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ON THE MEANING OF “FACTORIZATION”

Factorization and Resummation for LHC Jet Processes

Most fundamental:  Separation of energy/distance scales 

▸ Without this principle, physics would not exist 

▸ Effective Field Theories (EFTs) describe phenomena using only the relevant 
degrees of freedom, quantum effects from shorter distances are “integrated 
out” and included in the couplings of the EFT 

▸ EFT for collider physics: Soft-Collinear Effective Theory
[Bauer, Fleming, Pirjol, Stewart (2000) 
 Bauer, Pirjol, Stewart (2001) 
 Bauer, Fleming, Pirjol, Rothstein, Stewart (2002) 
 Beneke, Chapovsky, Diehl, Feldmann (2002)]
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ON THE MEANING OF “FACTORIZATION”

Factorization and Resummation for LHC Jet Processes

Most fundamental:  Separation of energy/distance scales 

▸ Without this principle, physics would not exist 

▸ Effective Field Theories (EFTs) describe phenomena using only the relevant 
degrees of freedom, quantum effects from shorter distances are “integrated 
out” and included in the couplings of the EFT 

▸ EFT for collider physics: Soft-Collinear Effective Theory 

▸ Relevant in QCD: separation of perturbative partonic                                        
(short-distance) from non-perturbative hadronic                                                        
(long-distance) effects
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“PDF FACTORIZATION”

Factorization and Resummation for LHC Jet Processes

Stronger assumption: 

▸ Up to power corrections, all long-distance effects in hadron collider scattering 
are contained in universal parton distribution functions (PDFs) of the nucleon: 

▸ Used in all calculations of LHC processes, but proved only for Drell-Yan 
processes:   

▸ Entails the absence of low-energy interactions between the colliding hadrons 

▸ What about processes with colored particles (jets) in the final state?

pp → color-neutral state (γ*, W, Z, H) [Collins, Soper, Sterman (1985)]

d�pp!f (s) =
X

a,b=q,q̄,g

Z
dx1dx2 fa/p(x1, µ) fb/p(x2, µ) d�ab!f (ŝ = x1x2s, µ)

<latexit sha1_base64="8bgb6+ql9ferqbe29gfSmg83Q88="></latexit>
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Figure 2: A hard scattering process described in the parton model. [2]

The cross section of hard scattering processes initiated by two hadrons with momenta P1 and P2 are

�(P1, P2) =
X

i,j=q,q̄,g

Z
dx1dx2 fi(x1, µ)fj(x2, µ) �̂ij(p1, p2,↵s(µ), µ), (2.10)

where p1 = x1P1 and p2 = x2P2 [2]. On parton level, it also now becomes evident that

ŝ = x1x2s, (2.11)

where s is the center of mass energy squared for the incoming beams, and ŝ only involves the
momentum of the particles that actually participate in the hard scattering process we’re looking
at. f1(x1, µ) and f2(x2, µ) are the parton distributions functions of the incoming partons. We then
sum over all channels that contribute to a certain process. This gives us the fully inclusive jet cross
section.

2.4. Gap Between Jets

A gap between jets cross section refers to the cross section of an event where there are two jets are
emitted in roughly opposite directions in the center of mass frame, and there is a „gap” between
them without particle emission. The jets occur at energies ⇠ Q. One then introduces a veto scale
Q0 for the gap region , which is much lower. Any event that involves a jet with pT > Q0 in the gap
region is vetoed [3].

Technically, when one eventually would like to integrate over the rapidity (or the angle ✓), one would
have to include everything that is not part of the jets. However, to simplify, we will only consider
a rectangular region that cuts off at the outer radius of the jets [3]. Figure 3 shows a schematic of
what that looks like. The gap lies between y1 and y2, so the rapidities of jet 1 and 2 (or, in the
simplified case we will be using, the outer limits of the jets). If we use the center of mass frame, then
y1 = �y2. Generally, we can define a gap via �Y = |y2 � y1|.

4
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JET PROCESSES AT HADRON COLLIDERS

Factorization and Resummation for LHC Jet Processes

CERN Document Server, ATLAS-PHOTO-2018-022-6

Veto scale Q0

High-energy scale Q

Large logarithms:
 

Pert. th. contains terms

L = ln(Q/Q0) ≫ 1

∼ αn
s Lm (m ≤ 2n)
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LARGE LOGARITHMS IN JET PROCESSES

Factorization and Resummation for LHC Jet Processes

Perturbative expansion includes “super-leading” logarithms:

gap: 
 Eout < Q0

unrestricted Ein ~ Q

� ⇠ �Born ⇥
�
1 + ↵sL+ ↵2

sL
2 + ↵3

sL
3 + ↵4

s L
5 + ↵5

s L
7 + . . .
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. . . }
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LARGE LOGARITHMS IN JET PROCESSES

Factorization and Resummation for LHC Jet Processes

Perturbative expansion includes “super-leading” logarithms:

gap: 
 Eout < Q0

unrestricted Ein ~ Q
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formally larger than O(1)
[Forshaw, Kyrieleis, Seymour (2006)]state-of-the-art
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LARGE LOGARITHMS IN JET PROCESSES

Factorization and Resummation for LHC Jet Processes

Really, a double-logarithmic series starting at 3-loop order:

gap: 
 Eout < Q0

unrestricted Ein ~ Q

formally larger than O(1)
[Forshaw, Kyrieleis, Seymour (2006)](=mL)2
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IMPORTANCE OF COLOR COHERENCE

Factorization and Resummation for LHC Jet Processes

▸ Color coherence (familiar from Low’s theorem) holds if all three particles 
are in the final state of a scattering process (time-like splitting): 

▸ Then also collinear factorization holds:
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
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G
V
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3"3
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3"3
ln

Q2
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+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.
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found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
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�
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⇣↵s
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G �
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G
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3"3
�
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V

G �
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ln
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+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

= +
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universal splitting function 
(process-independent)
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BREAKING OF COLOR COHERENCE

Factorization and Resummation for LHC Jet Processes

▸ Color coherence is broken if not all particles are outgoing (space-like splitting), 
since then both sides receive different phase factors at higher orders: 

▸ Collinear factorization is violated:

…
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pi || p1

violated by soft gluons!

[Catani, de Florian, Rodrigo (2011); Forshaw, Seymour, Siodmok (2012)  
 see also: Henn, Ma, Xu, Yan, Zhang, Zhu (2024)] 
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Factorization and Resummation for LHC Jet Processes

▸ Origin lies in Glauber phases from initial-state soft                                                  
gluon exchange 

▸ Soft anomalous dimension: 

where  if particles  and  are both in the initial or final state 

▸ Imaginary part (only at hadron colliders):

sij > 0 i j

[Bern, Carrasco, Dixon, Johansson, Roiban (2008) 
 Becher, MN (2009); Gardi, Magnea (2009)] 

Neubert Part B2 EFT2

candidates for dark matter. Because of its feeble interactions with SM particles, finding an ALP is
very challenging, especially because the expected signals depend very sensitively on how the ALP
decays and how long it travels before it decays. This introduces a strong model dependence in the
analysis, which in practice requires one to make drastic assumptions, such as the existence of a single
non-zero coupling, in order to derive useful bounds. But in this way important e↵ects can be missed.
Wouldn’t it be nice to be able to probe all ALP couplings to the SM simultaneously and in a way that
is insensitive to the ALP lifetime and branching fractions?

In project B, I propose a complementary new search strategy for ALPs, which is based on a
systematic, global analysis of virtual ALP e↵ects on precision measurements. Contrary to the
resonant production of ALPs, indirect searches for their contributions in quantum fluctuations
are insensitive to the lifetime of the ALP and the way in which it decays. They can thus provide
largely model-independent bounds on the ALP couplings and mass.

Achieving the two grand goals of the EFT2 proposal will significantly boost the LHC discovery
potential for new phenomena and thus have a transformative impact on the field. This requires
expertise in both SM physics and physics beyond the SM, which has been a hallmark of my research
since over two decades. In EFT2, I plan to approach both challenges using the powerful tools of modern
e↵ective field theories (EFTs). Doing this in the context of a single proposal has the advantage that
important interconnections can be exploited. For example, the global analysis of ALP couplings in
project B will rely on precision measurements of diboson production, top-quark production, and Higgs
production at the LHC. In order not to fake a signal of NP, it is essential that the SM predictions for
these quantities can be calculated reliably and with the highest possible precision. This is exactly the
main goal of project A.

Project A – Theory of non-global observables at hadron colliders

While fixed-order perturbative calculations still define an important frontier in collider physics, in
many cases they do not provide su�ciently accurate predictions. If the radiation in a high-energy
scattering process is restricted by experimental cuts, higher-order terms in the perturbative series can
be enhanced by large logarithms associated with the emission of soft and collinear particles. The
simple structure of these emissions sometimes makes it possible to resum the logarithmic terms to all
orders. An important example are event shapes in e

+
e
� collisions near the two-jet limit [18–22], for

which the cross section can be factorized into a product (in the convolution sense) of a soft function S

accounting for soft gluon emissions, two jet functions J and J̄ describing the collinear radiation inside
the jets, and a hard function H encoding the virtual corrections to the underlying hard-scattering
process e

+
e
�
! q q̄:

� = H J ⇥ J̄ ⇥ S . (1)

Soft-Collinear E↵ective Theory (SCET) o↵ers a convenient framework for performing such resumma-
tions [23–26]. In general, the hard function for a process involving n colored particles with momenta
{p} ⌘ {p1, . . . , pn} is related to the square of a hard-scattering partonic amplitude |Mn({p}, µ)i,
which can be represented as a vector in color space [27]. This object obeys a renormalization-group
(RG) evolution equation with the anomalous dimension [28–32]

�({p}, µ) =
X

(ij)

Ti · Tj

2
�cusp(↵s) ln

µ
2

�sij
+

X

i

�
i(↵s) + O(↵3

s) , (2)

where sij ⌘ 2�ij pi ·pj +i0, and the sign factor �ij = +1 if the momenta pi and pj are both incoming or
outgoing, and �ij = �1 otherwise. The notation (i1 . . . ik) refers to unordered tuples of distinct parton
indices. The cusp anomalous dimension �cusp and the collinear anomalous dimensions �

i are functions
of the QCD coupling. Up to two-loop order the result features only pairwise correlations among the
color charges and momenta of the di↵erent partons. Along with RG evolution equations for the jet
and soft functions, this provides the basis for the systematic resummation of all large logarithmic
corrections to the cross section.

2

p

p
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In more complicated cases, a standard phenomenological approach is to combine fixed-order per-
turbative calculations with parton showers, which simulate the cascades of soft and collinear QCD
radiation produced in high-energy particle collisions. The accuracy of these showers is limited since
they reply on the large-Nc approximation, in which one includes only the leading terms in an expansion
in powers of 1/Nc, where Nc = 3 is the number of colors in QCD. While there is currently a strong
e↵ort under way to extend parton showers beyond the strict Nc ! 1 limit and match them consis-
tently with fixed-order calculations [33–37], obtaining a complete understanding of even the leading
logarithmic e↵ects is a di�cult problem. Dasgupta and Salam showed that observables insensitive to
radiation in certain regions of phase space contain single-logarithmic terms not captured by resumma-
tion techniques based on (1) [38]. These so-called non-global logarithms (NGLs) have a complicated
structure, because they are generated by secondary emissions o↵ the original hard partons. Banfi,
Marchesini and Smye (BMS) derived a non-linear integral equation, which can be used to perform
the resummation of the leading NGLs in the large-Nc limit [39]. Since “strong energy ordering” is
a crucial ingredient for the BMS equation, its logarithmic accuracy cannot easily be improved, even
though important progress in this direction has recently been made in [40]. Since the vast majority
of collider observables include regions of phase space in which radiation is not restricted, the presence
of NGLs severely limits the applicability of higher-order resummation techniques. In [41, 42], we
have generalized the SCET approach to derive a novel factorization theorem for dijet cross sections
in e

+
e
� collisions, based on which all logarithmically enhanced corrections, including the NGLs, can

be controlled by an RG evolution equation. These papers mark a milestone, because they o↵er a
radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =

p
ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
n
s L

n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
leading logarithms are, in fact, of the form ↵

3+n
s L

3+2n. The SLLs are a subtle e↵ect, whose origin can
be traced back to the first term in (2). For e

+
e
� collisions all colored particles appear in the final state,

and hence �ij = 1 for all pairs (ij). Color-conservation then ensures that the imaginary part of the
anomalous-dimension matrix is proportional to the unit matrix in color space, and its e↵ect cancels
out when one considers the square of the hard-scattering amplitude. At hadron colliders, however,
the initial-state particles carry color and a non-trivial imaginary part remains,

Im�({p}, µ) = �2⇡ T1 · T2 �cusp(↵s) + . . . , (3)

where the dots represent terms proportional to the unit matrix. This e↵ect gives rise to Coulomb
phases with a highly non-trivial color structure. Their presence spoils the real-virtual cancellations for
collinear emissions o↵ the initial states and thus violates the notion of strict (i.e., process-independent)
factorization [45–47]. Even 15 years after this e↵ect was discovered, remarkably little is known about
it. While the first SLL (⇠ ↵

4
sL

5) has been calculated for arbitrary 2 ! 2 hard processes [48], the
second SLL (⇠ ↵

5
sL

7) is known for some selected partonic channels only [49]. The higher-order
structure of SLLs, their contribution to other hard processes, and their large-order behavior are
completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
order contributions to the cross sections, their e↵ects are not captured in any existing parton shower,
because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation
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ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
n
s L

n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
leading logarithms are, in fact, of the form ↵

3+n
s L

3+2n. The SLLs are a subtle e↵ect, whose origin can
be traced back to the first term in (2). For e

+
e
� collisions all colored particles appear in the final state,

and hence �ij = 1 for all pairs (ij). Color-conservation then ensures that the imaginary part of the
anomalous-dimension matrix is proportional to the unit matrix in color space, and its e↵ect cancels
out when one considers the square of the hard-scattering amplitude. At hadron colliders, however,
the initial-state particles carry color and a non-trivial imaginary part remains,

Im�({p}, µ) = �2⇡ T1 · T2 �cusp(↵s) + . . . , (3)

where the dots represent terms proportional to the unit matrix. This e↵ect gives rise to Coulomb
phases with a highly non-trivial color structure. Their presence spoils the real-virtual cancellations for
collinear emissions o↵ the initial states and thus violates the notion of strict (i.e., process-independent)
factorization [45–47]. Even 15 years after this e↵ect was discovered, remarkably little is known about
it. While the first SLL (⇠ ↵

4
sL

5) has been calculated for arbitrary 2 ! 2 hard processes [48], the
second SLL (⇠ ↵

5
sL

7) is known for some selected partonic channels only [49]. The higher-order
structure of SLLs, their contribution to other hard processes, and their large-order behavior are
completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
order contributions to the cross sections, their e↵ects are not captured in any existing parton shower,
because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation

3

Neubert Part B2 EFT2

In more complicated cases, a standard phenomenological approach is to combine fixed-order per-
turbative calculations with parton showers, which simulate the cascades of soft and collinear QCD
radiation produced in high-energy particle collisions. The accuracy of these showers is limited since
they reply on the large-Nc approximation, in which one includes only the leading terms in an expansion
in powers of 1/Nc, where Nc = 3 is the number of colors in QCD. While there is currently a strong
e↵ort under way to extend parton showers beyond the strict Nc ! 1 limit and match them consis-
tently with fixed-order calculations [33–37], obtaining a complete understanding of even the leading
logarithmic e↵ects is a di�cult problem. Dasgupta and Salam showed that observables insensitive to
radiation in certain regions of phase space contain single-logarithmic terms not captured by resumma-
tion techniques based on (1) [38]. These so-called non-global logarithms (NGLs) have a complicated
structure, because they are generated by secondary emissions o↵ the original hard partons. Banfi,
Marchesini and Smye (BMS) derived a non-linear integral equation, which can be used to perform
the resummation of the leading NGLs in the large-Nc limit [39]. Since “strong energy ordering” is
a crucial ingredient for the BMS equation, its logarithmic accuracy cannot easily be improved, even
though important progress in this direction has recently been made in [40]. Since the vast majority
of collider observables include regions of phase space in which radiation is not restricted, the presence
of NGLs severely limits the applicability of higher-order resummation techniques. In [41, 42], we
have generalized the SCET approach to derive a novel factorization theorem for dijet cross sections
in e

+
e
� collisions, based on which all logarithmically enhanced corrections, including the NGLs, can

be controlled by an RG evolution equation. These papers mark a milestone, because they o↵er a
radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =

p
ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
n
s L

n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
leading logarithms are, in fact, of the form ↵

3+n
s L

3+2n. The SLLs are a subtle e↵ect, whose origin can
be traced back to the first term in (2). For e

+
e
� collisions all colored particles appear in the final state,

and hence �ij = 1 for all pairs (ij). Color-conservation then ensures that the imaginary part of the
anomalous-dimension matrix is proportional to the unit matrix in color space, and its e↵ect cancels
out when one considers the square of the hard-scattering amplitude. At hadron colliders, however,
the initial-state particles carry color and a non-trivial imaginary part remains,

Im�({p}, µ) = �2⇡ T1 · T2 �cusp(↵s) + . . . , (3)

where the dots represent terms proportional to the unit matrix. This e↵ect gives rise to Coulomb
phases with a highly non-trivial color structure. Their presence spoils the real-virtual cancellations for
collinear emissions o↵ the initial states and thus violates the notion of strict (i.e., process-independent)
factorization [45–47]. Even 15 years after this e↵ect was discovered, remarkably little is known about
it. While the first SLL (⇠ ↵

4
sL

5) has been calculated for arbitrary 2 ! 2 hard processes [48], the
second SLL (⇠ ↵

5
sL

7) is known for some selected partonic channels only [49]. The higher-order
structure of SLLs, their contribution to other hard processes, and their large-order behavior are
completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
order contributions to the cross sections, their e↵ects are not captured in any existing parton shower,
because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation

3

irrelevant



CFNS-INT Joint Program: Precision QCD with the Electron Ion Collider — May 14, 2025Matthias Neubert  — 8

GAP-BETWEEN-JETS OBSERVABLES

Factorization and Resummation for LHC Jet Processes

SCET factorization theorem for M-jet production at the LHC

low scales Q0 and ΛQCD

[Becher, MN, Shao (2021) 
Becher, MN, Shao, Stillger (2023)]

high scale

Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.

P
(i)
↵̄↵ �̄

↵̄

i (tn̄i)�
↵

i (0) =

✓
n̄/
i

2

◆

↵̄↵

�̄
↵̄

i (tn̄i)�
↵

i (0) = �̄i(tn̄i)
n̄/
i

2
�i(0) ,

P
(i)
↵̄↵A

↵̄

?c
(tn̄i)A

↵

?c
(0) = (�g↵̄↵)(�i@t)A

↵̄

?c
(tn̄i)A

↵

?c
(0) = i@tA

µ

?i
(tn̄i)A?iµ(0) .

(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated

ar
X

iv
:2

40
8.

10
30

8v
1 

 [h
ep

-p
h]

  1
9 

A
ug

 2
02

4

2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm

M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k

ls

FIG. 1. Sample pertu
rbative c

ontributi
on to the ga

p-betwee
n-

jets cross section.
The gray inner subdiagr

ams make up the

hard function
Hm, while the remainder is

part of W
m. The

orange gluon is soft and enters the veto region, th
e blue and

green partons a
re collinear

to the beams. Possib
le scalings o

f

the virtual g
luon momentum k will be analyzed

below.

over the
energies o

f the final-stat
e particles,

Hm
({n}, Q, ⇠1, ⇠2, µ

) =

Z
dEm |Mm

({p})ihMm
({p})| ,

(2)

while keeping the parton direction
s {n} = {n1, . . . , nm

}

fixed. Th
e explicit fo

rm of the energy integratio
n can be

found in (2.3) of [1
3]. The in

tegration
over the fi

nal-state

parton direction
s is indicated

by the symbol ⌦ in (1).

The color ind
ices of th

e hard partons a
re kept open

and

h. . . i denotes the color trace, wh
ich is taken after com-

bining the hard
functions

with the low-e
nergy matrix ele-

ments Wm
, which contain the dyna

mics associ
ated with

the perturbat
ive scale Q0, as depicted

in Fig. 1, as
well

as non-pe
rturbativ

e QCD e↵ects. T
he main result of

our

Letter is
that, at l

east up to three-loo
p order, the

pertur-

bative pa
rt of Wm

is consist
ent with

PDF factorizat
ion.

The SLL analysis
in [12, 13] was based on the

renormalization-
group evolution

of the hard functions

from the high scale µh
= Q to a low scale µs

⇠ Q0.

The leading logarithm
s were obtained

by iterating
the

one-loop
anomalous dim

ension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like
cusp anoma-

lous dimension. The soft piece consists of �
c and V

G ,

which account for soft+collinear
emissions from one of

the two initial-sta
te partons a

nd complex phases ar
ising

from virtual gl
uon exchange

between
them, respecti

vely.

� correspon
ds to gluon emission into the gap, and

�C

denotes purely collinear
contribut

ions. The anomalous

dimension is an operator
in color space and a matrix

in the space of parton
multipliciti

es m. An applicatio
n

of �
H can either increase

the number of parton
s, corre-

sponding
to a real emission, or

leave the
m unchange

d for

virtual te
rms. The SL

Ls origina
te from �c . Using simple

identities
among the various terms in (3) [12],

one finds

that the
relevant c

olor trace
s are of the form

Crn
=
⌦
H

(0)
m0

(�
c)

r
V

G (�
c)

n�r
V

G �⌦ 1
↵
. (4)

Performing the associate
d scale integrals

for evolution

from Q down to the scale µs
⇠ Q0 produces

single loga-

rithms for V
G and �, but do

uble loga
rithms for �

c . The

color traces Crn
thus contribut

e at order ↵n+3
s

L2n+3
s

in

perturbat
ion theory, w

here Ls
= ln(Q/µs). SLLs first

arise at four-lo
op order and

involve C01 and C11. In
(4),

H
(0)
m0

are the Born-leve
l hard functions

and we use that

W
(0)
m

= 1 at lowest
order.

The fact
that the c

ross secti
on �(Q0) must be ind

epen-

dent of t
he renormalization

scale µs
imposes non-trivia

l

condition
s on the low-e

nergy matrix elementsWm
(µs) =

ZW
bare
m

. The renormalization
factor Z is related to

the anomalous dimension (3) [31], and
using its three-

loop expressio
n one finds that the leading UV poles in

d = 4� 2" dimensions m
ust be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+
⇣ ↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣ ↵s

4⇡

⌘3
✓
V

GV
G �

3"3
�

�cV
G �

3"3
ln

Q2

µ2s
+ . . .

◆

+O(↵
4
s
) .

(5)

We only show terms which, a
fter combining wi

th the hard

functions
in (1) and taking the color trac

e, produc
e con-

tribution
s compatible with SLLs at four-loop

order and

beyond.
Under th

e color trac
e, we can replace [13]

V
G � ! 16i⇡X1 , �cV

G � ! 16i⇡NcX1 ,

V
GV

G � ! �6⇡
2NcX2 ,

(6)

where

X1 = if
abc

X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1

, (7)

with O
(j)
1

defined in (6.36) of
[13]. The

sums extend
over

all final-s
tate parto

ns j > 2 in the Born-
level proc

ess, and

the angular i
ntegral Jj

has been
given in (16) of [1

2].

We now compute the perturbat
ive part of W

bare
m

or-

der by order in ↵s
and check whether

it matches the

structure
(5). The one-loop

term / � is the divergenc
e

associate
d with a soft exchange

between
hard legs and

is obtaine
d from soft Wilson-line

matrix elements in the

low-energ
y theory or, equiva

lently, by
taking the produ

ct

of two tree-level
soft currents

J
a(0)
µ

(ls) and integratin
g

the momentum ls over the
gap region under the

restric-

tion l0s < Q0. The ↵2
s
term / V

G � arises from real-

virtual correction
s to the same matrix elements. The

complex phase in V
G is directly related to the imagi-

nary part of th
e one-loop

soft curre
nt J

a(1)
µ
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late the structure
V

GV
G �, we have analyzed

the prod-

uct J
µ,a(1)J

a(1)†
µ

as well the
product

of J
a(2)
µ

(includ-

ing the tripole terms) [33, 34] w
ith a tree-level

current,
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FIG. 3. Example of a collinear space-like splitting with a
genuine Glauber mode (red) contributing to the low-energy
matrix elements. The soft gluon is emitted into the gap with
constraint Q0 and attaches to leg j on the right-hand side.
Soft Wilson lines are drawn in orange, where relevant.

now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (5) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [43] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by
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where the terms with j = 1, 2 have canceled out in the
combination. Under the color trace with the hard func-
tion in (1), we can move the color generators TiL to the

right and replace (for j 6= 1, 2)

fade
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d
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, (18)

which leads to

W
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s
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X1 ln
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c
p̄+c̄

Q2
0

. (19)

The divergences in ⌘ have canceled but the associated
hard logarithm remains. It has indeed the structure
required by (5) to remove the double-logarithmic part
of the evolution below the scale Q0. We have checked
that (17) also holds for incoming gluons.
The same result can be obtained directly in SCET us-

ing the Glauber Lagrangian of [44]. The regions anal-
ysis immediately translates into SCET diagrams such
as the one shown in Fig. 3, where the di↵erent colors
now correspond to di↵erent SCET fields and the dashed
red line indicates the Glauber exchange. In the frame-
work of [44], one additionally encounters diagrams with
Glauber scaling on both internal lines connecting to the
soft-emission vertex. After regularizing their contribu-
tion with a Glauber regulator |kz

g
|
⌘
0
[45], distinct from

the rapidity regulator, and performing the required 0-bin
subtractions, we find that SCET reproduces (17). For
our observable, the 0-bin subtractions and the additional
graph with two Glauber gluons cancel each other. We
believe that it should be possible to choose a regulariza-
tion scheme in which such “non-genuine” (or “Cheshire”
[44]) Glauber contributions vanish from the beginning.
In this Letter, we have uncovered a new mechanism

that reconciles the breaking of collinear factorization
with PDF factorization. Remarkably, it is the contribu-
tion of perturbative Glauber gluons which, in an inter-
play of space-like collinear splittings and soft emissions,
restores the factorization of the cross section by convert-
ing double-logarithmic into single-logarithmic running at
low values of the factorization scale. In the future, it
will be important to understand the all-order structure
of these e↵ects, a key ingredient for the resummation of
jet processes at hadron colliders to higher logarithmic ac-
curacy [46–48] and the development of finite-Nc parton
showers [49–52]. This would clarify the physics of space-
like collinear limits of amplitudes and pave the way to
a proof of PDF factorization for a much wider class of
observables.
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e!ects asso-
ciated with di!erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e!ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e!ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e!ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e!ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E!ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e!ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 → Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

ω(Q0) =
→∑

m=m0

∫
dε1dε2 (1)

↑
〈
Hm({n}, Q, ε1, ε2, µ)↓Wm({n}, Q0, ε1, ε2, µ)

〉
,

where m0 = 2 + M is the number of partons at Born-
level, εi are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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SCET factorization theorem for M-jet production at the LHC
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[Becher, MN, Shao (2021) 
Becher, MN, Shao, Stillger (2023)]

high scale

Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.

P
(i)
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↵

i (0) =

✓
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i

2
�i(0) ,

P
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↵̄↵A

↵̄

?c
(tn̄i)A

↵

?c
(0) = (�g↵̄↵)(�i@t)A

↵̄

?c
(tn̄i)A

↵

?c
(0) = i@tA

µ

?i
(tn̄i)A?iµ(0) .

(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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over the
energies o

f the final-stat
e particles,

Hm
({n}, Q, ⇠1, ⇠2, µ

) =

Z
dEm |Mm

({p})ihMm
({p})| ,

(2)

while keeping the parton direction
s {n} = {n1, . . . , nm

}

fixed. Th
e explicit fo

rm of the energy integratio
n can be

found in (2.3) of [1
3]. The in

tegration
over the fi

nal-state

parton direction
s is indicated

by the symbol ⌦ in (1).

The color ind
ices of th

e hard partons a
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and

h. . . i denotes the color trace, wh
ich is taken after com-

bining the hard
functions

with the low-e
nergy matrix ele-

ments Wm
, which contain the dyna

mics associ
ated with

the perturbat
ive scale Q0, as depicted

in Fig. 1, as
well

as non-pe
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e QCD e↵ects. T
he main result of

our

Letter is
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p order, the

pertur-

bative pa
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The SLL analysis
in [12, 13] was based on the

renormalization-
group evolution

of the hard functions

from the high scale µh
= Q to a low scale µs

⇠ Q0.

The leading logarithm
s were obtained

by iterating
the

one-loop
anomalous dim

ension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like
cusp anoma-

lous dimension. The soft piece consists of �
c and V

G ,

which account for soft+collinear
emissions from one of

the two initial-sta
te partons a

nd complex phases ar
ising

from virtual gl
uon exchange

between
them, respecti

vely.

� correspon
ds to gluon emission into the gap, and

�C

denotes purely collinear
contribut

ions. The anomalous

dimension is an operator
in color space and a matrix

in the space of parton
multipliciti

es m. An applicatio
n

of �
H can either increase

the number of parton
s, corre-

sponding
to a real emission, or

leave the
m unchange

d for

virtual te
rms. The SL

Ls origina
te from �c . Using simple

identities
among the various terms in (3) [12],

one finds

that the
relevant c

olor trace
s are of the form

Crn
=
⌦
H

(0)
m0

(�
c)

r
V

G (�
c)

n�r
V

G �⌦ 1
↵
. (4)

Performing the associate
d scale integrals

for evolution

from Q down to the scale µs
⇠ Q0 produces

single loga-
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G and �, but do

uble loga
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perturbat
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arise at four-lo
op order and
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(4),
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(0)
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l hard functions

and we use that

W
(0)
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= 1 at lowest
order.

The fact
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s on the low-e
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W
bare
m

= 1+
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4⇡

�

2"
+
⇣ ↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣ ↵s
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⌘3
✓
V

GV
G �

3"3
�

�cV
G �

3"3
ln
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+ . . .
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(5)
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beyond.
Under th

e color trac
e, we can replace [13]

V
G � ! 16i⇡X1 , �cV

G � ! 16i⇡NcX1 ,

V
GV

G � ! �6⇡
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Jj T
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j
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X
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FIG. 3. Example of a collinear space-like splitting with a
genuine Glauber mode (red) contributing to the low-energy
matrix elements. The soft gluon is emitted into the gap with
constraint Q0 and attaches to leg j on the right-hand side.
Soft Wilson lines are drawn in orange, where relevant.

now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (5) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [43] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by

W
bare
m

3
i↵3

s

12⇡2"3
fabcfade

X

j>2

Jj

⇥


T

d

1LT
e

1RT
b

2LT
c

jR

✓
�

1

2⌘
� ln

⌫

p�c

◆

+ T
d

2LT
e

2RT
b

1LT
c

jR

✓
1

2⌘
+ ln

⌫ p̄+c̄
Q2

0

◆�

� (L $ R) , (17)

where the terms with j = 1, 2 have canceled out in the
combination. Under the color trace with the hard func-
tion in (1), we can move the color generators TiL to the

right and replace (for j 6= 1, 2)

fade
T

d

1LT
b

2LT
e

1RT
c

jR
! �

iNc

2
T

a

1 T
b

2 T
c

j
, (18)

which leads to

W
bare
m

3 �
iNc↵3

s

12⇡2"3
X1 ln

p�
c
p̄+c̄

Q2
0

. (19)

The divergences in ⌘ have canceled but the associated
hard logarithm remains. It has indeed the structure
required by (5) to remove the double-logarithmic part
of the evolution below the scale Q0. We have checked
that (17) also holds for incoming gluons.
The same result can be obtained directly in SCET us-

ing the Glauber Lagrangian of [44]. The regions anal-
ysis immediately translates into SCET diagrams such
as the one shown in Fig. 3, where the di↵erent colors
now correspond to di↵erent SCET fields and the dashed
red line indicates the Glauber exchange. In the frame-
work of [44], one additionally encounters diagrams with
Glauber scaling on both internal lines connecting to the
soft-emission vertex. After regularizing their contribu-
tion with a Glauber regulator |kz

g
|
⌘
0
[45], distinct from

the rapidity regulator, and performing the required 0-bin
subtractions, we find that SCET reproduces (17). For
our observable, the 0-bin subtractions and the additional
graph with two Glauber gluons cancel each other. We
believe that it should be possible to choose a regulariza-
tion scheme in which such “non-genuine” (or “Cheshire”
[44]) Glauber contributions vanish from the beginning.
In this Letter, we have uncovered a new mechanism

that reconciles the breaking of collinear factorization
with PDF factorization. Remarkably, it is the contribu-
tion of perturbative Glauber gluons which, in an inter-
play of space-like collinear splittings and soft emissions,
restores the factorization of the cross section by convert-
ing double-logarithmic into single-logarithmic running at
low values of the factorization scale. In the future, it
will be important to understand the all-order structure
of these e↵ects, a key ingredient for the resummation of
jet processes at hadron colliders to higher logarithmic ac-
curacy [46–48] and the development of finite-Nc parton
showers [49–52]. This would clarify the physics of space-
like collinear limits of amplitudes and pave the way to
a proof of PDF factorization for a much wider class of
observables.
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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▸ Renormalization-group evolution equation: 

▸ All-order summation of large logarithmic corrections!
operator in color space and in the infinite 

space of parton multiplicities

1 Introduction

µ
d

dµ
H

ab

l
({n}, Q, µ) = �

X

ml

H
ab

m
({n}, Q, µ)�H

ml
({n}, Q, µ) (1)

H
ab

m
({n}, Q, µ = Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2, µ = Q0) (2)

H
ab

m
({n}, Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2) (3)

U({n}, Q,Q0) = P exp

Z
Q

Q0

dµ

µ
�H({n}, Q, µ)

�
(4)

Thomas has shown that the fundamental color structures we need to analyze are

K2!M

m,n
=

⌦
H2!M ⌦̂�C . . . ⌦̂�C

| {z }
(n�m) times

�I
⌦̂�C . . . ⌦̂�C

| {z }
m times

�I
⌦̂�

↵
, (5)

where M � 0 is the number of final-state partons at Born level. We consider a generic

2 ! M hard-scattering process described by the hard function H2!M . The insertions of color

operators should be read from left to right. The relevant anomalous dimensions are given by

�C
=

X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

�I
= �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2

X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L · Tj,R W
k0

ij
✓in(nk0) .

(6)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton

emitted in the last step of the iteration. The additional p  n collinear gluons, which can

be emitted from the n insertions of �C
, are labeled by indices k1, . . . , kp. The symbol (ij) on

the sums in the expression for � runs over all (unordered) pairs of parton indices with i 6= j.
This sum includes both the initial-state and all final-state partons. We use the color-space

formalism, where Ti denotes a color generator acting on particle i. The superscripts L and R
are defined such that

⌦
HTi,L · Tj,R W

↵
⌘

⌦
T

a

i
HT

a

j
W

↵
=

⌦
HT

a

j
W T

a

i

↵
. (7)

The first n symbols ⌦̂ in (35) imply integrations over the directions nki of these collinear

partons, which simply has the e↵ect of replacing �(nk � ni) ! 1 in the expression for �C
.

The last ⌦̂ means an integration over the direction nM+1, which has the e↵ect of adding an

integral
R

d⌦(nM+1)
4⇡ in front of the second term in �. The trivial consequences of these angular

integrations is a result of the important fact that the relevant soft function in this process,

1



CFNS-INT Joint Program: Precision QCD with the Electron Ion Collider — May 14, 2025Matthias Neubert  — 10

RESUMMATION OF SUPER-LEADING LOGARITHMS

Factorization and Resummation for LHC Jet Processes

Evaluate factorization theorem at a low scale μs ∼ Q0

▸ Low-energy functions: 

▸ Hard functions: 

▸ Super-leading logs correspond to the leading logarithmic approximation!

ab
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Rm =4
X

(ij)

Ti,L · Tj,R

⇢h
�(nk � ni) ln

µ

2Ei
+ �(nk � nj) ln

µ

2Ej

i
�W

m+1
ij ⇥in(nm+1)

�

Vm =2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2

2Ei2Ej
+

Z
d⌦(nk)

4⇡
W

k
ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (11)

(12)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei
= �

X

i

Ti,L · Ti,L ln
µ

2Ei
= �

X

i

Ci ln
µ

2Ei
(13)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(14)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)fa/p(x1) fb/p(x2)1+O(↵s)
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.

We thus evaluate

H
ab

m
({n}, Q, µs) =

X
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H
ab
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({n}, Q,Q)P exp
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Q
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dµ

µ
�H({n}, Q, µ)

#
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Anomalous dimension matrix:

▸ Action on hard functions:

approach and reflects the intrinsic complexity of the problem at hand. The evolution equa-

tions shows that higher-multiplicity hard functions mix with lower-multiplicity functions

under scale evolution. At one-loop order, and written in the space of particle-multiplicities,

the anomalous-dimension matrix takes the form

�
H({n}, s, µ) =

↵s

4⇡

0

BBBBBB@

V2+M R2+M 0 0 . . .

0 V2+M+1 R2+M+1 0 . . .

0 0 V2+M+2 R2+M+2 . . .

0 0 0 V2+M+3 . . .

...
...

...
...

. . .

1

CCCCCCA
+O(↵2

s) , (2.13)

where (2+M) is the minimal number of particles for an M -jet process at a hadron collider.

The virtual-correction matrix elements Vm on the diagonal leave the number of partons

unchanged, while the real-emission operators Rm map a hard function with m partons onto

one with (m + 1) partons.3 With each higher order in perturbation theory an additional

o↵-diagonal in the upper right half of the matrix is filled, but the entries below the diagonal

remain zero to all orders.

By solving the RG equation (2.11) we can evolve the hard functions from their natural

scale µh ⇠ Q ⇠
p
ŝ, where ŝ = x1x2s is the partonic center-of-mass energy, down to the

scale µs ⇠ Q0 of the low-energy dynamics. A formal solution is given by the path-ordered

exponential

U({n}, s, µh, µs) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, s, µ)

�
, (2.14)

which is defined by its series expansion

H(µh) ?U(µh, µs) = H(µh) +

Z
µh

µs

dµ1

µ1
H(µh) ? �

H(µ1)

+

Z
µh

µs

dµ1

µ1

Z
µh

µ1

dµ2

µ2
H(µh) ? �

H(µ2) ? �
H(µ1) + . . . ,

(2.15)

where the anomalous-dimension matrices on the right-hand side are ordered in the direction

of decreasing scale values (i.e. µ2 > µ1 in the second line). In the last two equations we

have suppressed the energy and direction arguments of the various functions for simplicity.

In the following, we first present a detailed derivation of the anomalous dimension

�
H at one-loop order (Section 3). In contrast to the case of e+e� collisions, the anoma-

lous dimension not only contains soft contributions, but also collinear and soft+ collinear

contributions associated with the initial-state partons. The soft+ collinear parts exhibit

a logarithmic dependence on the factorization scale µ, which leads to double logarithms

upon performing the scale integrals in (2.15). This feature is the source of the SLLs. Fol-

lowing our earlier work [36], we then calculate the leading double-logarithmic terms from

(2.1) and (2.15) order by order in perturbation theory, by evaluating the relevant color

traces (Sections 4 and 6) and iterated scale integrals (Section 5). For this calculation it is

su�cient to work with the lowest-order expressions for the low-energy matrix elements and

3
Recall that �H

stands to the right of the hard functions in (2.11).
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Figure 5. Action of the real-emission operator Rm and the virtual piece Vm on a hard function
Hm. Due to the emitted gluon (green line), the product Hm Rm defines a hard function with
(m+ 1) external legs.

which we adopted in our previous paper [36]. In the laboratory frame, we have instead

2E1 = x1
p
s and 2E2 = x2

p
s. To obtain the cross section, the hard functions Hm and

the soft-collinear functions Wm+1 are integrated over the momentum fractions. The above

anomalous dimension multiplies these functions in the sense of Mellin convolutions over ⇠1
and ⇠2. Since the soft part has trivial dependence on the momentum fractions, we have

suppressed this dependence in [36].

The real and virtual pieces of the purely collinear part �C

i
of the one-loop anomalous-

dimension matrix (2.13) are given by

V
C

i (⇠i) = �2

✓
�
i

0 � Ci�
cusp
0 ln

µh

2Ei

◆
�(1� ⇠i) ,

R
C

i (⇠i) = 2

✓
2P i!P (⇠i)� Ci�

cusp
0 �iP ln

µh

2Ei

�(1� ⇠i)

◆
C
i!P,L

C†
i!P,R

�(nk � ni) ,

(3.37)

where the L and R subscript indicate how the color matrices act on the hard function. Note

that the collinear real-emission operator has di↵erent channels 1 ! P . For example, RC
q

acts on hard functions with initial state P , which could be a quark or gluon, and produces a

new hard function with initial-state quark. With the default choice µh ⇠
p
ŝ the logarithms

in the collinear anomalous dimension operators evaluate (modulo a sign) to the rapidity

di↵erence between the lab and the partonic center-of-mass frame. After convolution with

the PDFs, this is an order one logarithm. Furthermore, for channels in which the two initial-

state partons transform in the same color representation, the logarithms immediately cancel

for the default scale choice, as is evident from (3.12).

It is interesting that the hard evolution is not driven by the usual DGLAP kernels but

by a real part that has a non-trivial color structure and a color-diagonal virtual part. Only

if the color structure of the soft-collinear functions Wm+1 is such that the color structure

of the real emissions trivializes, the two parts will combine into the standard MS kernels.

For the same reason also the soft+ collinear pieces do not cancel out, which will lead to

double-logarithmic terms in the evolution, the SLLs.
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Anomalous dimension matrix:

▸ Virtual and real contributions contain collinear singularities, which must be 
regularized and subtracted:

Figure 4. Color structures C1!P for di↵erent collinear splittings. In the first three cases, the color
structure is given by the color generator associated with the quark-gluon vertex, appropriately
contracted with the hard function. In the last case, the color structure is given by the SU(Nc)
structure constant. The first and last example can be written as T a

1 in the color space formalism,
where a is the color index of the emitted collinear gluon.

The matrix C1!P connects the colors of the three partons involved in the splitting and maps

from the m-parton space with momenta {p̂} = {P, p2, . . . , pj�1, pj+1, . . . , pm+1} before the

splitting to the (m + 1)-parton space with directions {n̂} = {n1, n2, . . . , nm+1} after the

splitting. We have normalized these matrices to unity for trivial Wm+1 = 1

C†
1!P

C1!P = 1 . (3.33)

For the q ! q or g ! g splittings, the matrix C1!P describes the emission of an ad-

ditional collinear gluon, which can be described in the color-space formalism. With our

normalization, we have

C1!P
Hm C†

1!P
= Hm

1

CP

TP,L � TP,R . (3.34)

The subscripts L,R indicate on which side the color generator multiplies the hard function.

For the soft terms proportional to �(1� ⇠), the normalization factor CP simply cancels the

Casimir in the prefactor.

After this discussion, we can now present the result for the full anomalous dimen-

sion, including both the soft part and the collinear pieces associated with the initial-state

collinear singularities. At the one-loop order, we split the anomalous dimension into a soft

part and a sum of purely collinear terms

�
H(⇠1, ⇠2) = �(1� ⇠1) �(1� ⇠2)�

S + �
C

1 (⇠1) �(1� ⇠2) + �(1� ⇠1)�
C

2 (⇠2) . (3.35)

To separate the soft+ collinear parts from the purely collinear ones, we introduce a refer-

ence scale µh ⇠
p
ŝ and split

ln
µ

2Ei

= ln
µ

µh

+ ln
µh

2Ei

(3.36)

for i = 1, 2. The large logarithms ln µ

µh

are included with the soft anomalous dimension

�
S
⌘ �

S(µh, µ) and the remaining O(1) terms are included in �
C

i
. In the partonic center-

of-mass frame 2E1 = 2E2 =
p
ŝ so that the extra term is absent for the choice µh ⇠

p
ŝ
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approach and reflects the intrinsic complexity of the problem at hand. The evolution equa-

tions shows that higher-multiplicity hard functions mix with lower-multiplicity functions

under scale evolution. At one-loop order, and written in the space of particle-multiplicities,

the anomalous-dimension matrix takes the form

�
H({n}, s, µ) =

↵s

4⇡

0

BBBBBB@

V2+M R2+M 0 0 . . .

0 V2+M+1 R2+M+1 0 . . .

0 0 V2+M+2 R2+M+2 . . .

0 0 0 V2+M+3 . . .

...
...

...
...

. . .

1

CCCCCCA
+O(↵2

s) , (2.13)

where (2+M) is the minimal number of particles for an M -jet process at a hadron collider.

The virtual-correction matrix elements Vm on the diagonal leave the number of partons

unchanged, while the real-emission operators Rm map a hard function with m partons onto

one with (m + 1) partons.3 With each higher order in perturbation theory an additional

o↵-diagonal in the upper right half of the matrix is filled, but the entries below the diagonal

remain zero to all orders.

By solving the RG equation (2.11) we can evolve the hard functions from their natural

scale µh ⇠ Q ⇠
p
ŝ, where ŝ = x1x2s is the partonic center-of-mass energy, down to the

scale µs ⇠ Q0 of the low-energy dynamics. A formal solution is given by the path-ordered

exponential

U({n}, s, µh, µs) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, s, µ)

�
, (2.14)

which is defined by its series expansion

H(µh) ?U(µh, µs) = H(µh) +

Z
µh

µs

dµ1

µ1
H(µh) ? �

H(µ1)

+

Z
µh

µs

dµ1

µ1

Z
µh

µ1

dµ2

µ2
H(µh) ? �

H(µ2) ? �
H(µ1) + . . . ,

(2.15)

where the anomalous-dimension matrices on the right-hand side are ordered in the direction

of decreasing scale values (i.e. µ2 > µ1 in the second line). In the last two equations we

have suppressed the energy and direction arguments of the various functions for simplicity.

In the following, we first present a detailed derivation of the anomalous dimension

�
H at one-loop order (Section 3). In contrast to the case of e+e� collisions, the anoma-

lous dimension not only contains soft contributions, but also collinear and soft+ collinear

contributions associated with the initial-state partons. The soft+ collinear parts exhibit

a logarithmic dependence on the factorization scale µ, which leads to double logarithms

upon performing the scale integrals in (2.15). This feature is the source of the SLLs. Fol-

lowing our earlier work [36], we then calculate the leading double-logarithmic terms from

(2.1) and (2.15) order by order in perturbation theory, by evaluating the relevant color

traces (Sections 4 and 6) and iterated scale integrals (Section 5). For this calculation it is

su�cient to work with the lowest-order expressions for the low-energy matrix elements and

3
Recall that �H

stands to the right of the hard functions in (2.11).
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�0
↵sCF

4⇡
4 ln(r) ln

Q
2

Q
2
0

+ . . . (5)

|Mm+1({p, q})i = "
⇤µJµ,a(q)|Mm({p})i = gs

mX

i=1

T a
i
ni · "⇤

ni · q
|Mm({p})i (6)

(T a
i )bc =

8
>>><

>>>:

(ta)bc quark

�(ta)cb anti-quark

�if
abc gluon

(7)

Rm =� 4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥jet(nm+1) (8)

Vm =2
X

(ij)

Z
d⌦(nk)

4⇡
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij

Ti,L � Tj,R

Ti,L · Tj,L Ti,R · Tj,R

Ti · Tj =
X

a

T a
i T

a
j

Jµ,a(q)J
µ,a(q)

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ
2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ
2

ŝ
,

(9)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (10)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .

<latexit sha1_base64="w6gC74xNyoYnQGbpq/x4p2Is4VM=">AAAB73icbVBNS8NAEJ2tX7V+VT16WSyCp5KIqMdSLx4r2A9oQtlsN+nSzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBVcG8f5RqW19Y3NrfJ2ZWd3b/+genjU0UmmKGvTRCSqFxDNBJesbbgRrJcqRuJAsG4wvp353SemNE/kg5mkzI9JJHnIKTFW6nlNHkXYmw6qNafuzIFXiVuQGhRoDapf3jChWcykoYJo3Xed1Pg5UYZTwaYVL9MsJXRMIta3VJKYaT+f3zvFZ1YZ4jBRtqTBc/X3RE5irSdxYDtjYkZ62ZuJ/3n9zIQ3fs5lmhkm6WJRmAlsEjx7Hg+5YtSIiSWEKm5vxXREFKHGRlSxIbjLL6+SzkXdvapf3l/WGs0ijjKcwCmcgwvX0IA7aEEbKAh4hld4Q4/oBb2jj0VrCRUzx/AH6PMHf7qPoQ==</latexit>)
� = �+ V

G + �c ln
µ2

ŝ

1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton

1
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soft emission  
(collinear div. subtracted)

collinear emission

Glauber phase

Figure 6. Action of the cusp operator Rc
1 and the virtual piece V

G on a hard function Hm. The
operator Rc

1 adds an additional final-state leg (dashed blue line) along the direction of the incoming
parton 1.

entry, H2!M ⌘ (H2+M , 0, 0, . . . ). We also combine the real and virtual pieces of the soft

anomalous dimension into the matrix notation

�
c =

X

i=1,2

�
cusp
0

⇥
Ci 1� Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡�cusp0 (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij � 4
X

(ij)

Ti,L � Tj,R W
k

ij ⇥hard(nk) .

(4.1)

As in (2.11) and (2.15), these are matrices in multiplicity space that multiply the hard

function from the right and the order of the matrices determines the order in which they

act on the hard function. At the same time, they contain color matrices that can act on

the amplitude or the conjugate amplitude in each step, i.e. multiply the color indices of

the hard function on the left or on the right. The vector nk in (4.1) corresponds to the

direction of the emitted gluon. Each emission generates a new vector and in a product of

anomalous dimensions we will label the vectors with an index nk`
with ` = 0, 1, . . . , where

` = 0 is the last emission, ` = 1 the second to last, and so on.

Three properties of the di↵erent components of the anomalous dimension (4.1) greatly

simplify our calculations. Color coherence, the fact that the sum of the soft emissions o↵

two collinear partons has the same e↵ect as a single soft emission o↵ the parent parton,

implies that

H�
c
� = H��

c
, (4.2)

in other words they commute when multiplying a hard function H

[�c
,�] = 0. (4.3)

To derive this relation, we note that the contributions Rm and Vm only depend on the

sum of colors if two partons i and j become collinear, e.g.

Ti,L · Tk,RW
q

ik + Tj,L · Tk,RW
q

jk = (Ti,L + Tj,L) · Tk,RW
q

ik , (4.4)
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for the collinear-emission operator �c and the Glauber operator V G are [18]4

�c =
X

i=1,2

⇥
Ci 1� Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡

�
T1,L · T2,L � T1,R · T2,R

�
.

(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state
partons, or Glauber-gluon exchange between the two initial-state partons, respectively.
The operator V G is diagonal in multiplicity space, while �c is an upper bi-diagonal matrix,
and both only involve the color generators of the initial-state partons (i = 1, 2). We use
the color-space formalism, where Ti denotes a color generator acting on particle i, and
Ti · Tj =

P
a
T

a

i
T

a

j
. Moreover, Ci 2 {CF , CA} is the eigenvalue of the quadratic Casimir

operator of SU(Nc) in the fundamental or adjoint representation. The color matrices Ti,L

act on the scattering amplitude and multiply the hard function from the left, while Tj,R

act on the conjugate amplitude and multiply the hard function from the right. This is the
usual color-space notation [24]. The color matrices in the real-emission term in �c have a
di↵erent meaning, since they take an amplitude with m partons and associated color indices
and map it into an amplitude with (m + 1) partons. The symbol � indicates the creation
of extra new color space for the emitted gluon with direction nk. Explicitly, we have [18]

Hm Ti,L � Tj,R = T
a

i
Hm T

ã

j
, (2.8)

where a and ã are the color indices of the additional emitted gluon in the amplitude and
the conjugate amplitude, respectively. In contrast to the virtual case, these color indices
cannot immediately be contracted because, later emissions can attach to the new gluon.

The emission operator � in (2.6) accounts for (virtual or real) gluon emissions away
from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L � Tj,R W
k

ij
⇥hard(nk) , (2.9)

where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
k

ij
= W k

ij
�

1

ni · nk

�(ni � nk)�
1

nj · nk

�(nj � nk) ; W k

ij
=

ni · nj

ni · nk nj · nk

. (2.10)

It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.
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from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L � Tj,R W
k

ij
⇥hard(nk) , (2.9)

where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
k

ij
= W k

ij
�

1

ni · nk

�(ni � nk)�
1

nj · nk

�(nj � nk) ; W k

ij
=

ni · nj

ni · nk nj · nk

. (2.10)

It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.

6

new color space of emitted gluon
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Its action on the hard functions is defined by the series expansion

H({n}, s, µs) = H({n}, s, µh) ! U({n}, s, µh, µs)

= H({n}, s, µh) +
∫ µh

µs

dµ1
µ1

H({n}, s, µh) ! ΓH({n}, s, µ1) (2.4)

+
∫ µh

µs

dµ1
µ1

∫ µ1

µs

dµ2
µ2

H({n}, s, µh) ! ΓH({n}, s, µ1) ! ΓH({n}, s, µ2) + . . . ,

where the anomalous-dimension matrices on the right-hand side are ordered in the direction
of decreasing scale values, i.e. µ1 > µ2 in the last line. The successive applications of ΓH

lead to color structures with increasing complexity. We use this solution to evolve the hard
functions from a hard matching scale µh → Q to a low scale µs → Q0, at which they are
combined with the initial conditions

Wm({n}, Q0, ε1, ε2, µs) = f1(ε1, µs) f2(ε2, µs)1+O(αs) (2.5)

for the low-energy matrix elements. Here fi(εi, µs) denote the parton distribution functions.
Following [19, 20], we are interested in the resummation of large double-logarithmic

corrections to the cross section (the SLLs) at leading order in RG-improved perturbation
theory. For this purpose it is sufficient to use the lowest-order expressions for the hard
functions at the scale µh and the low-energy matrix elements at the scale µs, and to solve the
path-ordered exponential using a consistent leading-order approximation for the anomalous
dimension, i.e. two-loop order for all logarithmically-enhanced terms, and one-loop order
for the remaining terms. In general, one can split the anomalous dimensions into soft and
collinear parts, ΓS and ΓC , where only the soft part will be relevant in the following.2 Soft
emissions leave the values of the parton momentum fractions unchanged, and hence the
Mellin convolutions are trivial for the terms in ΓS . They will thus be omitted from now on.
It is convenient to split up the soft anomalous dimension in three terms [19],

ΓS = γcusp(αs)
(

Γc ln µ2

µ2
h

+ V G

)

+ αs

4π
Γ +O(α2

s) , (2.6)

where γcusp(αs) is the light-like cusp anomalous dimension [27]. The explicit expressions for
the collinear-emission operator Γc and the Glauber operator V G are [19]3

Γc =
∑

i=1,2

[
Ci 1 − Ti,L ◦ Ti,R ς(nk − ni)

]
,

V G = −2iπ
(
T1,L · T2,L − T1,R · T2,R

)
.

(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state partons,
or Glauber-gluon exchanges between the two initial-state partons, respectively. The operator
V G is diagonal in multiplicity space, while Γc is an upper bi-diagonal matrix, and both only
involve the color generators of the initial-state partons (i = 1, 2). We use the color-space
formalism [26], where Ti denotes a color generator acting on particle i, and Ti ·Tj =

∑
a T

a
i T a

j .
2The explicit form of the collinear operator ΓC has been worked out in [20].
3Compared to this reference, we have removed a factor γ0 = 4 from the definitions of the operators Γc and

V G and absorbed it into the cusp anomalous dimension.

– 5 –



CFNS-INT Joint Program: Precision QCD with the Electron Ion Collider — May 14, 2025Matthias Neubert  — 

�0
↵sCF

4⇡
4 ln(r) ln

Q
2

Q
2
0

+ . . . (5)

|Mm+1({p, q})i = "
⇤µJµ,a(q)|Mm({p})i = gs

mX

i=1

T a
i
ni · "⇤

ni · q
|Mm({p})i (6)

(T a
i )bc =

8
>>><

>>>:

(ta)bc quark

�(ta)cb anti-quark

�if
abc gluon

(7)

Rm =� 4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥jet(nm+1) (8)

Vm =2
X

(ij)

Z
d⌦(nk)

4⇡
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij

Ti,L � Tj,R

Ti,L · Tj,L Ti,R · Tj,R

Ti · Tj =
X

a

T a
i T

a
j

Jµ,a(q)J
µ,a(q)

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ
2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ
2

ŝ
,

(9)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (10)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .

<latexit sha1_base64="w6gC74xNyoYnQGbpq/x4p2Is4VM=">AAAB73icbVBNS8NAEJ2tX7V+VT16WSyCp5KIqMdSLx4r2A9oQtlsN+nSzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBVcG8f5RqW19Y3NrfJ2ZWd3b/+genjU0UmmKGvTRCSqFxDNBJesbbgRrJcqRuJAsG4wvp353SemNE/kg5mkzI9JJHnIKTFW6nlNHkXYmw6qNafuzIFXiVuQGhRoDapf3jChWcykoYJo3Xed1Pg5UYZTwaYVL9MsJXRMIta3VJKYaT+f3zvFZ1YZ4jBRtqTBc/X3RE5irSdxYDtjYkZ62ZuJ/3n9zIQ3fs5lmhkm6WJRmAlsEjx7Hg+5YtSIiSWEKm5vxXREFKHGRlSxIbjLL6+SzkXdvapf3l/WGs0ijjKcwCmcgwvX0IA7aEEbKAh4hld4Q4/oBb2jj0VrCRUzx/AH6PMHf7qPoQ==</latexit>)
� = �+ V

G + �c ln
µ2

ŝ

1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton
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soft emission  
(collinear div. subtracted)

collinear emission

Glauber phase

Figure 5. Action of the real-emission operator Rm and the virtual piece Vm on a hard function
Hm. Due to the emitted gluon (green line), the product Hm Rm defines a hard function with
(m+ 1) external legs.

which we adopted in our previous paper [36]. In the laboratory frame, we have instead

2E1 = x1
p
s and 2E2 = x2

p
s. To obtain the cross section, the hard functions Hm and

the soft-collinear functions Wm+1 are integrated over the momentum fractions. The above

anomalous dimension multiplies these functions in the sense of Mellin convolutions over ⇠1
and ⇠2. Since the soft part has trivial dependence on the momentum fractions, we have

suppressed this dependence in [36].

The real and virtual pieces of the purely collinear part �C

i
of the one-loop anomalous-

dimension matrix (2.13) are given by

V
C

i (⇠i) = �2

✓
�
i

0 � Ci�
cusp
0 ln

µh

2Ei

◆
�(1� ⇠i) ,

R
C

i (⇠i) = 2

✓
2P i!P (⇠i)� Ci�

cusp
0 �iP ln

µh

2Ei

�(1� ⇠i)

◆
C
i!P,L

C†
i!P,R

�(nk � ni) ,

(3.37)

where the L and R subscript indicate how the color matrices act on the hard function. Note

that the collinear real-emission operator has di↵erent channels 1 ! P . For example, RC
q

acts on hard functions with initial state P , which could be a quark or gluon, and produces a

new hard function with initial-state quark. With the default choice µh ⇠
p
ŝ the logarithms

in the collinear anomalous dimension operators evaluate (modulo a sign) to the rapidity

di↵erence between the lab and the partonic center-of-mass frame. After convolution with

the PDFs, this is an order one logarithm. Furthermore, for channels in which the two initial-

state partons transform in the same color representation, the logarithms immediately cancel

for the default scale choice, as is evident from (3.12).

It is interesting that the hard evolution is not driven by the usual DGLAP kernels but

by a real part that has a non-trivial color structure and a color-diagonal virtual part. Only

if the color structure of the soft-collinear functions Wm+1 is such that the color structure

of the real emissions trivializes, the two parts will combine into the standard MS kernels.

For the same reason also the soft+ collinear pieces do not cancel out, which will lead to

double-logarithmic terms in the evolution, the SLLs.
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for the collinear-emission operator �c and the Glauber operator V G are [18]4

�c =
X

i=1,2

⇥
Ci 1� Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡

�
T1,L · T2,L � T1,R · T2,R

�
.

(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state
partons, or Glauber-gluon exchange between the two initial-state partons, respectively.
The operator V G is diagonal in multiplicity space, while �c is an upper bi-diagonal matrix,
and both only involve the color generators of the initial-state partons (i = 1, 2). We use
the color-space formalism, where Ti denotes a color generator acting on particle i, and
Ti · Tj =

P
a
T

a

i
T

a

j
. Moreover, Ci 2 {CF , CA} is the eigenvalue of the quadratic Casimir

operator of SU(Nc) in the fundamental or adjoint representation. The color matrices Ti,L

act on the scattering amplitude and multiply the hard function from the left, while Tj,R

act on the conjugate amplitude and multiply the hard function from the right. This is the
usual color-space notation [24]. The color matrices in the real-emission term in �c have a
di↵erent meaning, since they take an amplitude with m partons and associated color indices
and map it into an amplitude with (m + 1) partons. The symbol � indicates the creation
of extra new color space for the emitted gluon with direction nk. Explicitly, we have [18]

Hm Ti,L � Tj,R = T
a

i
Hm T

ã

j
, (2.8)

where a and ã are the color indices of the additional emitted gluon in the amplitude and
the conjugate amplitude, respectively. In contrast to the virtual case, these color indices
cannot immediately be contracted because, later emissions can attach to the new gluon.

The emission operator � in (2.6) accounts for (virtual or real) gluon emissions away
from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L � Tj,R W
k

ij
⇥hard(nk) , (2.9)

where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
k

ij
= W k

ij
�

1

ni · nk

�(ni � nk)�
1

nj · nk

�(nj � nk) ; W k

ij
=

ni · nj

ni · nk nj · nk

. (2.10)

It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.
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non-trivial color structures

splitting functions

The symbol → in (4.6) includes, in particular, integrations over the directions nkω
of

the emitted collinear gluons, which simply has the e!ect of replacing ω(nk ↑ni) ↓ 1 in the

expression for !c. It also includes an integration over the direction nk0 , which has the e!ect

of adding an integral
∫ d!(nk0

)
4ω in front of the second term in !. The trivial consequences

of these angular integrations are a result of the fact that the low-energy matrix elements

Wm are proportional to the trivial color structure 1 in lowest order, see (2.16).

So far, we have only considered the di!erent pieces of the soft anomalous dimension,

but let us also briefly discuss the purely collinear part. Combining real and virtual as in

the soft case

!
C

i (εi) =
ϑs

4ϖ

[
2

(
2P i→P (εi)↑ Ciϱ

cusp
0 ln

µh

2Ei

ω(1↑ εi) ωiP

)
ω(nk ↑ ni)Ci→P

C†
i→P

↑2

(
ϱ
i

0 ↑ Ciϱ
cusp
0 ln

µh

2Ei

)
ω(1↑ εi) ωiP

]
,

(4.10)

we find that also the purely collinear anomalous dimension commutes with the wide-angle

emissions

H!
C

i (εi)! = H!!
C

i (εi) . (4.11)

As for (4.2), this property follows from (4.4) and (3.19). Furthermore, when inserted in

the last step one can perform the color sum over the emitted parton, after which the real

and virtual parts combine into the usual DGLAP kernels

↔H!
C

i (εi)→ 1↗ = ↔H→ 1↗
ϑs

ϖ
Pi→P (εi) . (4.12)

Here the soft-collinear cusp pieces have cancelled out between the real and virtual terms.

As mentioned above, this will no longer be the case beyond the leading order due to Glauber

phases in the low-energy matrix elements. Compared to the contributions Crn, contribu-

tions involving the collinear anomalous dimension involve fewer powers of logarithms at a

given order and we will not discuss them further in this paper, but it is interesting that in

the presence of Glauber phases the collinear evolution becomes more complicated than the

one associated with the DGLAP equations.

5 Iterated scale integrals and resummation

Expanding the path-ordered exponential in (2.14) one generates the ordered product (2.15)

of integrals over the anomalous dimension. The leading double-logarithmic terms in this

series result from the iteration of the soft anomalous dimension !
S in (3.35), which in turn

consists of the three elements given in (4.1). For these terms the Mellin convolutions are

trivial, and we obtain the iterated integral
∫

µh

µs

dµ1

µ1

∫
µh

µ1

dµ2

µ2
· · ·

∫
µh

µn→1

dµn

µn

!
S(µh, µn) . . . !

S(µh, µ2)!
S(µh, µ1) . (5.1)

To obtain the series of SLLs one picks out the di!erent components of the anomalous

dimension (!c, V G or !) corresponding to the color traces in (4.6). This leads to the
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Figure 4. Color structures C1→P for di!erent collinear splittings. In the first three cases, the color
structure is given by the color generator associated with the quark-gluon vertex, appropriately
contracted with the hard function. In the last case, the color structure is given by the SU(Nc)
structure constant. The first and last example can be written as T a

1 in the color space formalism,
where a is the color index of the emitted collinear gluon.

The matrix C1→P connects the colors of the three partons involved in the splitting and maps

from the m-parton space with momenta {p̂} = {P, p2, . . . , pj↑1, pj+1, . . . , pm+1} before the

splitting to the (m + 1)-parton space with directions {n̂} = {n1, n2, . . . , nm+1} after the

splitting. We have normalized these matrices to unity for trivial Wm+1 = 1

C†
1→P

C1→P = 1 . (3.33)

For the q → q or g → g splittings, the matrix C1→P describes the emission of an ad-

ditional collinear gluon, which can be described in the color-space formalism. With our

normalization, we have

C1→P
Hm C†

1→P
= Hm

1

CP

TP,L ↑ TP,R . (3.34)

The subscripts L,R indicate on which side the color generator multiplies the hard function.

For the soft terms proportional to ω(1↓ ε), the normalization factor CP simply cancels the

Casimir in the prefactor.

After this discussion, we can now present the result for the full anomalous dimen-

sion, including both the soft part and the collinear pieces associated with the initial-state

collinear singularities. At the one-loop order, we split the anomalous dimension into a soft

part and a sum of purely collinear terms

!
H(ε1, ε2) = ω(1↓ ε1) ω(1↓ ε2)!

S + !
C

1 (ε1) ω(1↓ ε2) + ω(1↓ ε1)!
C

2 (ε2) . (3.35)

To separate the soft+ collinear parts from the purely collinear ones, we introduce a refer-

ence scale µh ↔
↗
ŝ and split

ln
µ

2Ei

= ln
µ

µh

+ ln
µh

2Ei

(3.36)

for i = 1, 2. The large logarithms ln µ

µh

are included with the soft anomalous dimension

!
S
↘ !

S(µh, µ) and the remaining O(1) terms are included in !
C

i
. In the partonic center-

of-mass frame 2E1 = 2E2 =
↗
ŝ so that the extra term is absent for the choice µh ↔

↗
ŝ

– 20 –



CFNS-INT Joint Program: Precision QCD with the Electron Ion Collider — May 14, 2025Matthias Neubert  — 15

RESUMMATION OF SUPER-LEADING LOGARITHMS

Factorization and Resummation for LHC Jet Processes

SLLs arise from the terms in                                                      with the highest 
number of insertions of Γc

▸ Four algebraic identities simplify the calculation: 
✦ color coherence without Glauber phases: 

✦ collinear safety: 

✦ cyclicality of trace: 

✦ DGLAP evolution without Glauber phases:
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).
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On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).
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The symbol → in (4.6) includes, in particular, integrations over the directions nkω
of

the emitted collinear gluons, which simply has the e!ect of replacing ω(nk ↑ni) ↓ 1 in the

expression for !c. It also includes an integration over the direction nk0 , which has the e!ect

of adding an integral
∫ d!(nk0

)
4ω in front of the second term in !. The trivial consequences

of these angular integrations are a result of the fact that the low-energy matrix elements

Wm are proportional to the trivial color structure 1 in lowest order, see (2.16).

So far, we have only considered the di!erent pieces of the soft anomalous dimension,

but let us also briefly discuss the purely collinear part. Combining real and virtual as in

the soft case

!
C

i (εi) =
ϑs

4ϖ

[
2

(
2P i→P (εi)↑ Ciϱ

cusp
0 ln

µh

2Ei

ω(1↑ εi) ωiP

)
ω(nk ↑ ni)Ci→P

C†
i→P

↑2

(
ϱ
i

0 ↑ Ciϱ
cusp
0 ln

µh

2Ei

)
ω(1↑ εi) ωiP

]
,

(4.10)

we find that also the purely collinear anomalous dimension commutes with the wide-angle

emissions

H!
C

i (εi)! = H!!
C

i (εi) . (4.11)

As for (4.2), this property follows from (4.4) and (3.19). Furthermore, when inserted in

the last step one can perform the color sum over the emitted parton, after which the real

and virtual parts combine into the usual DGLAP kernels

↔H!
C

i (εi)→ 1↗ = ↔H→ 1↗
ϑs

ϖ
Pi→P (εi) . (4.12)

Here the soft-collinear cusp pieces have cancelled out between the real and virtual terms.

As mentioned above, this will no longer be the case beyond the leading order due to Glauber

phases in the low-energy matrix elements. Compared to the contributions Crn, contribu-

tions involving the collinear anomalous dimension involve fewer powers of logarithms at a

given order and we will not discuss them further in this paper, but it is interesting that in

the presence of Glauber phases the collinear evolution becomes more complicated than the

one associated with the DGLAP equations.

5 Iterated scale integrals and resummation

Expanding the path-ordered exponential in (2.14) one generates the ordered product (2.15)

of integrals over the anomalous dimension. The leading double-logarithmic terms in this

series result from the iteration of the soft anomalous dimension !
S in (3.35), which in turn

consists of the three elements given in (4.1). For these terms the Mellin convolutions are

trivial, and we obtain the iterated integral
∫

µh

µs

dµ1
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To obtain the series of SLLs one picks out the di!erent components of the anomalous

dimension (!c, V G or !) corresponding to the color traces in (4.6). This leads to the
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, also for

DGLAP splitting functions

� = �+ V
G + �c ln

µ2

ŝ

1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton
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Its action on the hard functions is defined by the series expansion

H({n}, s, µs) = H({n}, s, µh) ! U({n}, s, µh, µs)

= H({n}, s, µh) +
∫ µh

µs

dµ1
µ1

H({n}, s, µh) ! ΓH({n}, s, µ1) (2.4)

+
∫ µh

µs

dµ1
µ1

∫ µ1

µs

dµ2
µ2

H({n}, s, µh) ! ΓH({n}, s, µ1) ! ΓH({n}, s, µ2) + . . . ,

where the anomalous-dimension matrices on the right-hand side are ordered in the direction
of decreasing scale values, i.e. µ1 > µ2 in the last line. The successive applications of ΓH

lead to color structures with increasing complexity. We use this solution to evolve the hard
functions from a hard matching scale µh → Q to a low scale µs → Q0, at which they are
combined with the initial conditions

Wm({n}, Q0, ε1, ε2, µs) = f1(ε1, µs) f2(ε2, µs)1+O(αs) (2.5)

for the low-energy matrix elements. Here fi(εi, µs) denote the parton distribution functions.
Following [19, 20], we are interested in the resummation of large double-logarithmic

corrections to the cross section (the SLLs) at leading order in RG-improved perturbation
theory. For this purpose it is sufficient to use the lowest-order expressions for the hard
functions at the scale µh and the low-energy matrix elements at the scale µs, and to solve the
path-ordered exponential using a consistent leading-order approximation for the anomalous
dimension, i.e. two-loop order for all logarithmically-enhanced terms, and one-loop order
for the remaining terms. In general, one can split the anomalous dimensions into soft and
collinear parts, ΓS and ΓC , where only the soft part will be relevant in the following.2 Soft
emissions leave the values of the parton momentum fractions unchanged, and hence the
Mellin convolutions are trivial for the terms in ΓS . They will thus be omitted from now on.
It is convenient to split up the soft anomalous dimension in three terms [19],

ΓS = γcusp(αs)
(

Γc ln µ2

µ2
h

+ V G

)

+ αs

4π
Γ +O(α2

s) , (2.6)

where γcusp(αs) is the light-like cusp anomalous dimension [27]. The explicit expressions for
the collinear-emission operator Γc and the Glauber operator V G are [19]3

Γc =
∑

i=1,2

[
Ci 1 − Ti,L ◦ Ti,R ς(nk − ni)

]
,

V G = −2iπ
(
T1,L · T2,L − T1,R · T2,R

)
.

(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state partons,
or Glauber-gluon exchanges between the two initial-state partons, respectively. The operator
V G is diagonal in multiplicity space, while Γc is an upper bi-diagonal matrix, and both only
involve the color generators of the initial-state partons (i = 1, 2). We use the color-space
formalism [26], where Ti denotes a color generator acting on particle i, and Ti ·Tj =

∑
a T

a
i T a

j .
2The explicit form of the collinear operator ΓC has been worked out in [20].
3Compared to this reference, we have removed a factor γ0 = 4 from the definitions of the operators Γc and

V G and absorbed it into the cusp anomalous dimension.
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SLLs arise from the terms in                                                      with the highest 
number of insertions of Γc

▸ Relevant color traces at : 

▸ Kinematic information contained in  angular integrals from :
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.

We thus evaluate

H
ab

m
({n}, Q, µs) =

X

lm

H
ab

l
({n}, Q,Q)P exp

"Z
Q

µs

dµ

µ
�H({n}, Q, µ)

#

lm

(1)
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tions HmRC involve one additional hard gluon (dashed blue line) which is
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.
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mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,
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i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
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where we have defined �c =
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that
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because
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i ) ⌦ 1i / hT a
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i � Ci Hmi = 0 .
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The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1
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, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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which makes it explicit that starting from four-loop order
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.
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H
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.
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The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that
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where we have defined �c =
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that
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because
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(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

2 ! M
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.

We thus evaluate

H
ab

m
({n}, Q, µs) =

X

lm

H
ab

l
({n}, Q,Q)P exp

"Z
Q

µs

dµ

µ
�H({n}, Q, µ)

#
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RESUMMATION OF SUPER-LEADING LOGARITHMS

Factorization and Resummation for LHC Jet Processes

▸ Infinite series can be expressed in closed form in terms of a prefactor times 
Kampé de Fériet functions , with                         and: Σ(vi, w) w =

Nc↵s

⇡
L2
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for all “cusp terms” generating double logarithms in (5.6), and

Z 1

y

dx

x
!

Z 1

y

dx

x


1 +

↵s(µh)

4⇡

✓
�
cusp
1

�
cusp
0

�
�1

�0

◆
1

x
+ . . .

�
(5.10)

for the two Glauber terms. In the approximation where one works with a fixed coupling

↵s(µ̄), as in (5.4), one would obtain

Irn(µh, µs)
���
no running

=

✓
↵s(µ̄)

4⇡

◆
n+3 

1 +
�
cusp
1

�
cusp
0

↵s(µ̄)

4⇡

�n+2 (�4)n n!

(2n+ 3)!

(2r)!

4r (r!)2
ln2n+3

✓
µh

µs

◆
.

(5.11)

To approximately take this e↵ect into account in our numerical results presented in Sec-

tion 7, we will simply replace

↵s(µ̄) !


1 +

�
cusp
1

�
cusp
0

↵s(µ̄)

4⇡

�
↵s(µ̄) (5.12)

in the fixed-order results. For the results obtained using a running coupling, we will

multiply the integrals Irn in (5.6) with the same factor to the (3 + n)-th power evaluated

at µ̄ =
p
QQ0, to avoid reevaluating the integrals in (5.6) according to (5.9). Numerically

this has the e↵ect of increasing the running coupling by about six percent.

5.2 Resummation and asymptotic behavior of the super-leading logarithms

We will derive an exact, closed-form expression for the color traces Crn for an arbitrary

2 ! M process in Section 6. While the resulting expressions for specific partonic channels

can be lengthy, we find that in all cases the dependence on r and n can be factorized in

the general form

Crn = (�cusp0 Nc)
n


k0 �r0 +

6X

i=1

ki v
r

i

�
, (5.13)

with �
cusp
0 = 4 and process-dependent coe�cients ki and parameters

v1 =
1

2
, v2 = 1 , v3,4 =

3Nc ± 2

2Nc

, v5,6 =
2 (Nc ± 1)

Nc

, (5.14)

where v3 and v5 correspond to the plus signs. These vi arise as eigenvalues of �c acting

on the space of color structures, see Section 6. Neglecting the running of the coupling, as

is formally permitted at strict double-logarithmic accuracy, we derived in (5.4) a simple

expression for the integrals Irn. Using this expression and the power-like dependence of

Crn on r, we find that the SLL contribution to the partonic cross section is given by the

double sum

�̂
SLL
2!M =

1X

n=0

nX

r=0

Irn(µh, µs)Crn =

✓
↵s(µ̄)

4⇡

◆3 1

6
ln3

✓
µh

µs

◆
k0⌃0(w) +

6X

i=1

ki⌃(vi, w)

�
,

(5.15)

where

w =
Nc↵s(µ̄)

⇡
ln2

✓
µh

µs

◆
(5.16)
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Figure 8. Behavior of the functions ⌃(v, w) for di↵erent values of v corresponding to the eigenvalues
in (5.14). Darker colors correspond to larger values of v.

much weaker for the SLLs. We will come back to this after we analyze the color traces for

a few simple processes.

The functional form of ⌃(v, w) for two di↵erent values of v is illustrated in Figure 7,

where we also show the perturbative expansion up to the eighth order in w (dotted lines)

and the asymptotic form (5.27) (dashed line). Note that in the phenomenologically inter-

esting region w & 1 the convergence of the Taylor series (5.20) is slow. In Figure 8 we show

the functions ⌃(v, w) for all relevant eigenvalues vi. We observe that the shape is fairly

universal. As discussed in Section 7, this induces cancellations that strongly reduce the

super-leading e↵ects in 2 ! 0 and 2 ! 1 processes, for which the results can be expressed

in terms of di↵erences of ⌃(vi, w) functions belonging to di↵erent eigenvalues.

6 Evaluation of the color traces

The second relation in (4.5) implies that we can replace the last two color operators under

the color trace in (4.6) by their commutator [V G
,�]. Introducing the abbreviation

H = H2!M (�c)r V G (�c)n�r
, (6.1)

we find after a straightforward calculation

H [V G
,�] = �16⇡fabc

X

i,j

(�i1 � �i2)

⇥

⇢h⇣
T

a

1 T
b

2 T
c

j + T
c

j T
a

1 T
b

2

⌘
H+H

⇣
T

a

1 T
b

2 T
c

j + T
c

j T
a

1 T
b

2

⌘i Z
d⌦(nk0)

4⇡
W

k0

ij

� 2
⇣
T

a

1 T
b

2 HT
c

j + T
c

j HT
a

1 T
b

2

⌘
W

k0

ij ⇥hard(nk0)

�
. (6.2)
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Asymptotic behavior for : 

 much slower fall-off than Sudakov form 
factors ~

w ≫ 1

⇒
e−cw

Figure 7. Plot of the function ⌃(v, w) for the largest parameter v5 and the smallest non-zero value
v1. The full result is shown as a solid line. The red dotted lines show the perturbative expansion
up to the eighth order in w. The blue dashed line is the large-w asymptotics shown in (5.27).

It is possible to carry out the integral in (5.23) and obtain a representation in terms of the

Owen T -function, which has an implementation in Mathematica. We obtain

⌃(v, w) =
3

2z
p
w


4⇡ T

✓
p
2 z,

p
w

z

◆
�

p
⇡ z erf (

p
vw)

p
vw

+

p
⇡ e

�w erf(z)
p
w

+⇡ erf
�p

w
�
erf(z) + 2 arccos

✓
1
p
v

◆
� ⇡

�
,

(5.25)

with z =
p

(v � 1 + i")w, where the i" prescription is needed for the analytic continuation

to v < 1.

It will be useful to derive the asymptotic behavior of the function ⌃(v, w) in the limit

w ! 1. For ⌃0(w) we find from (5.17)

⌃0(w) =
3

2w

⇣
ln(4w) + �E � 2

⌘
+

3

4w2
+O(w�3) . (5.26)

For the general case v 6= 0, we can derive the asymptotic behavior from (5.23), finding

⌃(v, w) =
3 arctan

�p
v � 1

�
p
v � 1w

�
3
p
⇡

2
p
v w3/2

+O(w�2) . (5.27)

Note that the limits v ! 0 and w ! 1 do not commute, and hence one does not recover

(5.26) from (5.27). It is interesting to contrast the asymptotic form of ⌃(v, w) and ⌃0(w)

to the standard double-logarithmic behavior, which in the variable w translates to e
�cw,

where the coe�cient c of the double logarithm depends on the process under consideration.

The standard behavior leads to the exponential Sudakov suppression. The suppression is
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Figure 7. Plot of the function ⌃(v, w) for the largest parameter v5 and the smallest non-zero value
v1. The full result is shown as a solid line. The red dotted lines show the perturbative expansion
up to the eighth order in w. The blue dashed line is the large-w asymptotics shown in (5.27).

It is possible to carry out the integral in (5.23) and obtain a representation in terms of the

Owen T -function, which has an implementation in Mathematica. We obtain
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with z =
p

(v � 1 + i")w, where the i" prescription is needed for the analytic continuation

to v < 1.

It will be useful to derive the asymptotic behavior of the function ⌃(v, w) in the limit

w ! 1. For ⌃0(w) we find from (5.17)

⌃0(w) =
3

2w

⇣
ln(4w) + �E � 2
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+

3
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+O(w�3) . (5.26)

For the general case v 6= 0, we can derive the asymptotic behavior from (5.23), finding
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Note that the limits v ! 0 and w ! 1 do not commute, and hence one does not recover

(5.26) from (5.27). It is interesting to contrast the asymptotic form of ⌃(v, w) and ⌃0(w)

to the standard double-logarithmic behavior, which in the variable w translates to e
�cw,

where the coe�cient c of the double logarithm depends on the process under consideration.

The standard behavior leads to the exponential Sudakov suppression. The suppression is
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RG-IMPROVED RESUMMATION OF SLLS

Factorization and Resummation for LHC Jet Processes

Multiple insertions of  exponentiateΓc

▸ Expand out all terms except the log-enhanced soft-collinear piece: 

    with the Sudakov operator:

of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
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�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)
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|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd

8

resums all double logs
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No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
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where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd

8

µh ' Q
<latexit sha1_base64="luJFuBmLWc3HAUO6Ta+hUbTBvmI=">AAAB9HicbVBNSwMxEM36WetX1aOXYBE8ld0q6LHoxWML9gO6S8mms21okt0m2UJZ+ju8eFDEqz/Gm//GtN2Dtj4YeLw3w8y8MOFMG9f9djY2t7Z3dgt7xf2Dw6Pj0slpS8epotCkMY9VJyQaOJPQNMxw6CQKiAg5tMPRw9xvT0BpFssnM00gEGQgWcQoMVYKfJH2hr5mAsa40SuV3Yq7AF4nXk7KKEe9V/ry+zFNBUhDOdG667mJCTKiDKMcZkU/1ZAQOiID6FoqiQAdZIujZ/jSKn0cxcqWNHih/p7IiNB6KkLbKYgZ6lVvLv7ndVMT3QUZk0lqQNLloijl2MR4ngDuMwXU8KklhCpmb8V0SBShxuZUtCF4qy+vk1a14l1Xqo2bcu0+j6OAztEFukIeukU19IjqqIkoGqNn9IrenInz4rw7H8vWDSefOUN/4Hz+AIn2kfE=</latexit>

µs ' Q0
<latexit sha1_base64="Glfz53KIv1BJ5Ed3jMjvnySu26E=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0VwVZIq6LLoxmUL9gFNCJPppB06M4nzEGrol7hxoYhbP8Wdf+O0zUJbD1w4nHMv994TZ4wq7Xnfztr6xubWdmmnvLu3f1BxD486KjUSkzZOWSp7MVKEUUHammpGepkkiMeMdOPx7czvPhKpaCru9SQjIUdDQROKkbZS5FYCbiIVKMrJA2xFXuRWvZo3B1wlfkGqoEAzcr+CQYoNJ0JjhpTq+16mwxxJTTEj03JgFMkQHqMh6VsqECcqzOeHT+GZVQYwSaUtoeFc/T2RI67UhMe2kyM9UsveTPzP6xudXIc5FZnRRODFosQwqFM4SwEOqCRYs4klCEtqb4V4hCTC2mZVtiH4yy+vkk695l/U6q3LauOmiKMETsApOAc+uAINcAeaoA0wMOAZvII358l5cd6dj0XrmlPMHIM/cD5/AD/aktA=</latexit>

easy to include running-coupling effects
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RG-IMPROVED RESUMMATION OF SLLS

Factorization and Resummation for LHC Jet Processes

Introduce a color basis

▸ Simplest case of (anti-)quark-initiated scattering processes: 

    where   for an initial-state quark (anti-quark) 

▸ In the general case, the basis contains 11 operators

σi = − 1 (+1)

values of l in (3.4) contribute to the Glauber series. In leading logarithmic approximation,
the contribution of the Glauber series to the cross section in (2.1) is then obtained in the
form

�SLL+G
2!M

(Q0) =
X

partonic channels

Z
d⇠1

Z
d⇠2 f1(⇠1, µs) f2(⇠2, µs)

⇥
⌦
H2!M({n}, s, ⇠1, ⇠2, µh)USLL+G({n}, µh, µs)⌦ 1

↵
,

(3.6)

where µh ⇠ Q and µs ⇠ Q0.
A priori, the iterated insertions of the color operators �c and V

G in the evolution
operator generate increasingly more complicated color structures inside the color trace,
where each factor of the real-emission term in �c in (2.7) adds a collinear gluon with its
own color space. However, it has been shown in [18, 19] that the infinite series of SLLs
can be reduced to a finite set of basis operators {Xi} in color space. Remarkably, this
statement remains true if higher-order terms in the Glauber series are included. The basis
contains 5 operators for partonic scattering processes containing quarks and/or anti-quarks
in the initial state [26]. For gluon–gluon and quark–gluon initiated scattering processes,
the basis contains 20 and 14 operators, respectively [27].

In this section, we will discuss the simplest case of quark-initiated scattering in detail,
for which the initial-state partons in the hard scattering are of the form q1q2, q̄1q̄2, or q1q̄2,
where the flavors can be di↵erent. The cases of quark–gluon or gluon–gluon scattering have
been considered in [27] and are discussed in Appendix A. For quark-initiated scattering, one
finds that under the color trace, the product USLL+G({n}, µh, µs) ⌦ 1 can be decomposed
into the five color structures [18, 26]

X1 =
X

j>2

Jj if
abc

T
a

1 T
b

2 T
c

j
, X4 =

1

Nc

J12 T1 · T2 ,

X2 =
X

j>2

Jj (�1 � �2) d
abc

T
a

1 T
b

2 T
c

j
, X5 = J12 1 ,

X3 =
1

Nc

X

j>2

Jj (T1 � T2) · Tj ,

(3.7)

times coe�cients accounting for the dependence on the matching scales µh and µs. Here
�i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. The sum over
j in the first three structures extends over the final-state partons of the Born process. We
have defined the angular integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j �W k

2j

�
⇥veto(nk) ,

J12 =

Z
d⌦(nk)

4⇡
W k

12 ⇥veto(nk) ,

(3.8)

which contain the information about the directions of the hard partons in the process.
These integrals describe the emission of a soft gluon (emitted from parents 1, 2, or j) into

9
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GAP-BETWEEN-JETS OBSERVABLES

Factorization and Resummation for LHC Jet Processes

Based on this approach, we have performed the first all-order resummation of 
super-leading logarithms for jet processes [Becher, MN, Shao, Stillger (2023)]

forward scattering
Q = 1 TeV, ΔY = 2
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Figure 15. Numerical results for super-leading contributions to partonic qq
0
! qq

0 (top row) and
qq̄ ! q

0
q̄
0 (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic

center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

theory can di↵er quite substantially between di↵erent channels. For example, in both

qq̄ ! gg and gg ! qq̄ scattering (Figure 16), the three-loop contribution (n = 0) yields

the dominant correction to the cross sections.6 In other cases, such as gg ! gg and, to a

lesser extent, qg ! qg scattering (Figure 17), also higher-loop contributions can be very

large, and significant cancellations among them take place, so our resummation formalism

is crucial to obtain reliable results.
6
In the strict sense of the word, these n = 0 terms are not a “super-leading” e↵ect, even though they

result from two Glauber exchanges.
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Figure 17. Numerical results for super-leading contributions to partonic gg ! gg (top row) and
qg ! qg (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

where the coe�cients M(I)
4 are functions of the kinematic invariants. The “unintegrated”

hard function (3.9) can then be represented by a matrix

( eH4)IJ = M
(I)
4 M

(J)⇤
4 . (7.21)

The one-loop hard functions for all 2 ! 2 parton processes have been compiled in [59].

The authors of [60] have extended these results to two-loop order and also provided a

Mathematica notebook to access the results. Due to the simple kinematics for 2 ! 2

scattering in the partonic center-of-mass system, we find from (2.1) and (2.16) that in the

– 58 –
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Figure 16. Numerical results for super-leading contributions to partonic qq̄ ! gg (top row) and
gg ! qq̄ (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

Once we leave the kinematic region of small-angle scattering, the calculation of the

SLL terms becomes more complicated. An interesting new feature of 2 ! 2 hard-scattering

processes is that there are in general several di↵erent color configurations which contribute

to a given process. Choosing an orthonormal basis {|BIi} of color configurations, the

amplitudes in a given channel can be decomposed as

|M4i =
X

I

M
(I)
4 |BIi , (7.20)
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PHYSICAL GAP-BETWEEN-JETS CROSS SECTION

Factorization and Resummation for LHC Jet Processes

[Becher, Hager, Martinelli, MN,  
Schwienbacher, Stillger (2024)]

Figure 2: SLL contribution to the pp ! 2 jets cross section at the LHC as a function
of the veto scale Q0, for a center-of-mass energy

p
s = 13TeV and jet radius R = 0.6.

The black curve shows the central result obtained in RG-improved perturbation theory.
The perturbative uncertainties indicated by the yellow bands are obtained from the
variation of the soft scale µs by a factor 2 about its default value Q0.

where Ni = 2Nc for parton i being a quark or anti-quark, and Ni = (d� 2)(N2
c
� 1) for it

being a gluon. One particular choice of color bases and the associated matrix representations
for the spin-summed “unintegrated” hard functions have been given in [30] for all relevant
2 ! 2 processes up to NNLO. We have calculated the Xi matrices using ColorMath [31]
and listed them in a supplemented Mathematica notebook.

Upon evaluating the color traces h. . .i in (2.11), we observe that for qq̄ ! qq̄ scattering
the SLL contribution to the pp ! 2 jets cross section contains expansion coe�cients cn
of O(Nc) in (1.1), whereas for all other partonic channels these coe�cients are of O(N0

c
).

This leads to SLL contributions that are only suppressed by one power of 1/Nc, an e↵ect
that to our knowledge has so far not been noticed in the literature. This enhancement can
be traced back to the interference of two di↵erent color configurations in the amplitude.
However, we find below that the qq̄ ! qq̄ channel only contributes a small amount to the
pp ! 2 jets cross section.

3 Results

We are now in a position to determine the impact of the super-leading logarithms for
the physical pp ! 2 jets cross section. This involves integrals over the rapidities y3, y4,
and transverse momentum pT , which we evaluate numerically. We set the high scale to
µh = 2pT , employ a jet radius R = 0.6 and use the parton distribution functions from
the NNPDF4.0 NLO set with ↵s(MZ) = 0.118 [32] via ManeParse [33]. As described
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variation of the soft scale µs by a factor 2 about its default value Q0.
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Figure 1: Definition of the gap region (gray) between the jets with radius R in the
rapidity and azimuthal plane used here and in the ATLAS analysis in [22].

with j = 2, 3, 4 and nk restricted to be inside the gap region. For fixed jet radius R, we
assume that the rapidity gap !Y is wide enough for the jets not to leak out on both sides
(|!Y | > R) and not to overlap (

√
|!Y |2 + ω2 > 2R). We then obtain

J12 → J2 = |!Y |↑
R2

2
, J3 = ↑J4 , (2.8)

and

J4 = !Y ↑ sgn(!Y )
R

ω

∫ 1

0

dx

[
ln

cosh
(
R
↓
1↑ x2

)
↑ cosRx

1↑ cosRx

+ ln
cosh!Y + cosRx

cosh
(
|!Y |↑R

↓
1↑ x2

)
+ cosRx

]

= !Y ↑
R2

4
tanh

!Y

2
↑ sgn(!Y )

[
2R

ω
+

R3

6ω

(
tanh2 !Y

2
↑

2

3

)
+O(R5)

]
.

(2.9)

Note that the leading correction to J3 and J4 is linear in R and not quadratic, as one would
have naively expected. All higher-order terms contain only odd powers of R, but their
numerical impact is negligible for R < 1.

The Born-level partonic cross sections in (2.5) are given by

(
dε̂

dr

)

12→34

=
1

16ω ŝ

〈
H̃4(µh)1

〉
, (2.10)

where µh ↔
↓
ŝ. The tilde indicates the “unintegrated” hard functions, i.e. the hard-

scattering amplitudes squared, which we need at lowest order in perturbation theory only.
The resummed SLL contributions to the partonic cross sections can be expressed as a linear
combination of eleven color structures Xi under the color trace with the hard functions,
with coe”cients depending on the scales µh and µs [24, 25]. The result can be written in

4

process ω2→2 [pb] ωSLL
2→2 [pb] process ω2→2 [pb] ωSLL

2→2 [pb]

qq → qq 231.5 12.0 qq̄ → gg 12.4 ↑0.9

qq↑ → qq↑ 454.4 22.2 qg → qg 4104.6 403.3

qq̄ → qq̄ 142.0 7.4 gg → qq̄ 57.5 ↑4.4

qq̄↑ → qq̄↑ 372.9 18.0 gg → gg 2281.1 150.6

qq̄ → q↑q̄↑ 3.6 <0.1
∑

1204.4 59.6
∑

6455.6 548.6
∑

all channels 7660.0 608.2

Table 1: Contributions of di!erent partonic subprocesses to the integrated gap-
between-jets cross section at the LHC for

↓
s = 13TeV, pT > 200GeV, 2 < |”Y | < 3,

and jet radius R = 0.6. The SLL contribution is shown for Q0 = 20GeV. In the left
portion of the table we present the channels involving only quarks and/or anti-quarks,
while channels involving gluons are shown in the right portion. The (massless) quarks
q and q↑ have di!erent flavors and are summed over u, d, s, c, b as well as the corre-
sponding anti-quarks. The qg → qg contribution includes a factor 2 to account for the
process gq → gq.

the compact form
(
dω̂SLL

dr

)

12→34

=
1

16ε ŝ

〈
H̃4(µh)X

T
〉 (2)

SLL(µh, µs) ϑ . (2.11)

The evolution matrix (2)
SLL(µh, µs), which acts on the space of the color structures Xi, has

been presented in (6.5) of [25] in RG-improved perturbation theory. The auxiliary vector
ϑT = (1, 0, . . . , 0) projects out the first column of this matrix.

To calculate the traces of hard functions and color structures, it is convenient to in-
troduce a basis {|CI↔} of color configurations for a given partonic channel. These bases
contain two elements for four-quark scattering, three for two-quark – two-gluon scattering,
and nine for four-gluon scattering. The conventional choices are not necessarily orthogonal
bases (see e.g. [29]) and, therefore, the completeness relation reads

1 =
∑

I,J

∣∣CI
〉 (

G↓1
)
IJ

〈
CJ

∣∣ , with non-trivial Gram matrix GIJ =
〈
CI

∣∣CJ
〉
. (2.12)

Inserting this relation in (2.11) twice, and defining the matrix representations of the hard
functions and color structures as

(
H̃4

)
IJ

↗

∑

K,L

(
G↓1

)
IK

〈
CK

∣∣H̃4

∣∣CL
〉 (

G↓1
)
LJ

,
(
Xi

)
IJ

↗
〈
CI

∣∣Xi

∣∣CJ
〉
, (2.13)

one can write the traces in the form
〈
H̃4 Xi

〉
=

1

N1N2

∑

I,J

∑

spins

(
H̃4

)
IJ

(
Xi

)
JI

, (2.14)

5



CFNS-INT Joint Program: Precision QCD with the Electron Ion Collider — May 14, 2025Matthias Neubert  — 22

PDF FACTORIZATION ?

Factorization and Resummation for LHC Jet Processes

Several authors have expressed 
doubts that PDF factorization will 
be valid in general 

Observed breakdown of collinear 
factorization in space-like splittings 
was taken as indication that PDF 
factorization may also be violated

[e.g.: Collins, Qiu (2007); Gaunt (2014); Zeng (2015)]

[Catani, de Florian, Rodrigo (2011)                                                        
Forshaw, Seymour, Siodmok (2012); Schwartz, Yan, Zhu (2017)        
Dixon, Hermann, Yan, Zhu (2019); Cieri, Dhani, Rodrigo (2024)        
Henn, Ma, Xu, Yan, Zhang, Zhu (2024)                                                    
Guan, Herzog, Ma, Mistlberger, Suresh (2024)]
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PDF FACTORIZATION ?

Factorization and Resummation for LHC Jet Processes

Several authors have expressed 
doubts that PDF factorization will 
be valid in general 

Observed breakdown of collinear 
factorization in space-like splittings 
was taken as indication that PDF 
factorization may also be violated
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eq. (4.30) the ‘+h.c.’ terms result in a projection onto the kinematic terms containing an

explicit ‘i’.

The color structure in the second line in eq. (4.30) can be rewritten as a commu-

tator, [(T q · T i), (T q · T k)]. When eq. (4.30) is sandwiched between tree amplitudes,

⟨M(0)
n | · · · |M(0)

n ⟩, and a color sum is performed, the Hermiticity of the operators T q · T i

allows one to conclude that the color sum vanishes [34]. (A similar cancellation occurs for

the 1/ϵ pole with the same color structure, which appears in two-loop four-point ampli-

tudes [73] but cancels in the color-summed cross section [74].)

We conclude that for pure QCD splitting processes at order g × g5, or O(α3
s), poten-

tial factorization violation comes from the finite term in the first line in eq. (4.30), which

has not been discussed before. We speculate that at next-to-next-to-next-to-leading order

(NNNLO) in QCD, integrating over the phase space of the collinear splitting can give rise to

soft-collinear poles which depend on the color charge of non-collinear partons entering the

process. Such poles cannot be canceled by the conventional counterterms associated with

renormalization of the parton distribution functions (PDFs), which by definition are pro-

cess independent. (The failure of strict factorization at NNNLO for non-inclusive hadron

collider processes has been argued previously, based partly on the structure of 1/ϵ pole

terms associated with Coulomb gluon exchanges [34–36].) An interesting example that can

contain such factorization-violating contributions is the NNNLO QCD corrections to dijet

production at hadron colliders. While the full NNNLO QCD corrections might still be

far away, a shortcut to revealing the factorization-breaking terms is through the study of

precision hadron collider event shapes [75], where NNNLO corrections including logarithms

in the event-shape variable are within reach. We leave the investigation of these important

issues to future work.

5 Conclusions

In this paper we computed the exact kinematic and color dependence of soft-gluon emission

in massless gauge theory at the two loop level. While the dipole terms have a simple kine-

matic dependence and had been computed previously [25, 26], the subleading-color tripole

terms are new, and they depend in an intricate way on a rescaling-invariant cross ratio.

Using the soft-collinear limit of our results, we could study the soft limits of two-loop

collinear splitting amplitudes for both timelike and spacelike kinematics. The timelike

behavior was understood previously [26, 47, 71, 72]. In the spacelike case, the infrared

singular parts of the two-loop splitting amplitudes were obtained before in ref. [33], with

which we find full agreement. Our new results for this case are the finite contributions,

provided in eq. (4.27). Note that eq. (4.27) is non-zero only when the non-collinear tripole

partons i and k are spacelike separated. Thus, including the collinear parton 1, there

must be two partons in the initial state to get a contribution (i.e. deep inelastic scattering

does not qualify, while hadronic collisions do). Both eqs. (4.18) and (4.27) violate strict

collinear factorization [33, 34], in the sense that the splitting amplitudes depend on the

color and/or kinematics of some non-collinear hard partons in the process. For dipole

emission, eq. (4.18), factorization violation only exists in the imaginary part. The real part

– 27 –
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STRUCTURE OF THE FACTORIZATION THEOREM ?

Factorization and Resummation for LHC Jet Processes

hard scale Q ∼ ̂s

jet-veto scale Q0

hadronic scale ΛQCD

double-logarithmic evolution 
(super-leading logs) & non-
DGLAP *) collinear evolution

single-logarithmic PDF evolution 

OR: double-logarithmic evolution and 
breaking of PDF factorization?

OR: something more complicated, e.g. 
a combined two-proton distribution?
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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STRUCTURE OF THE FACTORIZATION THEOREM ?

Factorization and Resummation for LHC Jet Processes

To settle the question, we calculate the perturbative  dependence of                 
(   poles in dim. reg.) associated with the veto scale Q0 , and check 
whether the remaining scale dependence is that of the PDFs 

▸ Assuming PDF factorization, we predict: 

    where:

μ
↔ 1/εn
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
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rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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arise at four-loop order and involve C01 and C11. In (3),
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are the Born-level hard functions and we use that
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The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!

2ϱ
+
(
εs

4ϑ

)2
(
V G !

2ϱ2
+ . . .

)

+
(
εs

4ϑ

)3
[
!cV G !

3ϱ3

(
11

6ϱ
+ ln

µ
2
s

Q2
+

9

2
ln

µ
2
s

Q
2
0

)

+
V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2
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. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare
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or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
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+
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where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
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(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
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are the Born-level hard functions and we use that
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!

2ϱ
+
(
εs

4ϑ

)2
(
V G !

2ϱ2
+ . . .

)

+
(
εs

4ϑ

)3
[
!cV G !

3ϱ3

(
11

6ϱ
+ ln

µ
2
s

Q2
+

9

2
ln

µ
2
s

Q
2
0

)

+
V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
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∑

j>2
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. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε
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term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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which account for soft+collinear emissions from one of
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from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form
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from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!

2ϱ
+

(
εs

4ϑ

)2
(
V G !

2ϱ2
+ . . .

)

+
(
εs

4ϑ

)3
[
!cV G !

3ϱ3

(
11

6ϱ
+ ln

µ
2
s

Q2
+

9

2
ln

µ
2
s

Q
2
0

)

+
V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: soft emission operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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= 1+
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: Glauber operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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+ . . .
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: soft-collinear emission operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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m

= 1+
εs

4ϑ
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+

(
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: collinear emission operator
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STRUCTURE OF THE FACTORIZATION THEOREM ?

Factorization and Resummation for LHC Jet Processes

To settle the question, we calculate the perturbative  dependence of                 
(   poles in dim. reg.) associated with the veto scale Q0 , and check 
whether the remaining scale dependence is that of the PDFs 

▸ Assuming PDF factorization, we predict: 

    where:

μ
↔ 1/εn
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form
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Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
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are the Born-level hard functions and we use that
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s
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2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2
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+ V G

)
+
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
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(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!

2ϱ
+

(
εs

4ϑ

)2
(
V G !

2ϱ2
+ . . .

)

+
(
εs

4ϑ

)3
[
!cV G !

3ϱ3

(
11

6ϱ
+ ln

µ
2
s

Q2
+

9

2
ln

µ
2
s

Q
2
0

)

+
V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
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1 T b
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j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln
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)
+
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: Glauber operator

2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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(
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+
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4ϑ
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
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2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: soft-collinear emission operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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m

= 1+
εs

4ϑ
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: collinear emission operator
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REGION ANALYSIS OF 3-LOOP DIAGRAMS

Factorization and Resummation for LHC Jet Processes

▸ Relevant graphs feature a soft gluon emission into the gap, a space-like 
collinear splitting, and a virtual gluon exchange:

[Becher, Hager, Jaskiewicz, MN, Schwienbacher (2024) 
Phys. Rev. Lett. 134 (2025) 6, 061901]
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space-like collinear splitting
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REGION ANALYSIS OF 3-LOOP DIAGRAMS

Factorization and Resummation for LHC Jet Processes

▸ Relevant graphs feature a soft gluon emission into the gap, a space-like 
collinear splitting, and a virtual gluon exchange:
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REGION ANALYSIS OF 3-LOOP DIAGRAMS

Factorization and Resummation for LHC Jet Processes

▸ Region analysis of the pentagon integral (exact expression known):
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[Becher, Hager, Jaskiewicz, MN, Schwienbacher (2024) 
Phys. Rev. Lett. 134 (2025) 6, 061901]

✦ Euclidean kinematics:  only a single region    
(soft-collinear) contributes 

✦ Physical kinematics:  appearance of non-trivial 
phase factors  introduces a new Glauber 
region, which we were unable to find using 
existing region-finder codes such as Asy2.1

e2πiε

[Pak, Smirnov (2011); Jantzen, Smirnov, Smirnov (2012)]

[Bern, Dixon, Kosower (1993)]
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REGION ANALYSIS OF 3-LOOP DIAGRAMS

▸ Relevant graphs in SCET with Glauber gluons:
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collinear emission

soft emissionGlauber exchange

[Becher, Hager, Jaskiewicz, MN, Schwienbacher (2024) 
Phys. Rev. Lett. 134 (2025) 6, 061901]

[Rothstein, Stewart (2016)]

Factorization and Resummation for LHC Jet Processes
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Factorization and Resummation for LHC Jet Processes

▸ Assuming PDF factorization, we predict: 

where:
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
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(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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+
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where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln
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2
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+ V G

)
+
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln
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)
+
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
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(0)
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(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln
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2
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+ V G

)
+
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4ϑ
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
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(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
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1 T b
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j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!

2ϱ
+

(
εs

4ϑ

)2
(
V G !

2ϱ2
+ . . .

)

+
(
εs

4ϑ

)3
[
!cV G !

3ϱ3

(
11

6ϱ
+ ln

µ
2
s

Q2
+

9

2
ln

µ
2
s

Q
2
0

)

+
V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: soft emission operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!

2ϱ
+

(
εs

4ϑ

)2
(
V G !

2ϱ2
+ . . .

)

+
(
εs

4ϑ

)3
[
!cV G !

3ϱ3

(
11

6ϱ
+ ln

µ
2
s

Q2
+

9

2
ln

µ
2
s

Q
2
0

)

+
V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: Glauber operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!

2ϱ
+

(
εs

4ϑ

)2
(
V G !

2ϱ2
+ . . .

)

+
(
εs

4ϑ

)3
[
!cV G !

3ϱ3

(
11

6ϱ
+ ln

µ
2
s

Q2
+

9

2
ln

µ
2
s

Q
2
0

)

+
V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: soft-collinear emission operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!

2ϱ
+

(
εs

4ϑ

)2
(
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2ϱ2
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)

+
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]
+O(ε4
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: collinear emission operator

double-logarithmic evolution above Q0 non-DGLAP collinear evolution above Q0 
(to appear)
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STRUCTURE OF THE FACTORIZATION THEOREM ?
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▸ Assuming PDF factorization, we predict: 

where:
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form
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from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
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(0)
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are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln
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+ V G

)
+
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
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(0)
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(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
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. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln
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2

Q2
+ V G

)
+
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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m

= 1+
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+
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+ . . .
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+
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(
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+
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Q
2
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)

+
V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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m

= 1+
εs

4ϑ
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+

(
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(
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+
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+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: soft emission operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!
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(
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+O(ε4
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) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: Glauber operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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εs
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: soft-collinear emission operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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= 1+
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: collinear emission operator

double-logarithmic evolution above Q0 non-DGLAP collinear evolution above Q0 
(to appear)
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“FACTORIZATION RESTORATION” THROUGH GLAUBER GLUONS

Factorization and Resummation for LHC Jet Processes

x

=

Collinear factorization violation 
at μ ∼ Q

Soft-collinear factorization violation 
by Glauber gluons at μ ∼ Q0

PDF factorization restored for μ < Q0

▸ We have proved this to 3-loop order and conjecture that it holds in general !
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SUMMARY

Factorization and Resummation for LHC Jet Processes

▸ Based on a SCET factorization theorem, we have performed the first all-
order resummation of super-leading logarithms 

▸ The main open challenge is to combine this with the resummation of non-
global single logarithms 

▸ We have uncovered a new mechanism reconciling the breaking of collinear 
factorization with unbroken PDF factorization: in an interplay of space-like 
collinear splittings and soft emissions, perturbative Glauber gluons restore 
the factorization of the cross section 

▸ Understanding the all-order structure of these effects would pave the way to 
a proof of PDF factorization for a much wider class of observables!


