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for the MSL EOS are displayed in the right panel of Fig. 3. Doing so naturally introduces
correlation between J and L; in the right panel of Fig. 2 we display the correlation obtained
in this way for the MSL model. It is fit by J = 20.53 + 0.207L. For reference, the correla-
tions obtained directly from the PNM calculations of HS and GCR, using the PA (Eq. (2))
with E0 = �16 MeV to obtain J from EPNM(n0), are depicted in Fig. 3; although offset
slightly from the MSL results, their slopes are similar. A similar correlation is obtained
from the Hugenholtz-Van-Hove (HVH) theorem which predicts a relation between J and L
whose uncertainty can be related to global nucleon optical potentials [63]

One experimental probe of the symmetry energy is the measurement of neutron skins
of nuclei. This probes the symmetry energy at densities around n = 0.1fm�3; thus many
models fix the symmetry energy at this density. In the right panel of Fig. 3 we show the
MSL PNM EOSs constrained by S(0.1fm�3) = 26 MeV; varying L then produces a steeper
correlation with J , also shown in the right panel of Fig. 2; J = 29.0 + 0.1L. It is worth
noting that increasing the density at which one fixes the symmetry energy in a given model,
increases the slope in the J-L plane.

Similar correlations are obtained from two relativistic mean field models [70, 71] and
from a best fit to a wide selection of model predictions of J and L [72], also shown in the
left panel of Fig. 2. Finally we also show correlations that emerge from nuclear mass fits
[64, 65] and analysis of data from heavy ion collisions [53].

In what follows we shall use sequences of MSL EOSs generated by varying L with a
variety of constraints on J : the sequence generated keeping J fixed will be labelled, e.g.,
‘J35’; the sequence generated by fixing the low density PNM EOS will be labelled the
‘PNM’ sequence; and the sequence generated by fixing S(0.1fm�3) = 26 MeV will be
labelled the ‘S0.1’ sequence. The model correlations in the right panel of Fig. 2 overlap in
the region 25<L<70 MeV, in line with the most recent experimental results. By combining
the MSL ‘PNM’ constraint with the requirement that 25<J<35 MeV and L>25MeV we
obtain a region in the J-L plane which we shall refer to as our ‘baseline’ region.

2.3. Correlations with neutron star properties

Some useful correlations of symmetry energy parameters with basic neutron star properties
have been established, which we review here; more details can be found in the following
references: [11, 70, 72, 80, 81]

• The pressure of neutron star matter in beta-equilibrium at n0 including the electron
contribution can be approximated [11, 81]

PNS(n0) ⇤
n0

3
L+ 0.048n0

�
J

30

⇥3�
J � 4

3
L

⇥
, (7)

where the second term provides a correction of only 2-3% for L = 25 MeV, rising to 10-
20% for L = 115 MeV, with J over the range 25 - 35 MeV. At densities slightly above or
below this, extra terms are introduced, but the leading order will remain the one proportional
to L alone.
• The radius of a neutron star is found to correlate with the pressure at a fiducial density

Lattimer,Prakash;	astro-ph/0002232	
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Collective	isovector	dipole	excitations	(PDR,	GDR)	Neutron	skin	thickness	
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Parity-violating	electron	scattering	 Proton	inelastic	scattering	
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Density	Functional	Theory	(e.g.	Skyrme)	

Local	interaction	

Density	dependent	

3	body	

Gradient…	

Used	in	a	variational	principle	on	total	energy	leads	to	coupled	
SchrÖdinger-like	equations	for	the	wavefunctions.	
Solutions	converge	to	ground	state	(Hohenberg-Kohn	theorem)		
	

Calculating	nuclear	structure	
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Bao-An	Li	et	al	arxiv:2105.04629	

Wide	range	of	symmetry	energy	dependence	



Roca-Maza	et	al,	arxiv:1103.1762	 Roca-Maza	et	al,	arxiv:	1510.01874	

Correlations	are	revealed	between	nuclear	matter	parameters		
and	nuclear	properties	
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More	systematic:	map	nuclear	matter	parameters	to	model		
parameters	and	systematically	generate	models	

SNM	

Symmetry	
Energy	

Surface		
energy	

Dynamics	of		
n,p	



•  Choose	an	EDF	with	enough	degrees	of	freedom	to	mitigate	the	
influence	of	choosing	that	EDF	rather	than	any	other.		

•  Prepare	ensembles	of	parameterizations	of	the	EDF	that	
distributed	over	a	wide	range	of	the	space	of	nuclear	matter	
parameters	(Priors)	

•  Choose	methods	of	modeling	nuclei	and	neutron	star	crust	which	
account	for	as	much	physics	as	possible	in	as	reasonable	way	as	
possible	while	being	computationally	expeditious	
(10,000s-100,000s	models	will	need	to	be	sampled)	

•  Use	ensemble	to	calculate	nuclear	observables,	unified	crust-core	
EOS	and	astro	observables	

•  Add	data,	construct	Likelihoods	->	MCMC	sampling	of	posterior		
probability	distribution	of	the	EOSs	

The	overarching	strategy	



Haensel,	Fortin	JPhysG	2017	

Nuclear	masses,	
giant	resonances	

Lim,	Holt	arXiv:1702.02898	

More	systematic:	map	nuclear	matter	parameters	to	model		
Parameters	and	systematically	generate	models	

Lim,	Holt	arXiv:1702.02898	
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Nuclear	masses,	
giant	resonances	

Lim,	Holt	arXiv:1702.02898	

More	systematic:	map	nuclear	matter	parameters	to	model		
Parameters	and	systematically	generate	models	

Lim,	Holt	arXiv:1702.02898	



Potential	sources	of	systematic	error	

Had	to	choose	an	EDF	(Skyrme).	Enough	degrees	of	freedom?	
Can	add	more	(Qsym)	
	
Symmetric	nuclear	matter	and	gradient	parameters	held	fixed;	extending	
inference	to	those	parameters	may	change	posteriors	



Red	–	Uninformative	priors		
Blue	–	Pure	neutron	matter	priors	(Fermi	liquid	theory)	Holt&Lim	PLB	2018		

Priors	

Newton,	Crocombe	arxiv:2008.00042	

A	uniform	grid	of	Skyrme	models	

J:	25-43	MeV	
L:	5-145	MeV	

Ksym:	-500-	+200	MeV	



Uninformative	priors	 PNM	priors	

Starting	from	a	set	of	systematically	generated	EDFs	with	minimal	symmetry	energy	
assumptions	



Uninformative	priors	

PNM	priors	



Uninformative	priors	

PNM	priors	



Uninformative	priors	

PNM	priors	

Rebecca	Preston,	yesterday	
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Posterior	sampled	
Using	MCMC	

Likelihood	 Prior	

Skyrme	Hartree-Fock	
SkyrmeRPA	Comp	Phys	Comms,	184,	(2013)	



Potential	sources	of	systematic	error	

Had	to	choose	an	EDF	(Skyrme).	Enough	degrees	of	freedom?	
Can	add	more	(Qsym)	
	
Symmetric	nuclear	matter	and	gradient	parameters	held	fixed;	extending	
inference	to	those	parameters	may	change	posteriors	
	
We’re	usually	not	directly	modeling	nuclear	observables	-	but	in	some	
cases	we	could	(e.g.	weak	form	factor)	and	thus	improve	consistency	



Drischler,	arxiv:2004.07232	

Li,Xie,Xu	arxiv:2007.07669	

Neutron	skins:	Sn	



Li,Xie,Xu	arxiv:2007.07669	

Neutron	skins:	Sn	



Neutron	skins:	PREX	&	CREX	



Pb208,	Ca48	Dipole	Polarizability	

Drischler,	arxiv:2004.07232	



Pb208,	Ca48	Dipole	Polarizability	

Drischler,	arxiv:2004.07232	



Binding	energies/charge	radii	
Drischler,	arxiv:2004.07232	



Skins	(no	PREX)+dip	pol+BE+rp	

Drischler,	arxiv:2004.07232	



Skins	(no	PREX)+dip	pol+BE+rp	

Drischler,	arxiv:2004.07232	
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DFT	

Noa	Fritschie,	2022	



A	number	of	ways	pasta	and	the	physics	of	the	crust-core	boundary	
leave	signatures	on	observables	have	tentatively	been	put	forward	

Horowitz+,	PRL114,	031102	(2015)	
Cooling	of	accreted	crusts	

Newton+,	ApJL	779,	4	(2013)	
Cooling	in	isolated	neutron	stars	

(pasta	neutrinos	e.g.	Gusakov	2004)	

Magnetic	field	evolution	-	Pons	Nature	Physics,	9,	7,	431-434	(2013)	
Mountains	on	neutron	stars	-	Gearheart,	Newton,	Li,	MNRAS	418	(2011)	
Crust	oscillations…	-	Gearheart+,	MNRAS	418	(2011)	

	…	leading	to	resonant	shattering	–	Neill+,	MNRAS	504,	2021	
Pulsar	glitches	–	Graber+,	Apj	865,	23	(2018)	
Evolution	of	r-modes	–	Wen+Phys	Rev	C,	85,	025801	(2012)	

	 	 	 	 	 						Vidana	Phys	Rev	C	85,	045808	(2012)	

Connecting to Crust Microphysics

⇥Cool �
CV

�
(�R)2



The	amount	of	crust	and	pasta	is	highly	nuclear-EOS	dependent	

Ducoin+	Phys	Rev	C83	045810	(2011)	

Lorenz	et	al	PRL70	(1993)	

Dinh	Thi+	arxiv:	2109.13638	



The	amount	of	crust	and	pasta	is	highly	nuclear-EOS	dependent	

Ducoin+	Phys	Rev	C83	045810	(2011)	

Lorenz	et	al	PRL70	(1993)	

Dinh	Thi+	arxiv:	2109.13638	



Pictures:	Lauren	Balliet	

Modeling	the	crust	

3D	Skyrme	HF:	

Nuclear	EDF:	Bulk+Gradient	
Specific	model:	Skyrme	

n,p	degrees	of	freedom	

Newton+	arxiv:2104.11835	
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Steiner+	nucl-th/0410066	

Balliet	et	al,	arxiv:2009.07696	

Correlations	from	mass	fits,	fits	to	3DHF	



Priors:	crust	models	

Newton	et	al	arxiv:	1110.4043	
Balliet+;	arxiv:2009.07696	

Viable	crusts	filter	the	prior	

(Unitary	gas	bounds:	Tews	et	al,	arxiv:1611.07133	 PNM:	Drischler,	arxiv:2004.07232)	



Potential	sources	of	systematic	error	

Had	to	choose	an	EDF	(Skyrme).	Enough	degrees	of	freedom?	
Can	add	more	(Qsym)	
	
Symmetric	nuclear	matter	and	gradient	parameters	held	fixed;	extending	
inference	to	those	parameters	may	change	posteriors	
	
We’re	usually	not	directly	modeling	nuclear	observables	-	but	in	some	
cases	we	can	(e.g.	weak	form	factor)	and	thus	improve	consistency	
	
We’ve	chosen	a	model	of	crust	(CLDM)	different	to	modeling	
of	the	nuclei	(1D	SHF+RPA)	
	
Need	more	information	to	constrain	surface	parameters	of	crust	model	
(mass	fits,	semi-inifinite	nuclear	matter,	Thomas-Fermi	calculations)	



Combining	our	best		
experimental	and		
computational	data:	

Results:	relative	thickness	and	mass	of	pasta	

Newton+,	arxiv:2111.07969	
	Balliet+,	arxiv:2009.07696	

	



Newton+,	arxiv:2111.07969	
	Balliet+,	arxiv:2009.07696	

Relative	thickness	and	mass	of	pasta:	agreement	with	other	studies	

Dinh	Thi+	arxiv:	2109.13638	



Newton+,	arxiv:2111.07969	
	Balliet+,	arxiv:2009.07696	

	

Relative	thickness	and	mass	of	pasta:	agreement	with	other	studies	

Dinh	Thi+	arxiv:	2109.13638	



There’s	a	non-negligible	range	of	models	that	predicts	no	pasta	

Newton+,	arxiv:2111.07969	
	Balliet+,	arxiv:2009.07696	

	



Proton	fractions	



Responsible	for	crust	mass	

Responsible	for	crust	thickness	

Crust-core	transition	pressure	and	chemical	potential	

Newton+,	arxiv:2111.07969	
	Balliet+,	arxiv:2009.07696	

	



Responsible	for	crust	mass	

Responsible	for	crust	thickness	

Crust-core	transition	pressure	and	chemical	potential	

Newton+,	arxiv:2111.07969	
	Balliet+,	arxiv:2009.07696	

	

Lalit+	arxiv:1906.01535	
How	much	does	the	cooling	light	curve		
care	about	the	base	of	the	crust?	



Responsible	for	crust	mass	

Crust-core	transition	pressure	and	chemical	potential	

Lalit+	arxiv:1906.01535	

33.25	

33.0	

log	Pt	

32.5	
32.0	

Sub-6eV	resolution	at	10	years		
competetive	(which	most	obs		
Surpass)	
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Correlations	from	mass	fits,	fits	to	3DHF	
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Fortin	et	al;	arxiv:1604.01944		
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Fortin	et	al;	arxiv:1604.01944		

High	density:	Polytropes	
n1,n2	



Read+, arxiv:0812.2163; see also works by Steiner, Lattimer, Özel 

High density EOS: piecewise polytrope tuned to give max 
masses > 2.0 MSUN up until causality is violated 



Read+, arxiv:0812.2163; see also works by Steiner, Lattimer, Özel... 

High density EOS: piecewise polytrope tuned to give max 
masses > 2.0 MSUN up until causality is violated 

SKYRME EDF 

J,L,Ksym	



Tews,	Margueron,	Reddy	arxiv:1804.02783	

Polytropes	versus	continuing	the	nuclear	matter	comparison/
extrapolating	EDF	to	arbitrarily	highly	



Potential	sources	of	systematic	error	

Had	to	choose	an	EDF	(Skyrme).	Enough	degrees	of	freedom?	
Can	add	more	(Qsym)	
	
Symmetric	nuclear	matter	and	gradient	parameters	held	fixed;	extending	
inference	to	those	parameters	may	change	posteriors	
	
We’re	usually	not	directly	modeling	nuclear	observables	-	but	in	some	
cases	we	can	(e.g.	weak	form	factor)	and	thus	improve	consistency	
	
We’ve	chosen	a	model	of	crust	(CLDM)	different	to	modeling	
of	the	nuclei	(1D	SHF+RPA)	
	
Need	more	information	to	constrain	surface	parameters	of	crust	model	
(mass	fits,	semi-inifinite	nuclear	matter,	Thomas-Fermi	calculations)	
	
2	polytropes	in	the	core	is	bare	minimum:	can	be	more	sophisticated	
	



Neill,	Preston,	Tsang,	Newton	in	prep	

BPS	

Sample	of	our	resulting	equations	of	state	



Neill,	Preston,	Tsang,	Newton	in	prep	

BPS	

By	the	way,	about	the	crust	core	transition…	

Same	L	

Same	L	
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Newton	et	al;	arxiv:2112.12108	

Nuclear	and	astro	data	can	be	bought	to	bear	with	greater	consistency	



Newton	et	al;	arxiv:2112.12108	

Nuclear	and	astro	data	can	be	bought	to	bear	with	greater	consistency	



Newton	et	al;	arxiv:2112.12108	

12km	star:	With	just	NICER/LIGO	data,	crust	can	contribute	0.96-1.8	km	
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Linking	crust	and	core	models,	nuclear	and	astro	data:	M=1.4MSUN	

Radial	extents	

c.f.	uncertainty	from	different	ways	of	matching	EoS	≈	0.7km;	Fortin	et	al	arxiv:	1604.01944	
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Newton	et	al;	arxiv:2112.12108	

Linking	crust	and	core	models,	nuclear	and	astro	data:	M=1.4MSUN	

Masses	
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Newton	et	al;	arxiv:2112.12108	

Glitches:	MoI	of	fraction	of	crust	must	exceed	0.016	(0.08	when	entrainment	is	high)	

Linking	crust	and	core	models,	nuclear	and	astro	data:	M=1.4MSUN	

Moments	of	inertias	

(crust	is	not/maybe	enough	Andersson	arxiv:1207.0633/Piekarewicz	arxiv:1404.2660)	
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Crust	Composition:	Uninformative	Priors	

Balliet+;	arxiv:2009.07696	



Shear	modulus	is	likely	overestimated	by	at	least	a	factor	of	two	in	the	pasta	layers	

/	

Number	of	EOSs	
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Fortin	et	al;	arxiv:1604.01944		

High	density:	Polytropes	
n1,n2	
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Fortin	et	al;	arxiv:1604.01944		
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Add	crust	to	stellar	model	
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Picture:	David	Tsang	

D.Tsang,	Apj	777,	2013	
Neill,	Newton	&	Tsang,	MNRAS	504,	2021	
Neill,	Preston,	Tsang,	Newton	in	prep	

Resonant	shattering	flares:	combining	crust	and	core	observables	

(See	David’s	talk	next		
Wednesday!)	



Neill,Preston,Tsang,Newton	in	prep	

Resonant	shattering	flares:	combining	crust	and	core	observables	

(See	David’s	talk	next		
Wednesday!)	



Fortin	et	al;	arxiv:1604.01944		
Pearson	et	al	MNRAS481,2994–3026	(2018)	
Chamel	et	al	arxiv:1904.12477	

Complementary	approach:	Precision	model	fits	
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Newton	et	al;	arxiv:2112.12108	

Complementary	approach:	Precision	model	fits	



Some	thoughts	
Attempt	at	a	framework	to	connect	neutron	star	bulk	and	crust	observables	with		
nuclear	data	as	consistently	as	possible	
	
Consistency:	eliminate	systematic	errors	that	may	arise	when	different	models	are	used	
to	propagate	information	across	multiple	physical	characteristics	
	
Many	rich	astro	datasets	require	crust	modeling	to	interpret.	We	want	to	bring	these		
into	our	multimessenger	club	
	
Not	a	replacement	for	precision	modeling	
	
Radius	measurements	are	not	going	to	be	able	to	ignore	the	crust	too	much	longer	

Assumptions/limitations	
Had	to	choose	an	EDF	(Skyrme).	Enough	degrees	of	freedom?	

	Can	add	more	(Qsym)	
Symmetric	nuclear	matter	and	gradient	parameters	held	fixed,	underestimate	model		
Need	more	information	to	constrain	surface	parameters	of	crust	model	(mass	fits,	

	semi-inifinite	nuclear	matter,	Thomas-Fermi	calculations)	
2	polytropes	in	the	core	is	bare	minimum:	can	be	more	sophisticated	
We’re	usually	not	directly	modeling	nuclear	observables	-	but	in	some	cases	we	can	

	(e.g.	weak	form	factor)	and	thus	improve	consistency	



What	about	the	other	parameters?	
- 	Refit	a	subset	of	our	1000	Skyrmes	using	
simulated	annealing	method	
- 	Fit	the	resulting	differences	in	observables	
with	Gaussian	–	a	conservative	estimate	



Pasta:	a	complex,	glassy	system.	Multiple	shapes	coexist	in	microscopic	
domains.	Should	affect	transport	properties.	How	much	is	there?	

Newton	et	al	arxiv:2104.11835	
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(a)
At	Tf	

Electron	scattering	off	domain	boundaries	
(annealing	may	lead	to	most	energetically	

favorable	domain	growing)		

Possible	sources	of	resistivity	

Electron	scattering	off	disordered	pasta	
(temperature	dependent)	



Accreted	Crusts:	Deep	crustal	heating,	impurity	(J,L,Ksym)	

Steiner,	arxiv:1202.3378	
Partially	accreted:	Sulieman	et	al,	arxiv:2203.14735	
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Set	of	EDFs	

J

L
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pure neutron matter  

nuclear saturation density 
(experiment)  

pasta region (~0.5 - 0.8 fm-3) 

Us:	completely	different	set	of	EDFs	




