CEvNS with reactor neutrinos (and more)

INT workshop April 2023

Jayden L. Newstead The University of Melbourne

Collaborators: Wei-Chih Huang, Bhaskar Dutta (Texas A&M), Vishvas Pandey (Fermilab)

A brief history of CEvNS

1959 -1967 Glashow-Weinberg-Salam formulate electroweak theory 1973 Gargamelle observes weak neutral currents (neutrino-hadronic) 1977 Freedman - coherent neutral currents 1983 Discovery of the Z-boson 2017 First observation by COHERENT

Potential neutrino sources for CEvNS

- 1. Solar neutrinos
- 2. Geo neutrinos
- 3. Reactors
- 4. Supernovae
- 5. Stopped pion
- 6. Atmospheric neutrinos (?)

Increasing Energy
/

CEvNS experiments

Experiment	Source	Detector	Status
COHERENT	Stopped pion (SNS)	Csl, LAr, Nal, Ge	Running
ССМ	Stopped pion (Lujan)	LAr	Running
BULLKID	Reactor	Si (KIDS)	R&D
CONNIE	Reactor (Argentina)	Si (Skipper CCD)	Running
CONUS	Reactor (Germany)	Ge (cryogenic)	Running
MINER	Reactor (USA)	Ge, Si, Sapphire (cryo)	Looking for new reactor
NEON	Reactor (S. Korea)	Nal	Running
NEWS-G3	Reactor	Xe, Ar, Ne, He	R&D
NUCLEUS	Reactor (France)	CaWO4 (cryogenic)	Building
RICOCHET	Reactor (France)	Ge (cryogenic) and Zn	Building
TEXONO	Reactor (Taiwan)	Ge (point contact)	Running

CEvNS discovery at reactors?

From Werner Maneschg, Magnificent CEvNS 2023

7

CEvNS from reactors is tough

Solid: xenon, dashed: argon, no quenching

Migdal rate calculation

- What goes into the rate calculation?

$$\frac{d^2 R}{dE_{\rm NR} dE_i} = \frac{d^2 R_{iT}}{dE_{\rm NR} dE_i} \times |Z_{\rm ion}|^2$$
$$|Z_{\rm ion}|^2 = \frac{1}{2\pi} \sum_{n,\ell} \int dE_e \frac{d}{dE_e} p_{q_e}^c (n\ell \to (E_e))$$

- What does such an event look like?

$$E_{\rm det} = \mathcal{L}E_R + E_e + E_{nl}$$

Dolan et al. PRL 2017

M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, arXiv:1707.07258

Low-energy neutrino sources

source	flux $(/cm^2/s)$	$\max E_{\nu} \ (MeV)$	$\max E_R^{\rm Xe} \ (\rm keV)$
nuclear reactor	1.5×10^{13}	10	1.7
SNS	4.2×10^6	52.8	47
⁵¹ Cr	4.8×10^{13}	0.746	0.01

Low-energy neutrino sources

source	flux $(/cm^2/s)$	$\max E_{\nu} \ (\mathrm{MeV})$	$\max E_R^{\rm Xe} \ (\rm keV)$
nuclear reactor	1.5×10^{13}	10	1.7
SNS	4.2×10^6	52.8	47
⁵¹ Cr	4.8×10^{13}	0.746	0.01

Beyond discovering CEvNS

What is it good for?

- Low energy $\sin \theta_w$ measurement
- Study nuclear form factors
- Reactor flux measurements
- Astrophysical processes (SN)
- Sterile search
- BSM searches

12

Modified neutrino interactions (!NSI)

Consider a $U(1)_{B-L}$ with light Z'

Exclusion limit after exposure 8,000 kg.days @ 20m from 1GW reactor

JLN, Dutta, Dent, Strigari, Liao, Walker arXiv:1612.06350

Complementarity of sources and detectors when constraining NSI

- Bayesian priors:

Parameter	Prior range	Scale
$\epsilon^f_{lpha lpha}$	(-1.5, 1.5)	linear
SNS flux	$(4.29 \pm 0.43) \times 10^9$	Gaussian
Reactor flux	$(1.50\pm 0.03)\times 10^{12}$	Gaussian
SNS background	$(5 \pm 0.25) \times 10^{-3}$	Gaussian
Reactor background	(1 ± 0.1)	Gaussian

- Experimental configurations:

Name	Detector	Source	Exposure	Threshold
Current (COHERENT)	CsI	SNS (20m)	4466 kg.days	4.25 keV
Future (reactor)	Ge	$1 \mathrm{GW}$ reactor (20m)	10^4 kg.days	100 eV
	Si	$1 \mathrm{GW}$ reactor (20m)	10^4 kg.days	100 eV
Future (accelerator)	NaI	SNS (20m)	1 tonne.year	2 keV
	Ar	SNS (20m)	1 tonne.year	30 keV

JLN, Dutta, Dent, Liao, Strigari, Walker arXiv:1711.03521

Inference for COHERENT 2017 data

4466 kg.days CsI only

JLN, Dutta, Dent, Liao, Strigari, Walker arXiv:1711.03521

Future Inference SNS only

0

 $\epsilon^{u}_{\mu\mu}$

-1

2

1

NaI	SNS (20m)	1 tonne.year
Ar	SNS (20m)	1 tonne.year

JLN, Dutta, Dent, Liao, Strigari, Walker arXiv:1711.03521

r	+,	Accele	rator
	Ge	1GW reactor (20m)	10^4 kg.days
	Si	1GW reactor (20m)	10^4 kg.days
	NaI	SNS (20m)	1 tonne.year

1 tonne.year

JLN, Dutta, Dent, Liao, Strigari, Walker arXiv:1711.03521

Sterile neutrino oscillations with reactors

Dutta, Gao, Kubik, Mahapatra, Mirabolfath, Strigari, Walker arXiv:1511.02834

Sterile neutrino oscillations with reactors

Sterile neutrino oscillations with CEvNS

K. Ni et al. arXiv:2301.12296

Sterile neutrino oscillations with CEvNS

21

Reactor monitoring with CEvNS

- Monitoring the power and/or fuel content of reactors from stand-off distances

M. Bowen, P. Huber arXiv:2005.10907

Atmospheric neutrinos in a G3 LXe detector

- The atmospheric flux has not been measured below 100 MeV
- Coherent elastic neutrino-nucleus scattering (CEvNS) can very low thresholds
- A 100t fiducial LXe detector was simulated using NEST (g1 = 0.3 phd/ γ , g2 = 112 phd/e).

JLN, R. Lang, L. Strigari arxiv:2002.08566

Atmospheric neutrinos in a G3 LXe detector

- CEvNS of atmospheric neutrinos have a rate of 0.06 per tonne per year (0.05 after 95% ER cut)
- Electron recoils due to solar neutrinos have a rate ~1/tonne/year (after 95% ER cut)
- What exposure would be required to (re)discover atmospheric neutrinos?

JLN, R. Lang, L. Strigari arxiv:2002.08566

Conclusions

- While CEvNS at reactors is tough, it will soon be observed
- There is a large flux for those with small enough thresholds
- Reactors help break degeneracies in stopped-pion only constraints
- A search for steriles is plausible and would provide an 'independent' measurement with different systematics
- Atmospheric neutrinos would be difficult to observe, need huge exposures