Current Capabilities and Future Plans for Lepton Scattering Uncertainties in NuWro and their Implications for Global Neutrino Oscillation Experiments







Kajetan Niewczas

#### Nuclear response



#### Outline

- (6) Brief characteristics of NuWro
- (2) Challenges in modeling quasielastic scattering
- (4) Understanding the current meson-exchange currents implementations
- (3) Enhancing sensitivity to angular distributions in single-pion production
- (5) Testing the cascade model against nuclear transparency
- (1) The future beyond franken-models

#### Standard NuWro assumptions

- Nuclei are composed of nucleons
- One-photon exchange (BA, IA)
- Plane-wave impulse approximation
- $\circ~$  In-medium propagation ( $\bar{\lambda} \ll d < \lambda < R)$

## More WroNG assumptions

- Not fully relativistic, no distorted waves
- Factorization of the inclusive cross section
- Frankenstein; or, The Modern Prometheus

- $\rightarrow$  **Nucleon** degrees of freedom
- $\rightarrow$   $(L_{\mu\nu}W^{\mu\nu})$  separation
- $\rightarrow$  ( $\sigma_{\nu A} \propto P(E,p)\sigma_{\nu N}$ ) factorization
- $\rightarrow$  Cascade model for inelastic FSI





#### Intranuclear cascade

- Propagates particles through the nuclear medium
- **Probability** of passing a distance  $\lambda$ :

$$\mathsf{P}(\lambda) = e^{-\lambda/\tilde{\lambda}}$$

where 
$$\tilde{\lambda} \equiv (\rho \sigma)^{-1}$$
 and  $\rho$  - local density  $\sigma$  - cross section

 $\rightarrow\,$  Implemented for nucleons, pions and kaons

T. Golan, C. Juszczak, J.T. Sobczyk, Phys.Rev. C 86 (2012) 015505



#### Uncertainties of concern

Coming from **models**:

- Form factors, nuclear dynamics, and in-medium effects ...
- Model validity, meaningful degrees of freedom ...

#### Coming from event generators:

- Model implementations, simplifications ...
- Double counting of physical effects and dynamics ...

#### Plane-wave impulse approximation

$$\frac{d^2\sigma}{d\omega d|\vec{q}|} = K \int dE \ d^3\vec{p} \ S(E,|\vec{p}|) \ L_{\mu\nu} H^{\mu\nu}$$

- $\rightarrow \,$  effective optical potential prescription
- or the Llewellyn-Smith formula

$$\frac{d\sigma}{dQ^2} = K \left[ A(Q^2) - B(Q^2) \left( \frac{s - u}{M^2} \right) + C(Q^2) \left( \frac{s - u}{M^2} \right)^2 \right]$$

- $\rightarrow~$  after boosting to the N-rest frame
- $\rightarrow \,$  folded with nuclear model distributions





 $\rightarrow$  FG and LFG do not reproduce the inclusive electron results





 $\rightarrow$  For inclusive cross sections, the correction is fine

| Kajetan Niewczas | INT Workshop |
|------------------|--------------|
|------------------|--------------|



 $\rightarrow$  The procedure is inconsistent for exclusive observables

| Kajetan Niewczas | INT Workshop |
|------------------|--------------|
| Rajetan Niewczas | INT WORKSTOP |



**Projectiles:** baryons (nucleons,  $\Lambda$ ,  $\Sigma$ ), mesons (pions and Kaons) or light nuclei (A  $\leq$  18). No neutrinos yet! We use neutrino vertex from **W** NuWro (widely used  $\nu$ -nucleus MC generator).

Flexible tool: has been implemented in GEANT4 and GENIE

De-excitation: ABLA, SMM, GEMINI

We will use **ABLA**, since it proved to work for the **light nuclei** ( Phys. J. Plus 130, 153 (2015))

First neutrino simulation results: Phys.Rev.D 106, 3 (2022)

Anna Ershova, NuFACT 2023



Fig. 7. Energy spectrum of the <sup>12</sup>C(e, e'p) reaction before and after the radiative corrections.

Anna Ershova, NuFACT 2023



 $E_x^{\exp} = E_{missing} - (M_A - M_{A-1} - M)$ 

- A constant shift of missing energy by ~15.4 MeV leads to non-physical, negative values
- We use experimental data (J. Phys. G: Nucl. Part. Phys. 16 507 (1999)) to simulate discrete levels
- We assume all strength below the peak comes from the symmetric  $1\mathbf{p}_{3/2}$  shell

Anna Ershova, NuFACT 2023

 $M_{A-1}$  is the rest mass of the A-1 nucleus  $M_A$  is the rest mass of the initial A nucleus M is the rest mass of the target nucleon  $E_{missing}$  is the missing energy For interaction on carbon,

 $M_A-M_{A-1}-M=15.4~{\rm MeV}$ 



Kajetan Niewczas

16 / 55



**Figure 22.** Excitation-energy spectrum of <sup>11</sup>B observed in the reaction <sup>12</sup>C(e,e'p). Both negative and positive-parity final states are shown. Anna Ershova, NuFACT 2023

Kajetan Niewczas



For the continuous spectrum part, we can calculate excitation energy as:

 $E_x = M_R^* - M_R$ , where:

$$M_R^* = \sqrt{(E_k + M_A - E_{k'} - E_{p'})^2 - |\vec{p}_{missing}|^2}$$

Otherwise, we model 3 discrete peaks with strength of 79%, 12%, and 9% (p-shell)

 $M_R^*$  is the mass of the excited remnant  $M_R$  is the rest mass of the remnant  $T_R$  is the kinetic energy of the excited remnant

 $p_{missing}$  is the missing momentum



Anna Ershova, NuFACT 2023



FIG. 11: Particles leaving the nucleus in events without proton in the final state in INCL.

In the last paper: Phys.Rev.D 106, 3 (2022) we show the nuclear cluster production for the first time in FSI.

Now we study the impact of the subsequent **de-excitation modelling**, that predicts **more nuclear clusters**.

#### Anna Ershova, NuFACT 2023

# $$\label{eq:NuWro} \begin{split} NuWro + INCL + ABLA \\ \text{INCL} + \text{ABLA simulation features massive difference in nucleon kinematics in comparison to} \\ \text{NuWro} \end{split}$$



A. Ershova et al., arXiv:2309.05410 (accepted for publication in PRD)



# Phenomenological 2p2h model

A simultaneous fit to the T2K and MINERvA CC0 $\pi$  data

- $\rightarrow\,$  ansatz: the whole error comes from 2p2h
- $\rightarrow$  Valencia 2p2h model as the prior  $(|\vec{q}| \leq 1.2 \text{ GeV}/c)$

| Experiment                | D.O.F. | Non-scaled | Scaled |
|---------------------------|--------|------------|--------|
| MINERvA $\nu_{\mu}$       | 156    | 462.8      | 358.2  |
| MINERVA $\bar{\nu_{\mu}}$ | 60     | 65.1       | 62.2   |
| T2K $\nu_{\mu}$           | 58     | 143.7      | 83.9   |
| T2K $\bar{\nu_{\mu}}$     | 58     | 101.2      | 98.0   |
| Sum                       | 332    | 772.8      | 619.6  |



 $\rightarrow$  the data favor contributions from higher momentum transfers

T. Bonus, J.T. Sobczyk, M. Siemaszko, and C. Juszczak, Phys.Rev. C 102 (2020) 015502

| Kajetan Niewczas |  |
|------------------|--|
|------------------|--|

# Single-pion production

 $\nu + N \rightarrow l^- + N' + \pi$ 

- **Single-pion production** (SPP) is an essential dynamics for accelerator-based experiments
- There many measurements sensitive to pion angular distributions ( $\cos \theta_{\pi}$ )

 $\nu + N \rightarrow l^- + (\Delta \rightarrow N' + \pi)$ 

NuWro models the ∆-resonance excitation
→ it decays according to the ANL/BNL angular fits

 $\frac{\mathsf{d}^2 \sigma_\Delta}{\mathsf{d}Q^2 \mathsf{d}W} \rightarrow \frac{\mathsf{d}^4 \sigma_\pi}{\mathsf{d}Q^2 \mathsf{d}W} \times \frac{\mathsf{d} f_\Delta(Q^2)}{\mathsf{d}\Omega_\pi^*}$ 

 $\circ~$  The nonresonant background is extrapolated from the DIS formalism into the lower regions of W,  $Q^2$ 



FIG. 15. Distribution of events in the pion polar angle  $\cos\theta$  for the final state  $\mu^- p \pi^+$ , with  $M(p \pi^+) < 1.4$ GeV. The curve is the area-normalized prediction of the Adler model.

Radecky et al. [ANL Collaboration], Phys.Rev. D 25 (1982) 1161

#### Pion angular distributions

• Default NuWro

• Free nucleon

• Fixed kinematics:

E = 1 GeV $Q^2 = 0.1 \text{ GeV}^2$ W = 1230 MeV



# Ghent low energy model of SPP

- The model of Ref. [R. González-Jiménez et al., Phys.Rev. D 95 (2017) 113007]
- The low-energy part based on the Valencia model



- Bottleneck for the implementation is the code execution time
- $\circ~$  Adding a nuclear model will further increase the complexity of the implementation

Kajetan Niewczas

#### Implementation

• Working in the Adler frame, generating an event requires the value of

 $\frac{\mathsf{d}^4\sigma}{\mathsf{d}Q^2\mathsf{d}W\mathsf{d}\Omega^*_\pi} = \frac{\mathcal{F}^2}{(2\pi)^4}\frac{k^*_\pi}{k^2_l}\left[A + B\cos(\varphi^*_\pi) + C\cos(2\varphi^*_\pi) + D\sin(\varphi^*_\pi) + E\sin(2\varphi^*_\pi)\right]$ 

- $\rightarrow~$  that is **time consuming** and the MC sampling has an **efficiency** of 10 15 %
- Sampling Q<sup>2</sup>, W from precomputed arrays allows to build the muon kinematics
- Then,  $\cos \theta_{\pi}^*$  is given by the A function that is mostly **parabolic** (fit using 3-7 points)
- Finally, for other variables fixed,  $\phi_{\pi}^*$  is given by an **analytical expression**

$$\frac{d^2\sigma}{dQ^2dW} \xrightarrow{\text{fix } Q^2, W} \frac{d^3\sigma}{dQ^2dWd\cos\theta_\pi^*} \xrightarrow{\text{fix } \cos\theta_\pi^*} \frac{d^4\sigma}{dQ^2dWd\Omega_\pi^*} \xrightarrow{\text{fix } \varphi_\pi^*} \text{event...}$$

K.N. et al., Phys.Rev.D 103 (2021) 053003

| Kajetan Niewczas |  |
|------------------|--|
|------------------|--|

#### Performance

We propose:

- **4D algorithm**: sampling  $(Q^2, W, \cos \theta_{\pi}^*, \phi_{\pi}^*)$  together (1 cross section calculation per accepted event)
- **3D algorithm:** sampling  $(Q^2, W, \cos \theta_{\pi}^*)$  together +  $\phi_{\pi}^*$  analytical (2 cross section calculation per accepted event)
- **2D algorithm:** sampling  $(Q^2, W)$  from tables +  $\cos \theta_{\pi}^*$  from k points or from tables +  $\phi_{\pi}^*$  analytical (k + 1 cross section calculation per accepted event)
- $\rightarrow \nu n$  scattering requires one more code evaluation because it has two channels (p +  $\pi^0$ , n +  $\pi^+$ )



#### Pion angular distributions

• Ghent LEM

- Free nucleon
- Fixed kinematics:

E = 1 GeV $Q^2 = 0.1 \text{ GeV}^2$ W = 1230 MeV



Kajetan Niewczas

### Hybrid model on the nucleus



R. González-Jiménez et al., Phys.Rev.D 97 (2018) 013004; *O.* Yan et al., in preperation

Kajetan Niewczas

November 3th 2023

#### Nuclear transparency

#### Definition

Nuclear transparency is the average **probability** for a knocked-out **proton** to **escape** the nucleus **without significant reinteraction**.

e.g. measured for Carbon: T  $\simeq$  0.60 [D. Abbott *et al.*, PRL 80 (1998), 5072]



#### Nuclear transparency



K. Niewczas, J. Sobczyk, Phys.Rev. C 100 (2019) 015505

Kajetan Niewczas

#### Nuclear transparency



K. Niewczas, J. Sobczyk, Phys.Rev. C 100 (2019) 015505

INT Workshop

#### The future beyond franken-models...

with UNIVERSITEIT GENT

### Quasielastic and $\Delta$ regions



 $\rightarrow$  Mostly influenced by **one- and two-body physics** at nucleon and  $\Delta$  levels

#### Kinematics



Two-nucleon knock-out (2p2h)



Inclusive cross section

Electron scattering Neutrino scattering  $\frac{d\sigma^{\gamma}}{d\epsilon_{f}d\Omega_{f}} = 4\pi\sigma^{\text{Mott}}[\mathcal{V}_{L}^{e}\mathcal{W}_{L} + \mathcal{V}_{T}^{e}\mathcal{W}_{T}] \qquad \qquad \frac{d\sigma^{W}}{d\epsilon_{f}d\Omega_{f}} = 4\pi\sigma^{W}\zeta[\mathcal{V}_{CC}\mathcal{W}_{CC} + \mathcal{V}_{CL}\mathcal{W}_{CL} + \mathcal{V}_{LL}\mathcal{W}_{LL} + \mathcal{V}_{T}\mathcal{W}_{T} + h\mathcal{V}_{T'}\mathcal{W}_{T'}]$ 

 $\mathcal{V}_x$  - leptonic factors;  $\mathcal{W}_x$  - hadronic responses; L/T - longitudinal/transverse relative to  $\vec{q}$ 

| Kajetan Niewczas | INT Workshop | November 3th 2023 | 35 / 55 |
|------------------|--------------|-------------------|---------|

#### Nuclear mean-field model

- → Nucleons exhibit discrete energy states characteristic of the mean-field potential picture
- → The redistribution of shell strength is caused by the nucleon-nucleon correlations
- → Residual nuclei can be excited above the two-nucleon knock-out threshold



J. Mougey, Nucl. Phys. A 335 (1980) 35

# Our nuclear framework

- $\rightarrow$  Nucleons are solutions to the Schrödinger equation in a **mean-field potential**
- → We calculate single-particle states with the Hartree-Fock procedure and SkE2 NN force
- $\rightarrow$  We describe outgoing nucleons as **continuum states** of the nuclear potential





## Impulse approximation

 $\rightarrow$  We evaluate the following hadronic transition currents

$$\mathcal{J}(\vec{r})_{\nu}^{\text{had}} = \langle \, \Psi_{f} \, | \, \hat{\mathcal{J}}(\vec{r})_{\nu}^{\text{had}} \, | \, \Psi_{i} \, \rangle$$

→ The nuclear many-body current is a sum of **one-body operators** 

$$\hat{\jmath}(\vec{r})_{\nu}^{\text{had}} \simeq \hat{\jmath}(\vec{r})_{\nu}^{\text{IA}} = \sum_{j=1}^{A} \hat{\jmath}(\vec{r}_{j})_{\nu}^{[1]} \delta^{(3)}(\vec{r} - \vec{r}_{j})$$

→ We control numerical precision using a **multipole decomposition** 



#### → Comparing to inclusive electron scattering data allows for benchmarking of the model

## Impulse approximation: electron scattering



→ Calculation using **one-body currents** exhibits typical properties

INT Workshop

#### Relativistic corrections



#### Fixing the relativistic position of the quasielastic peak

$$\omega \to \omega \left(1 + \frac{\omega}{2M_N}\right)$$
, then  $\omega_{\mathsf{QE}} = \frac{|\vec{q}|^2}{2M_N} \to \frac{Q^2}{2M_N}$ 

#### Short-range correlations





- $\rightarrow$  First corrections to the **independent-particle model** picture for 1p1h
- $\rightarrow$  Two-body currents also leading to two-nucleon knock-out reactions

Kajetan Niewczas

#### Short-range correlations: electron scattering



 $\rightarrow$  Significant reduction of the longitudinal 1p1h strength and a minor 2p2h contribution

Kajetan Niewczas

November 3th 2023 42

## Meson-exchange currents

Explicit **two-body currents** contributing to both **1p1h** and **2p2h** final-states:



 $\rightarrow \Delta$ **-isobar** degrees of freedom





#### Delta currents



Kajetan Niewczas

#### Consistent modeling of two-body currents: electron scattering



→ Coherent sum of SRC and MEC enhances our predictions

Kajetan Niewczas

#### Consistent modeling of two-body currents: electron scattering



 $\rightarrow$  Two-body currents modify the one-nucleon knock-out responses

Kajetan Niewczas

#### Consistent modeling of two-body currents: neutrino scattering



 $\rightarrow$  **Pronounced**  $\triangle$  **peaks** for both longitudinal and transverse responses

INT Workshop

#### Consistent modeling of two-body currents: neutrino scattering



 $\rightarrow$  SRC provides quenching in the longitudinal and transverse responses

INT Workshop

#### JLab Hall A data



→ The choice of the different central correlation functions modifies the QE peak strength (GD-stronger, VMC-weaker) → Modifying the Δ-propagator governs the overlap between MEC and SPP around the Δ peak (Re Δ-only the real part)

#### JLab Hall A data

<sup>12</sup>C,  $\epsilon_e = 2222 \text{ MeV}, \theta_{e'} = 15.541^{\circ}$ 



 $\rightarrow$  Combining variation in given d.f. provides flexibility in describing QE and  $\triangle$  peaks

#### JLab Hall A data

<sup>12</sup>C,  $\epsilon_e = 2222 \text{ MeV}, \theta_{e'} = 15.541^{\circ}$ 



 $\rightarrow$  We see a significant **negative interference** between the SRC and MEC contributions

| Kajetan Miewczas |
|------------------|
|------------------|

#### Inclusive NuWro implementation



#### Inclusive T2K data



Kajetan Niewczas

INT Workshop

#### Going more exclusive... in neutrino scattering



#### Exclusive two-nucleon knock-out



#### Semi-inclusive two-nucleon knock-out

#### Conclusions

- The current generator methods face significant challenges
- We are moving towards precision **exclusive processes modeling**
- More refined implementation methods become available
- We are **moving forward**, leaving franken-models behind

*You, theoreticians, want consistency. We, experimentalists, want flaxibility.* Stephen Dolan, NuXTract 2023