Nucleon-nucleon scattering from lattice QCD: history, progress, resolutions

Amy Nicholson UNC, Chapel Hill

C I

d

INT Program: Accessing and Understanding the QCD Spectra March 22, 2023

CoSMoN

NN scattering from LQCD

- Build quantitative connection between QCD & nuclear physics
 - requires interplay between LQCD & many-body approaches
 - NN scattering should be a benchmark
 - Phase shifts required for infinite volume matching of NN MEs

Featured in Physics

New Leading Contribution to Neutrinoless Double- β Decay

Vincenzo Cirigliano,¹ Wouter Dekens,¹ Jordy de Vries,² Michael L. Graesser,¹ Emanuele Mereghetti,¹ Saori Pastore,¹ and Ubirajara van Kolck^{3,4}

NN scattering from LQCD

- Build quantitative connection between QCD & nuclear physics
 - requires interplay between LQCD & many-body approaches
 - NN scattering should be a benchmark
 - Phase shifts required for infinite volume matching of NN MEs
- Must have full control over 2-body systems
 - How do we project onto desired states?
 - How do we disentangle signals from closely spaced energy levels?

Potential Method

Two methods for computing phase shifts

Quantization condition:

 $\det \left[F(E, \mathbf{P}, L)^{-1} + \mathscr{K}(E) \right] = 0$

Quantization condition:

det
$$[F(E, \mathbf{P}, L)^{-1} + \mathscr{K}(E)] = 0$$

Known
geometric
function

Spectroscopy + Lüscher Method

Two methods for computing phase shifts

Quantization condition:

det
$$[F(E, \mathbf{P}, L)^{-1} + \mathscr{K}(E)] = 0$$

Known
geometric
function

Quantization condition:

det
$$[F(E, \mathbf{P}, L)^{-1} + \mathscr{K}(E)] = 0$$

Calculate
from lattice
(input)

Two methods for computing phase shifts

D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards and C. E. Thomas, Phys. Rev. D 92, 094502 (2015)

Quantization condition:

det
$$[F(E, \mathbf{P}, L)^{-1} + \mathscr{K}(E)] = 0$$

Calculate
from lattice
(input)

Two methods for computing phase shifts

D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards and C. E. Thomas, Phys. Rev. D 92, 094502 (2015)

- Partial waves mix in cubic volume
- Must truncate partial wave expansion

1. Create the following correlation function:

 $\lim_{t \to \infty} C_{NN}(\mathbf{r}, t) = \psi_0^{\dagger} \mathbf{X} e^{-E_0 t} \mathbf{X} \psi_0(\mathbf{r})$

 $\lim_{t \to \infty} C_{NN}(\mathbf{r}, t) = \psi_0^{\dagger} \mathbf{X} e^{-E_0 t} \mathbf{X} (\psi_0(\mathbf{r}))$

2. Plug NBS wavefunction into Schrödinger Eq. to determine the potential:

 $\left[\frac{\mathbf{p}^2}{2\mu} - H_0\right]\psi_{\mathbf{p}}(\mathbf{r}) = \int d^3r U(\mathbf{r}, \mathbf{r}')\psi_{\mathbf{p}}(\mathbf{r}') \leftarrow$ $\psi_0(\mathbf{r})$

Potential Method

rons to Atomic nuclei

Two methods for computing phase shifts Potential Method to Atomic nuclei from Lattice QCD t=02. Plug NBS wavefunction into Schrödinger Eq. to u determine the potential: $\left|\frac{\mathbf{p}^2}{2\mu} - H_0\right|\psi_{\mathbf{p}}(\mathbf{r}) = \int d^3r' U(\mathbf{r}, \mathbf{r}')\psi_{\mathbf{p}}(\mathbf{r}') \leftarrow$ $\psi_0(\mathbf{r})$

3. Determine scattering phase shifts

Potential Method

In practice:

$$R(\mathbf{r}, t) = \frac{C_{NN}(\mathbf{r}, t)}{\left(C_{N}(\mathbf{r}, t)\right)^{2}}$$

(same type of input as Luscher)

Schrodinger Eq:
$$\left\{-H_0 - \frac{\partial}{\partial t}\right\} R(\mathbf{r}, t) = \int d^3 r' U(\mathbf{r}, \mathbf{r}') R(\mathbf{r}', t)$$

Potential Method

In practice:

Time-dependent version of S.Eq. doesn't require single state saturation

$$R(\mathbf{r}, t) = \frac{C_{NN}(\mathbf{r}, t)}{\left(C_{N}(\mathbf{r}, t)\right)^{2}}$$

(same type of input as Luscher)

Schrodinger Eq:
$$\left\{-H_0 - \frac{\partial}{\partial t}\right\} R(\mathbf{r}, t) = \int d^3 r' U(\mathbf{r}, \mathbf{r}') R(\mathbf{r}', t)$$

Potential Method

In practice:

Time-dependent version of S.Eq. doesn't require single state saturation

$$R(\mathbf{r}, t) = \frac{C_{NN}(\mathbf{r}, t)}{\left(C_{N}(\mathbf{r}, t)\right)^{2}}$$

(same type of input as Luscher)

Schrodinger Eq:
$$\left\{-H_0 - \frac{\partial}{\partial t}\right\} R(\mathbf{r}, t) = \int d^3 r' U(\mathbf{r}, \mathbf{r}') R(\mathbf{r}', t)$$

$$U(\mathbf{r}, \mathbf{r}') = V_C(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}') + \mathcal{O}(\nabla_{\mathbf{r}}^2 / \Lambda^2)$$

Uncontrolled approximation

Potential Method

In practice:

Time-dependent version of S.Eq. doesn't require single state saturation

$$R(\mathbf{r}, t) = \frac{C_{NN}(\mathbf{r}, t)}{\left(C_{N}(\mathbf{r}, t)\right)^{2}}$$

(same type of input as Luscher)

Schrodinger Eq: $\left\{-H_0 - \frac{\partial}{\partial t}\right\} R(\mathbf{r}, t) = \int d^3 r' U(\mathbf{r}, \mathbf{r}') R(\mathbf{r}', t)$

$$U(\mathbf{r},\mathbf{r}') = V_C(\mathbf{r})\delta(\mathbf{r}-\mathbf{r}') + \mathcal{O}(\nabla_{\mathbf{r}}^2/\Lambda^2)$$

Uncontrolled approximation

Nearly continuous phase shifts, only need to eliminate inelastic excited states

History: are there bound states at $m_{\pi} \sim 800 \text{ MeV}$?

Relatively few assumptions....but input energies must be correct!

Long time limit = zero temperature

$$C(t) = A_0 e^{-E_0 t} + A_1 e^{-E_1 t} + A_2 e^{-E_2 t} + A_3 e^{-E_3 t} + \cdots$$

Long time limit = zero temperature

$$C(t) = A_0 e^{-E_0 t} + A_1 e^{-E_1 t} + A_2 e^{-E_2 t} + A_3 e^{-E_3 t} + \cdots$$

Long time limit = zero temperature

$$C(t) = A_0 e^{-E_0 t} + A_1 e^{-E_1 t} + A_2 e^{-E_2 t} + A_3 e^{-E_3 t} + \cdots$$

Calculating Spectra 0.4 0.3 How do we choosel How do we choosel engineer good operators? ective mass plot: 0.2 M_{eff}(t/a) $\equiv \ln \frac{1}{C(t+1)}$ 0.1 excited states $\underset{t \to \infty}{\longrightarrow} E_0$ 0.0 -0.1 5 t/a This is why we benchmark at Long time limit = zero temperature $m_{\pi} \sim 800 { m MeV}$ $A_0e^{-E_0t} + A_1e^{-E_1t} + A_2e^{-E_2t} + A_3e^{-E_3t} + \cdots$ C(t)

Excited state contamination

Inelastic single body

 $\Delta E \sim m_{\pi}$

Ops: different

smearings (or linear

combos thereof)

Excited state contamination

p

Wall vs Smeared (inelastic contributions)

Wall vs Smeared (inelastic contributions)

• Correlator matrix for a set of operators, $\{\mathcal{O}_i\}: C_{ij}(t) = \langle \mathcal{O}_i(t)\mathcal{O}_i^{\dagger}(0) \rangle$

- Correlator matrix for a set of operators, $\{\mathcal{O}_i\}: C_{ij}(t) = \langle \mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0) \rangle$
- Computationally simplest: off-diagonal "point-to-all" (hexaquark to momentum)
 - Matrix Prony (NPLQCD 2009) allows for multiple operators (generally ~2-3) to form linear combinations with better projections onto ground state
 - non-monotonic time dependence

- Correlator matrix for a set of operators, $\{\mathcal{O}_i\}: C_{ij}(t) = \langle \mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0) \rangle$
- Computationally simplest: off-diagonal "point-to-all" (hexaquark to momentum)
 - Matrix Prony (NPLQCD 2009) allows for multiple operators (generally ~2-3) to form linear combinations with better projections onto ground state
 - non-monotonic time dependence
- GEVP:
 - use full correlator matrix and find eigenvectors of

 $C(t_d)v_n(t_d, t_0) = \lambda_n C(t_0)v_n(t_d, t_0)$, then rotate correlator matrix using eigenvectors

- excited state contamination on *n*th eigenvalue ~ $e^{-(E_{N+1}-E_n)t}$
- large operator basis possible
- energies approached from above with time
- highly successful for meson systems

$$\mathcal{L}_{\text{eff}} = \psi^{\dagger} \left(i \partial_{\tau} + \frac{\nabla^2}{2M} \right) \psi + g_0 \left(\psi^{\dagger} \psi \right)^2$$

- Two point-like nucleons interact via contact interactions
 - Valid for energies $< \sim m_{\pi}$ (same

requirements as Luscher)

$$\mathcal{L}_{ ext{eff}} = \psi^{\dagger} \left(i \partial_{ au} + rac{
abla^2}{2M}
ight) \psi + g_0 \left(\psi^{\dagger} \psi
ight)^2$$

- Two point-like nucleons interact via contact interactions
 - \bullet Valid for energies $<\!\!\sim m_{\pi}\,(same$

requirements as Luscher)

• Calculate two-particle transfer matrix, $\mathcal{T}=e^{H}$, with periodic spatial BCs; diagonalize to extract the exact spectrum

$$\mathcal{L}_{ ext{eff}} = \psi^{\dagger} \left(i \partial_{ au} + rac{
abla^2}{2M}
ight) \psi + g_0 \left(\psi^{\dagger} \psi
ight)^2$$

$$\langle pq | \mathcal{T} | p'q' \rangle = \frac{\delta_{pp'} \delta_{qq'} + \frac{g_0}{V} \delta_{p+q,p'+q'}}{\sqrt{\xi(p)\xi(q)\xi(q')\xi(p')}}$$

$$\xi(p) \equiv 1 + \frac{\Delta(q)}{M}$$
Endres, Kaplan, Lee, Nicholson (2011)

- Two point-like nucleons interact via contact interactions
 - \bullet Valid for energies $<\!\!\sim m_{\pi}$ (same

requirements as Luscher)

- Calculate two-particle transfer matrix, $\mathcal{T}=e^{H}$, with periodic spatial BCs; diagonalize to extract the exact spectrum
 - Vary the interaction between the nucleons to investigate systems with and without a bound state

$$\mathcal{L}_{ ext{eff}} = \psi^{\dagger} \left(i \partial_{ au} + rac{
abla^2}{2M}
ight) \psi + g_0 \left(\psi^{\dagger} \psi
ight)^2$$

$$\langle pq | \mathcal{T} | p'q' \rangle = \frac{\delta_{pp'} \delta_{qq'} + \frac{g_0}{V} \delta_{p+q,p'+q'}}{\sqrt{\xi(p)\xi(q)\xi(q')\xi(p')}}$$

$$\xi(p) \equiv 1 + \frac{\Delta(q)}{M}$$
Endres, Kaplan, Lee, Nicholson (2011)

- Two point-like nucleons interact via contact interactions
 - \bullet Valid for energies $<\!\!\sim m_{\pi}\,(same$

requirements as Luscher)

- Calculate two-particle transfer matrix, $\mathcal{T}=e^{H}$, with periodic spatial BCs; diagonalize to extract the exact spectrum
 - Vary the interaction between the nucleons to investigate systems with and without a bound state
- \bullet Form correlation functions via $C(t) = (e^{\rm H})^{\iota}$
 - Investigate correlation functions for various different (elastic) ops for different physical scenarios

$$\mathcal{L}_{ ext{eff}} = \psi^{\dagger} \left(i \partial_{ au} + rac{
abla^2}{2M}
ight) \psi + g_0 \left(\psi^{\dagger} \psi
ight)^2$$

$$\langle pq | \mathcal{T} | p'q' \rangle = \frac{\delta_{pp'} \delta_{qq'} + \frac{g_0}{V} \delta_{p+q,p'+q'}}{\sqrt{\xi(p)\xi(q)\xi(q')\xi(p')}}$$

$$\xi(p) \equiv 1 + \frac{\Delta(q)}{M} \qquad \text{Endres, Kaplan, Lee,} \\ \text{Nicholson (2011)}$$

No bound state

GEVP: 10 momentum ops

No bound state

Off-diagonal: hexaquark -> momentum

Physical:

Bound state

GEVP: 10 momentum ops

Off-diagonal: hexaquark -> momentum

I. This is not the behavior seen in LQCD hexaquark calculations - they look more like the situation shown previously for a system with no physical bound state

I. This is not the behavior seen in LQCD hexaquark calculations - they look more like the situation shown previously for a system with no physical bound state

2. Even if the system has a physical deeply bound state the hexaquark correlator approaches the ground state very slowly - momentum state variational far superior

More recent Baryonbaryon calculations: GEVP

More recent Baryonbaryon calculations: GEVP

NPLQCD GEVP (2022)

NPLQCD GEVP: arXiv:2108.10835

Off-diagonal hexaquark correlators

On the CLS C103 ensemble, we see no difference in g.s. energy using off-diagonal hexaquark correlator; previously some of us did find deep bound state using hexaquark ops on same configs as NPLQCD - is the deep bound state an artifact of particular quark smearings or discretizations?

HALQCD Potential Method

etel ninary. CLS ensemble: $m_{\pi} \sim 714$ MeV, a ≈ 0.086 fm, L = 48 Wall quark sources

1 bound

 $T \sim$

bound state : $\lim a \cot \delta < 0$

no bound state : lim

 $T \sim 1$

bound state : $\lim a \cot \delta < 0$

no bound state : lim

H dibaryon: $a \rightarrow 0$ universality (PRELIMINARY)

 $m_{\pi} = m_K = m_{\eta} \approx 420$ MeV.

Jeremy R. Green,

Andrew D. Hanlon, Parikshit M. Junnarkar, Hartmut Wittig

NN scattering from LQCD

- Controversy between methods: working to benchmark at m_π ~ 800 MeV
- Preponderance of evidence now shows that there is no bound state at heavy pion mass
- Hexaquark and off-diagonal correlators are not necessary, and can be misleading
- Preliminary results show that the HALQCD
 potential method agrees well with Lüscher at low
 momenta
 - Possible systematics at higher q²
- Discretization effects appear to be non-negligible

Ben Hörz (Intel) Dean Howarth (LLNL) Enrico Rinaldi (RIKEN) Andrew Hanlon (BNL) Chia Cheng Chang (RIKEN/LBNL) Christopher Körber (Bochum/LBNL) Evan Berkowitz (Jülich) John Bulava (DESY) M.A. Clark (NVIDIA) Wayne Tai Lee (Columbia) Kenneth McElvain (LBNL) Colin Morningstar (CMU) **Amy Nicholson (UNC)** Pavlos Vranas (LLNL) André Walker-Loud (LBNL)

