon size
0000000

TRENTo initial conditions

m Nucleons A and B become wounded with probability

“lx — xal?
Paounded = 1—exp (‘”gg/dpr(x)PB(X)> ,  PA OCexp (—' 2W2A| > )

m Each wounded nucleon desposits energy into its nucleus's thickness
function Ty,p:

Tae= Y, yvep(—lx—x*/20?),

i€wounded A/B

with v drawn from a gamma distribution with mean 1 and standard
deviation oyj,c:.

m Actual formulas slightly modified because each nucleon has 1,
constituents.

L e

Technology
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Nucleon size
O@00000

The cross-section oaa for different nucleon widths

m The cross-section depends

strongly on the nucleon width
w and the centrality
normalization cent, o ..

m ALICE finds: 7.67 £0.24b.

m Cross-section measurement

seems to require smaller w than
earlier analyses.

m Basic observable: models

should get this right.

[ALICE, 2204.10148; ALICE-PUBLIC-2022-004]
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Nucleon size
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p(v2, {pt)) for different nucleon widths

XK B N
0.1p,7" : NN . X A‘\. O
X - U O
- SN OO “ /5
= 00 N OGS s
% ) < ~
S .1} Pb+Pb, /sy = 5.02 TeV \
S 0.2 < p, <3 GeV AN
—0.21 w=0.4, w, = 0.11 fm N
Jw = 0.4 fm \
—0.3F ZZQw = 0.8 fm \ —0.3} =O-ALICE, VOM, 0.2 < p, < 3 GeV
v =12 fm \ —Q—ATLAS, 3 Er, 05 < py < 2 GeV
0.4} EEFw = 1.2 fin, low viscosity s 0.4} =="JETSCAPE (IS predictor), w = 1.1 fm
0 20 40 60 0 20 40 60
centrality (%) centrality (%)

m The correlation between vZ and (pr) is sensitive to the nucleon
width w.
m Smaller w is preferred.

m This is a statistically challenging observable.
[Giacalone, Schenke, Shen, 2111.02908]
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Nucleon size
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Including the pPb and PbPb cross sections in the analysis

104315, 0.98*31% and 0.952) 0.62°0:17,0.70°0 1 and 0.64°( 12
5 - 5
. +— Weighted .
® Including the pPb and ---Unweighted . With oa
PbPb cross sections in the 2.5 Imegra‘ed"n‘l,y" | 25
fit lowers w from 1fm to Noow - :
0.6 fm. 9 = e L
4 0.8 12 0.4 0.8 1.2
m Smaller width is now w[fm] w[fm]
compatible with our
knowledge of the proton. opbebb] appbb]
Various f|tt|ng scenarios_ WIthOUt OAA 8.95 :t 0.36 2.48 :l: 0.10

ALICE/CMS 7.67 £0.24 2.06+0.08
[ALICE, 2204.10148; ALICE-PUBLIC-2022-004; CMS, 1509.03893]

R
i e

Technology

Govert Nijs.

Data-driven initial conditions for heavy-ion collisions



Nucleon size
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Implication for viscosities

m Smaller nucleons imply

. Weighted, with (blue) and without (red) o"aa Weighted, with (blue) and without (red) oA
larger radial flow. 04 0.10
- . . 03 0.08
(] Spec.lflc bulk viscosity ) o0
(/s increases to EO'2>< ou
compensate. o1 o.oz@
u Including TAA FEVErSES 005 020 o025 o030 o3s "5 020 025 030 035
T(GeV] T[GeV]

the [')fr'efe:ed S|F)pe Of  Unveightd,with (blu)and without () 70 Unweighted, with (blue) and without (red) s
SpecCITIC shear V|SCOS|ty ’ 0.10
n/s. 03 0.08
! . , 0.06

m Similar findings in

~ 004
IP-Glasma based °-‘>< 002

Bayesian analysis 00 o0 oas o030 o35 Pis o020 o025 030 035
presented at Quark T(GeV) TGV

Matter. TTT—
[Heffernan, Jeon, Gale, Paquet, to appear] I I| Technology
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Nucleon size
0000080

2

Implication for p(vj,

(pr)) (ALICE)

m We can use the full
posterior to propagate
uncertainties from
parameters to
observables.

m Much improved
agreement with ALICE

for p(v2, (pr)).

Govert Nijs.
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Nucleon size
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Implication for p(v3, (p7)) (ATLAS)
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m Still some tension with ATLAS:

m Kinematic cuts are different, probably needs 3+1D simulations to
resolve. L] e
m Important to match the precise experimental procedure.

Technology
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Generalized TRENTo formula
00000

The TRENTo phenomenological ansatz

m The standard TRENTo formula combines thickness functions of the
two nuclei 74 and Tg into a reduced thickness T, interpreted as an

energy density:

TP 4 TP 1/p
" o
with p a parameter. o
m Some useful limits:
p -1 0 1
T| i VTaTe R
Ta ' Tg

[Moreland, Bernhard, Bass, 1412.4708]

m Binary scaling 7 = Ta7g is not available.

Govert Nijs.
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Generalized TRENTo formula
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The power of Bayesian analysis

0.006 3978

EKRT / Wounded
KLN IP- Glasma nucleon
—1.0 70 5 0.0 0.5 1.0

m Can test theories for the initial state with TRENTo, in this case by
comparing their scaling behavior.
m General workflow for testing theories/questions:
m Introduce parameter(s) which parameterize the question.
m Confront the generalized model with data using Bayesian analysis.

m Read off the posterior distribution for the parameter(s). i s
[Bernhard, 1804.06469]
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Generalized TRENTo formula
00e00

The g parameter

m We make the following modification to the TRENTo formula:

— 7—: + 77; q/p
2 Y
introducing the parameter q.
m We now include binary scaling as a limit when p =0, g = 2.

m Assuming approximate conformality of the equation of state, we can
also interpret the right hand side as an entropy density by setting

q=4/3.

—
1 s
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Generalized TRENTo formula

000e0

Posterior distribution for g

1.31%17 and 1.26*31¢ (90% CI)

Th e w=04fm ___ Weighted

m Binary scaling (¢ =2)is | 77 w=08fm Unweighted

strongly disfavored. Trajectum

6
m Fixing the nucleon width w at >
different values has a large 4
effect on the fitted value for g. 3
m Fixing w = 0.4fm favors )
qr~=4/3.
m Weighted distribution is close
to w = 0.4 fm distribution.

q —
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Generalized TRENTo formula

(o]e]ele] ]

Comparing to IP-Glasma

1.317317 and 1.26*31¢ (90% CI)
m |P-Glasma scales as follows: Tp o w=04fm ___ Weighted

...... w=08fm _____Unweighted
TaTe(2TR + TTaTe +273) 0 ---w=12fm
(Ta+ Tg)>/? '

m If T4 = Tg, this reduces to

Trajectum

T x

T o (TaTs)%*.

m This corresponds to g = 1.5.

m |P-Glasma is compatible with
our posterior.

[Borghini et al., 2209.01176] = Massachusetts
| L e
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Strongly coupled pre-hydrodynamic stage

00000

Strongly coupled pre-hydrodynamic stage: early effort

m In AdS/CFT simulations of
the initial stage, the shear
stress and bulk pressure
quickly relax to their ‘hydro’
values:

" =2, = —(V-u.

m In free streaming however,
the initialization of 7 and
I is qualitatively different.

m Use free streaming velocity
as a proxy for this
difference.

Govert Nijs.

— N=={V-u

free streaming, vs=0.9

0.10]

— free streaming, vs=0.95

o oosf | /| /A
0.00 V - - — \—JV
. ’,
-0.05
-10 -5 0 5 10
x [fm]

[van der Schee, Romatschke, Pratt, 1307.2539; GN,
van der Schee, Giirsoy, Snellings, 2010.15134]
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Strongly coupled pre-hydrodynamic stage
0@000

Free streaming pre-hydrodynamic stage

m TRENTOo creates matter at proper time 7 = 0%,

m Propagate the matter using free streaming:

1 R .
TR (X, y, Thya) = o~ /d¢P BT (X = 71y COS D,y — Thyasin @),
y

with
pt = ( 1 cos¢ sing ),
giving us the stress tensor TH" at proper time T = 7},,4.
m Here 7,4 is the time at which hydrodynamics is started.
m The factor 1/7,,4 is due to longitudinal expansion.

—
1 s
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Strongly coupled pre-hydrodynamic stage
[e]e] lele]

The ryq parameter

m We compute the hydrodynamic values for 7#¥ and I explicitly from
the velocity u*:

v _ v —
Thyd = 2noh?, Mhya = —CV - u.

m We then mix the hydrodynamic values with the free streaming
values and initialize hydrodynamics with

v v v
T = hyamhg + (1= rmya)mg”
M= riyaMhyd + (1 = rhya) s,

with r,,q € [0, 1] interpolating between the two scenarios.

R
Wi s
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Strongly coupled pre-hydrodynamic stage
[e]e]e] Je]

Need to go to second order

m Previous scheme fails: combination of large TRENTo norm /V/, small
hydro initialization time 71,4 and large specific shear viscosity 7)/s
causes extreme particle yields, ruining the emulator.

m Need to go to second order, which penalizes large initial values for
" and 1.

m Use full 14-moment approximation:
—TﬁAgAszaﬂ =7t = 20" + 0V - u
- qﬁwré"ﬂ”)“ + Tmﬂ'((fawa — ArnMo??,

—mDN=MN+(V-u+06nnV - ull = A\nm" 0o,

where we set the left hand side to zero, and solve for 7" and I1.

R
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Strongly coupled pre-hydrodynamic stage

[e]e]e]e] }

Posterior distribution for rydro

0.76:83} and 0.77:43% (90% CD

m g = 1 is strongly favored over | Thya = 0.1 fm Welghted i
yd = 0, implying a preference .. Thyd = 0.45 fm  ----- Unweighted
for strongly coupled gl - Tha = 0.8 fm .,"

re-hydrodynamic stage. i ’,
P y y & Trajectum i

m Preference also becomes
stronger for larger hydro
initialization time 7,4.

m One can see this as model
averaging, albeit cheaper since
we can interpolate between
models with a continuous
parameter.

—
1 s
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Why weights?

m Higher p7, higher centralities
are harder to model
theoretically.

m Experimental correlation matrix
is not available.

o 4 N w

observable #2
|

observable 2

m Figure shows 1o and 20 -2
regions for Sy o T2 s e Iio 2 s
pE {0, 0.9,-0.9, 099}, with observable 1 observable 1
standard deviations the
same.

m Same difference between
theory and experiment can
be within 1o or outside of 20 -2 -2
depending on p. WO T s Ny e s

m Correlated observable classes observable 41 observable 11
can be over/underimportant M e
for the Bayesian analysis.

o = N

observable #2
observable 2

Govert Nijs.
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Definition of weights

m In the bayesian analysis, the probability of the data given the
parameter point x is given by:

1 1 - >
=X ——(y — 5 - ’
(2m)mdet = P ( 5V = Yerr) (¥ = Yexp)

P(Dlx) =
with y the vector of observables computed from x, ye,, the vector of
the corresponding experimental data, and X the combined
theory/experiment covariance matrix.

m We define weights by replacing

1 1
P(D|x) = ————exp [ —=(V — Yexo) "W w0 (y — Vex )7
(D) = —5mms 0 (=30 = Yoo) Tty o)

where w is the diagonal matrix containing the weight for each

i e
observable.

Technology
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Choice of weights

m We choose for weights w:

m 1/2 for every particle
identified observable.

m 1/2 for pr-differential
observables, and an
additional
(2.5 — pr[GeV])/1.5 if
pr > 1GeV.

m (100 — c[%])/50 if the
centrality class c is beyond
50%.

m Weighting only worsens the
average discrepancy slightly.

m Distribution of discrepancies
makes more sense.

Govert Nijs.

((¥theory — Yexperiment)/7) )
oan & w w oaa neither

dNew/dn 055 0.60 123 122 1.00
dNys g2 p=/dy 076 070 0.60 057  0.48
dEr/dn 159 151 082 077 048
(PT)ehnt Kt pt 066 060 088 072 046
épr/{pr) 056 062 051 058 049
va{k} 058 051 054 049 1.00
?N,:/dydpr 119 107 086 092 0.20
d?Ny=/dydpr 141 127 079 073 020
d?N,: /dy dpr 135 121 073 067 025
Vi (pr) 081 074 046 044 0.19
v (pr) 092 089 055 055 0.19
v (p7) 049 047 034 035 025
vi (p7) 065 057 069 057 024

average 0.89 083 0.69 0.66
oan 113 380 153 340 1.00

—
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Weights
[e]ele] ]

How much do weights change the posteriors?

20840, 20.600] and 18:3 062:41, 0705 1 and 0.67:3] 100}, 100,12} and 99,97} 47,25.8044 and 2293 3 and 045435 00915, 008251 and 0.04:4 ¢
0. 0 0
— Weighted Unweighted 5 Integrated gbs.
0.12] 025 0.09 3
10 21 12 9 100 105 0 21 R 055 1 Yoa
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Conclusions & Outlook
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Conclusions

m Describing the experimental cross-section requires smaller nucleon
width.

m Binary scaling in TRENTo is strongly disfavored.

m Reduced thickness 7 should be interpreted as an entropy density.
m Scaling behavior of TRENTo is compatible with IP-Glasma.

m Our fit favors a strongly coupled pre-hydrodynamic stage.

m Weighting makes the discrepancies between theory and experiment
better distributed.
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Outlook

m Much improved statistics: can

- 2 1.0
now fit to p(v2{2}, {p7)) PRELIMINARY Trajectum
directly. ~ 05

. . . N

m Bayesian analysis with 3+1D s H\I/{\H\%—H\x/x\}__x\'
simulations. g 00 :
>
m Nuclear structure with %0 and T 05
20Ne.
-1.0
m Interpolating between TRENTo 0 20 40 60 80

scaling and using the IP-Glasma centrality [*]

scaling directly.
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Correlations between parameters
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