Introduction	Nucleon size	Generalized T _R ENTo formula	Strongly coupled pre-hydrodynamic stage	Weights	Conclusions & Outlook
00000000	0000000	00000		0000	00

Data-driven initial conditions for heavy-ion collisions

Govert Nijs

January 25, 2023

Based on:

- GN, van der Schee, 2206.13522
- GN, van der Schee, 2302.xxxxx

= nan

Introduction	Nucleon size	Generalized T _R ENTo formula	Strongly coupled pre-hydrodynamic stage	Weights	Conclusions & Outlook
•0000000	0000000	00000	00000	0000	OO

Trajectum

- New heavy ion code developed in Utrecht/MIT/CERN.
- Contains initial stage, hydrodynamics and ²/₅ ^{0.06}
 freeze-out, as well as an analysis suite.
- Easy to use, example parameter files distributed alongside the source code.
- Fast, fully parallelized.
 - Figure (20k oversampled PbPb events at 2.76 TeV) computes on a laptop in 21h.
 - Bayesian analysis requires O(1000) similar calculations to this one.
- Publicly available at sites.google.com/ view/govertnijs/trajectum/.

Veights Conclusions 0000 00

Components of *Trajectum*

Massachusetts Institute of Technology

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Govert Nijs

Introduction 00000000	Nucleon size 0000000	Generalized T _R ENTo formula 00000	Strongly coupled pre-hydrodynamic stage 00000	Weights 0000	Conclusions & Outlook 00

Hydrodynamics

Define
$$(g^{\mu\nu} = \text{diag}(1, -1, -1, -1))$$
:

$$\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}, \quad \nabla^{\mu} = \Delta^{\mu\nu}\partial_{\nu}, \quad D = u^{\mu}\nabla_{\mu}, \quad \sigma^{\mu\nu} = \nabla^{\langle\mu}u^{\nu\rangle},$$

with $\langle \rangle$ symmetrizing and removing the trace.

• We solve viscous hydrodynamics without currents, i.e.

$$\partial_{\mu}T^{\mu\nu} = 0, \quad T^{\mu\nu} = eu^{\mu}u^{\nu} - (P + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu},$$

• $\pi^{\mu\nu}$ and Π follow the 14-moment approximation:

$$-\tau_{\pi}\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta}D\pi^{\alpha\beta} = \pi^{\mu\nu} - 2\eta\sigma^{\mu\nu} + \delta_{\pi\pi}\pi^{\mu\nu}\nabla \cdot u \\ - \phi_{7}\pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha} + \tau_{\pi\pi}\pi^{\langle\mu}_{\alpha}\sigma^{\nu\rangle\alpha} - \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu}, \\ -\tau_{\Pi}D\Pi = \Pi + \zeta\nabla \cdot u + \delta_{\Pi\Pi}\nabla \cdot u\Pi - \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●三回 のへの

Govert Nijs

Particlization

- At the freeze-out temperature T_{sw} , we turn the fluid back into particles.
- Particles are sampled thermally, and boosted with the fluid velocity u^{μ} .
- We use the PTB prescription to match $\pi^{\mu\nu}$ and Π across the transition, so that $T^{\mu\nu}$ is smooth.
- After particlization, we use SMASH as a hadronic afterburner.

[Pratt, Torrieri, 1003.0413; Bernhard, 1804.06469]

Bayesian analysis

- We want to fit 25 parameters to 653 data points.
- Two problems:
 - Even the fastest models are too slow.
 - The parameter space is large.
- The first problem is solved by replacing the model with an emulator trained on model simulations.
- The second problem is solved by using Markov Chain Monte Carlo (MCMC), which samples the posterior using importance sampling.

ilized T_RENTo formula Stro OO OC

rongly coupled pre-hydrodynamic stage 0000 Weights Conclu 0000 00

Conclusions & Outlook

Data used in our most recent fit: integrated observables

Massachusetts Institute of Technology

Govert Nijs

Generalized T_RENTo formula

Strongly coupled pre-hydrodynamic stage

eights Conclusions & 000 00

Data used in our most recent fit: spectra

Govert Nijs

Generalized T_RENTo formula

Strongly coupled pre-hydrodynamic stage

eights Conclusions & 000 00

Data used in our most recent fit: p_T -differential v_2

Govert Nijs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bulk viscosity over entropy density ζ/s

- Lower bulk viscosity than other groups.
- This is mostly due to the inclusion of p_T -differential observables.
- It is important to fit to as wide a range of data as possible (within reason).
- We varied the highest p_T bin included to check that our result was robust.
- [GN, van der Schee, Gürsoy, Snellings, 2010.15130]

Conclusions & Outlook

Our evolving understanding of the initial state

- Initial conditions took a circle journey since 2016:
 - Small nucleon size at first, then larger, now small again.
 - Energy deposition went from $T^{00} \propto (T_A T_B)^{2/3}$ to $T^{00} \propto \sqrt{T_A T_B}$, and now back to $T^{00} \propto (T_A T_B)^{2/3}$.
 - Pre-hydrodynamic stage increased in complexity from no dynamics, to free streaming, and now to a parameterized interpolation between weak and strong coupling.
- Progress was enabled by Bayesian analysis.
- We focus on the latest of these analyses: *Trajectum*-22.

[Giacalone, 2208.06839]

Govert Nijs

T_RENTo initial conditions

Nucleons A and B become wounded with probability

$$P_{ ext{wounded}} = 1 - \exp\left(-\sigma_{gg}\int d\mathbf{x}\,
ho_A(\mathbf{x})
ho_B(\mathbf{x})
ight), \quad
ho_A \propto \exp\left(rac{-|\mathbf{x}-\mathbf{x}_A|^2}{2w^2}
ight).$$

Each wounded nucleon desposits energy into its nucleus's *thickness* function $\mathcal{T}_{A/B}$:

$$\mathcal{T}_{A/B} = \sum_{i \in ext{wounded } A/B} \gamma \exp(-|\mathbf{x} - \mathbf{x}_i|^2/2w^2),$$

with γ drawn from a gamma distribution with mean 1 and standard deviation $\sigma_{\rm fluct}.$

Actual formulas slightly modified because each nucleon has n_c constituents.

[Moreland, Bernhard, Bass, 1412.4708, 1808.02106]

The cross-section σ_{AA} for different nucleon widths

- The cross-section depends strongly on the nucleon width w and the centrality normalization cent_{norm}.
- ALICE finds: 7.67 ± 0.24 b.
- Cross-section measurement seems to require smaller w than earlier analyses.
- Basic observable: models should get this right.

[ALICE, 2204.10148; ALICE-PUBLIC-2022-004]

・ロト ・聞ト ・ヨト ・ヨト

Nucleon size 0000000

$\rho(v_2^2, \langle p_T \rangle)$ for different nucleon widths

- The correlation between v_2^2 and $\langle p_T \rangle$ is sensitive to the nucleon width w.
- Smaller *w* is preferred.
- This is a statistically challenging observable. [Giacalone, Schenke, Shen, 2111.02908] ◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三回■ のへの

Technolog

EL SQA

Including the pPb and PbPb cross sections in the analysis

- Including the pPb and PbPb cross sections in the fit lowers w from 1 fm to 0.6 fm.
- Smaller width is now compatible with our knowledge of the proton.
- Result is robust under various fitting scenarios.

[ALICE, 2204.10148; ALICE-PUBLIC-2022-004; CMS, 1509.03893]

itrongly coupled pre-hydrodynamic stage

ghts Conclusions & (00 00

Implication for viscosities

- Smaller nucleons imply larger radial flow.
- Specific bulk viscosity ζ/s increases to compensate.
- Including σ_{AA} reverses the preferred slope of specific shear viscosity η/s.
- Similar findings in IP-Glasma based Bayesian analysis presented at Quark Matter. [Heffernan, Jeon, Gale, Paquet, to appear]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ELE NOR

Govert Nijs

Implication for $\rho(v_2^2, \langle p_T \rangle)$ (ALICE)

- We can use the full posterior to propagate uncertainties from parameters to observables.
- Much improved agreement with ALICE for $\rho(v_2^2, \langle p_T \rangle)$.

Govert Nijs

trongly coupled pre-hydrodynamic stage

nts Conclusions & Ou O OO

Implication for $\rho(v_2^2, \langle p_T \rangle)$ (ATLAS)

- Still some tension with ATLAS:
 - Kinematic cuts are different, probably needs 3+1D simulations to resolve.
 - Important to match the precise experimental procedure.

Govert Nijs

The TRENTo phenomenological ansatz

• The standard T_RENTo formula combines thickness functions of the two nuclei \mathcal{T}_A and \mathcal{T}_B into a *reduced thickness* \mathcal{T} , interpreted as an energy density:

• Binary scaling $T = T_A T_B$ is not available.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ ののべ

Govert Nijs

The power of Bayesian <u>analysis</u>

- Can test theories for the initial state with TRENTO, in this case by comparing their scaling behavior.
- General workflow for testing theories/questions:
 - Introduce parameter(s) which parameterize the question.
 - Confront the generalized model with data using Bayesian analysis.
- Read off the posterior distribution for the parameter(s). [Bernhard, 1804.06469] ◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ ののべ

Institute of Technolog

Govert Niis

Introduction	Nucleon size	Generalized T _R ENTo formula	Strongly coupled pre-hydrodynamic stage	Weights	Conclusions & Outlook
00000000	0000000	00●00	00000	0000	00

The q parameter

We make the following modification to the TRENTo formula:

$$\mathcal{T} \propto \left(rac{\mathcal{T}_A^p + \mathcal{T}_B^p}{2}
ight)^{q/p},$$

introducing the parameter q.

- We now include *binary scaling* as a limit when p = 0, q = 2.
- Assuming approximate conformality of the equation of state, we can also interpret the right hand side as an *entropy density* by setting q = 4/3.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

itrongly coupled pre-hydrodynamic stage

Weights Conclusio 0000 00

Posterior distribution for q

- Binary scaling (q = 2) is strongly disfavored.
- Fixing the nucleon width w at different values has a large effect on the fitted value for q.
- Fixing w = 0.4 fm favors $q \approx 4/3$.
- Weighted distribution is close to w = 0.4 fm distribution.

trongly coupled pre-hydrodynamic stage

Weights Conclusio

Comparing to IP-Glasma

- This corresponds to q = 1.5.
- IP-Glasma is compatible with our posterior.

Data-driven initial conditions for heavy-ion collisions

[Borghini et al., 2209.01176]

Strongly coupled pre-hydrodynamic stage: early effort

 In AdS/CFT simulations of the initial stage, the shear stress and bulk pressure quickly relax to their 'hydro' values:

$$\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu}, \quad \Pi = -\zeta\nabla \cdot u.$$

- In free streaming however, the initialization of π^{µν} and Π is qualitatively different.
- Use free streaming velocity as a proxy for this difference.

[van der Schee, Romatschke, Pratt, 1307.2539; GN, van der Schee, Gürsoy, Snellings, 2010.15134]

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三回■ のへの

Govert Nijs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Free streaming pre-hydrodynamic stage

- T_RENTo creates matter at proper time $\tau = 0^+$.
- Propagate the matter using free streaming:

$$T^{\mu
u}(x, y, au_{\text{hyd}}) = rac{1}{ au_{\text{hyd}}} \int d\phi \, \hat{
ho}^{\mu} \hat{
ho}^{
u} \mathcal{T}(x - au_{\text{hyd}} \cos \phi, y - au_{\text{hyd}} \sin \phi),$$

with

$$\hat{\pmb{\rho}}^{\mu} = \left(egin{array}{cc} 1 & \cos\phi & \sin\phi \end{array}
ight),$$

giving us the stress tensor $T^{\mu
u}$ at proper time $au= au_{
m hyd}.$

- Here τ_{hyd} is the time at which hydrodynamics is started.
- The factor $1/\tau_{hyd}$ is due to longitudinal expansion.

Introduction	Nucleon size	Generalized T _R ENTo formula	Strongly coupled pre-hydrodynamic stage	Weights	Conclusions & Outlook
00000000	0000000	00000		0000	OO

The *r*_{hyd} parameter

We compute the hydrodynamic values for π^{μν} and Π explicitly from the velocity u^μ:

$$\pi^{\mu
u}_{\mathsf{hyd}} = 2\eta\sigma^{\mu
u}, \qquad \Pi_{\mathsf{hyd}} = -\zeta
abla \cdot u.$$

We then mix the hydrodynamic values with the free streaming values and initialize hydrodynamics with

$$\begin{split} \pi^{\mu\nu} &= r_{\rm hyd} \pi^{\mu\nu}_{\rm hyd} + (1 - r_{\rm hyd}) \pi^{\mu\nu}_{\rm fs}, \\ \Pi &= r_{\rm hyd} \Pi_{\rm hyd} + (1 - r_{\rm hyd}) \Pi_{\rm fs}, \end{split}$$

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ ののべ

with $r_{hyd} \in [0, 1]$ interpolating between the two scenarios.

Need to go to second order

- Previous scheme fails: combination of large T_RENTo norm *N*, small hydro initialization time τ_{hyd} and large specific shear viscosity η/s causes extreme particle yields, ruining the emulator.
- Need to go to second order, which penalizes large initial values for $\pi^{\mu\nu}$ and Π .
- Use full 14-moment approximation:

$$\begin{aligned} -\tau_{\pi}\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta}D\pi^{\alpha\beta} &= \pi^{\mu\nu} - 2\eta\sigma^{\mu\nu} + \delta_{\pi\pi}\pi^{\mu\nu}\nabla\cdot u \\ &- \phi_{7}\pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha} + \tau_{\pi\pi}\pi^{\langle\mu}_{\alpha}\sigma^{\nu\rangle\alpha} - \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu}, \\ -\tau_{\Pi}D\Pi &= \Pi + \zeta\nabla\cdot u + \delta_{\Pi\Pi}\nabla\cdot u\Pi - \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}, \end{aligned}$$

where we set the left hand side to zero, and solve for $\pi^{\mu\nu}$ and $\Pi.$

Strongly coupled pre-hydrodynamic stage

e Weights Co 0000 0

Conclusions & Outlook

Posterior distribution for r_{hydro}

- r_{hyd} = 1 is strongly favored over r_{hyd} = 0, implying a preference for strongly coupled pre-hydrodynamic stage.
- Preference also becomes stronger for larger hydro initialization time τ_{hyd}.
- One can see this as model averaging, albeit cheaper since we can interpolate between models with a continuous parameter.

Govert Nijs

trongly coupled pre-hydrodynamic stage

Weights Concl •000 00

Conclusions & Outlook

Why weights?

- Higher p_T, higher centralities are harder to model theoretically.
- Experimental correlation matrix is not available.
 - Figure shows 1σ and 2σ regions for $\rho \in \{0, 0.9, -0.9, 0.99\}$, with standard deviations the same.
 - Same difference between theory and experiment can be within 1σ or outside of 2σ depending on ρ.
 - Correlated observable classes can be over/underimportant for the Bayesian analysis.

Definition of weights

In the bayesian analysis, the probability of the data given the parameter point x is given by:

$$P(D|x) = \frac{1}{\sqrt{(2\pi)^m \det \Sigma}} \exp\left(-\frac{1}{2}(y - y_{\exp})^T \Sigma^{-1}(y - y_{\exp})\right),$$

with y the vector of observables computed from x, y_{exp} the vector of the corresponding experimental data, and Σ the combined theory/experiment covariance matrix.

We define weights by replacing

$$P(D|x) = rac{1}{\sqrt{(2\pi)^m \det \Sigma}} \exp\left(-rac{1}{2}(y-y_{\exp})^T \omega \Sigma^{-1} \omega (y-y_{\exp})
ight),$$

where ω is the diagonal matrix containing the weight for each observable.

Govert Nijs

Choice of weights

- We choose for weights ω :
 - 1/2 for every particle identified observable.
 - 1/2 for p_T-differential observables, and an additional
 - $(2.5 p_T[GeV])/1.5$ if $p_T > 1$ GeV.
 - (100 c[%])/50 if the centrality class c is beyond 50%.
- Weighting only worsens the average discrepancy slightly.
- Distribution of discrepancies makes more sense.

	$\langle (y_{theo}) \rangle$	$\bar{\omega}$			
	$\sigma_{\rm AA}$ & ω	ω	$\sigma_{\sf AA}$	neither	
$dN_{\rm ch}/d\eta$	0.55	0.60	1.23	1.22	1.00
$dN_{\pi^{\pm},k^{\pm},p^{\pm}}/dy$	0.76	0.70	0.60	0.57	0.48
$dE_T/d\eta$	1.59	1.51	0.82	0.77	0.48
$\langle p_T \rangle_{\mathrm{ch},\pi^{\pm},K^{\pm},p^{\pm}}$	0.66	0.60	0.88	0.72	0.46
$\delta p_T / \langle p_T \rangle$	0.56	0.62	0.51	0.58	0.49
$v_n\{k\}$	0.58	0.51	0.54	0.49	1.00
$d^2 N_{\pi^{\pm}}/dy dp_T$	1.19	1.07	0.86	0.92	0.20
$d^2 N_{K^{\pm}}/dy dp_T$	1.41	1.27	0.79	0.73	0.20
$d^2 N_{p^{\pm}}/dy dp_T$	1.35	1.21	0.73	0.67	0.25
$v_{2}^{\pi^{\pm}}(p_{T})$	0.81	0.74	0.46	0.44	0.19
$v_2^{K^{\pm}}(p_T)$	0.92	0.89	0.55	0.55	0.19
$v_2^{p^{\pm}}(p_T)$	0.49	0.47	0.34	0.35	0.25
$v_3^{\pi^{\pm}}(p_T)$	0.65	0.57	0.69	0.57	0.24
average	0.89	0.83	0.69	0.66	
σ_{AA}	1.13	3.80	1.53	3.40	1.00

Strongly coupled pre-hydrodynamic stage

Weights Conclusion

How much do weights change the posteriors?

Govert Nijs

Conclusions

- Describing the experimental cross-section requires smaller nucleon width.
- Binary scaling in TRENTo is strongly disfavored.
- Reduced thickness \mathcal{T} should be interpreted as an entropy density.
- Scaling behavior of T_RENTo is compatible with IP-Glasma.
- Our fit favors a strongly coupled pre-hydrodynamic stage.
- Weighting makes the discrepancies between theory and experiment better distributed.

Institute of

Outlook

- Much improved statistics: can now fit to p(v₂{2}², ⟨p_T⟩) directly.
- Bayesian analysis with 3+1D simulations.
- Nuclear structure with ¹⁶O and ²⁰Ne.
- Interpolating between T_RENTo scaling and using the IP-Glasma scaling directly.

イロト イヨト イヨト イヨト

Correlations between parameters

Institute of Technology

Govert Nijs