发TRIUMF

Ab initio calculations of electric dipole and anapole moments in atomic nuclei

INT PROGRAM INT-24-1
Fundamental Physics with Radioactive Molecules
Institute for Nuclear Theory, UW, Seattle, March 18, 2024

Petr Navratil
TRIUMF

Outline

- Motivation
- Radioactive molecule (RadMol) experimental program at TRIUMF
- Ab initio nuclear theory - no-core shell model (NCSM)
- Parity-violating and parity- plus time-reversal-violating nucleon-nucleon interactions
- NCSM calculations of anapole and electric dipole moments in light nuclei

发TRIUMF

Motivation

Why investigate the Electric Dipole Moment (EDM) and Schiff Moment?

- Unsolved problem in physics: matter-antimatter asymmetry of the universe
- Standard model predicts some CP violation, not enough to explain this asymmetry
- The EDM and Schiff moment is a promising probe for CP violation beyond the standard model, as well as CP violating QCD $\bar{\theta}$ parameter

CP violation and the EDM

A non-zero EDM of any finite system requires P and T violation, which implies CP violation through the CPT theorem

Consider the neutron:

Under a Parity (P) Transformation:

Under a Time-reversal (T) Transformation:

Problem with neutron EDM: very small

Alternative: Nuclear EDM and nuclear Schiff moment

- Nuclear structure can enhance the EDM or the Schiff moment
- Nuclear EDMs can be measured in storage rings (CERN feasibility study: arXiv:1912.07881)
- Nuclear Schiff moments can be measured using (radioactive) molecules

To understand the nuclear EDM and Schiff moment, nuclear structure effects must be understood

Parity violation in atomic and molecular systems

- Important for tests of the
- Standard Model
- Information about parity violating nuclear forces
- Test of nuclear theory and low-energy quantum chromodynamics
- Physics beyond the standard model
- Atomic PNC sensitive to a variety of "new physics"
- measures a set of model-independent electron-quark electroweak coupling constants that are different from those that are probed by high-energy experiments
- Low-mass Z' boson - the best limits on its parity violating interaction with electrons, protons, and neutrons from the data on atomic parity violation

Parity violation in atomic and molecular systems

- Spin independent
- Z-boson exchange between electron axialvector and nucleon-vector currents
- Spin dependent
- Z-boson exchange between nucleon axialvector and electron-vector currents (b)
- Electromagnetic interaction of atomic electrons with the nuclear anapole moment (c)
- Combined effect of the $A_{e} V_{N}$ and hyperfine interaction (d)

Search for new physics with atoms and molecules
M. S. Safronova
(a)

(b)

(c)

(d)

Parity violation in atomic and molecular systems

- Nuclear anapole moment
- Weak interactions inside the nucleus lead to P-odd moments

$$
\boldsymbol{a}=-\pi \int d^{3} r r^{2} \boldsymbol{j}(\boldsymbol{r})
$$

- Magnetic vector potential $A=a \delta(r)$
- Electromagnetic coupling to electrons
- Nuclear anapole arises due to nucleon-nucleon interaction, mediated by meson exchange, where one of the nucleonmeson vertexes is strong and another is weak and P violating
- Determination of anapole moments from atomic parity violation provides a window into hadronic parity nonconservation (PNC)

$$
\boldsymbol{a}=\frac{G_{\mathrm{F}}}{|e| \sqrt{2}} \eta_{\mathrm{NAM}} \mathbf{I}
$$

(c)

SCIENCE • VOL. 275 • 21 MARCH 1997
1759
Measurement of Parity Nonconservation and an Anapole Moment in Cesium
C. S. Wood, S. C. Bennett, D. Cho,* B. P. Masterson, \dagger J. L. Roberts, C. E. Tanner, \ddagger C. E. Wieman§

(a)

(c)

Anapole moment dominates the nuclear-spin-dependent parity violating effects in heavy atoms $\sim A^{2 / 3}$

- Polyatomic molecules possess opposite-parity states that may be brought to near degeneracy using a magnetic field. This opens the possibility to measure nuclear spin dependent parityviolating effects in light nuclei where nuclear structure calculations are tractable
- Experiments proposed for ${ }^{9} \mathrm{BeNC},{ }^{25} \mathrm{MgNC}$
- Expected to measure the spin-dependent parityviolating matrix elements with 70 times better sensitivity

1888
 COMMUNICATIONS PHYSICS

ARTICLE

Nuclear-spin dependent parity violation in optically trapped polyatomic molecules
E.B. Norrgard ${ }^{1}$, D.S. Barker', S. Eckel', J.A. Fedchak \oplus^{1}, N.N. Klimov' \& J. Scherschligte

COMMUNICATIONS PHYSICS | (2019)2:77

- Experiments proposed for ${ }^{9} \mathrm{BeNC},{ }^{25} \mathrm{MgNC}$
- In light atoms, the exchange of Standard Model Z bosons (or potential Z' bosons) between an electron and individual nucleons can be as important as the anapole moment. It remains poorly characterized
- $V_{e} A_{N}$: Z^{0} exchange between e and quarks, couplings $\mathrm{C}_{2 \mathrm{u}}, \mathrm{C}_{2 \mathrm{~d}}$ known with uncertainties of 300% and 70%, respectively
- To extract the underlying physics, atomic, molecular, and nuclear structure effects must be understood
- Ab initio calculations

(b)

(c)

发TRIUMF

Radioactive Molecule (RadMol) experimental program at TRIUMF

RadMol

a radioactive molecule lab for fundamental physics

Goal:

dedicated laboratory to study of radioactive molecules to host 3 experimental stations
precision studies for searches for new physics
Molecular EDM with unprecedented sensitivity to nuclear T-breaking Schiff moments
provision for expansions into other fields

TRIUMF advantages:

large variety in radioactive ion beams (RIB)
high beamtime availability (3 independent RIBs)
existing laboratory space for large, multi-station program

Current Canadian Team:

12 faculty and staff physicists

RadMol Collaboration:

\qquad

The Case of ${ }^{223} \mathrm{FrAg}$

- Schiff moment:
intrinsic enhancement of 10^{7} compared to ${ }^{199} \mathrm{Hg}$x1000 improvement on certain CPV-parameters with 'established' methods
- ultracold molecule assembled from laser-cooled Fr and Ag atoms
- ${ }^{223} \mathrm{Fr}$ ($\mathrm{T}_{1 / 2}=22 \mathrm{~min}$) at ISAC: $1.3 \cdot 10^{7}$ ions/sec
- infrastructure and expertise at TRIUMF's Fr trapping facility
- first exp. goal: measurement of Fr s-wave scattering length input to form ultracold Fr approaching Bose Einstein Condensate determined from two-colour photoassociation (2PA)

J Kłos et al., New J. Phys. 24, 025005 (2022)

Offline MOT setup at UBC to develop 2PA with low atom number

Slide by Stephan Malbrunot-Ettenauer

Charged-ion molecules - ThF+ $\mathrm{AcF}^{+}, \mathrm{PaF}^{3+}$

Developing first techniques in TRIUMF's TITAN ion trap facility

New physics \rightarrow very tiny shifts of quantum states in molecule.

发TRIUMF

Ab initio nuclear theory

- Ab initio
\diamond Degrees of freedom: Nucleons
\triangleleft All nucleons are active
\& Exact Pauli principle
\triangleleft Realistic inter-nucleon interactions
\& Accurate description of NN (and 3 N) data
\diamond Controllable approximations
- Inter-nucleon forces from chiral effective field theory
- Based on the symmetries of QCD
- Chiral symmetry of QCD ($m_{\mathrm{u}} \approx m_{\mathrm{d}} \approx 0$), spontaneously broken with pion as the Goldstone boson
- Degrees of freedom: nucleons + pions
- Systematic low-momentum expansion to a given order (Q/ Λ_{x})
- Hierarchy
- Consistency
- Low energy constants (LEC)
- Fitted to data
- Can be calculated by lattice QCD

- Basis expansion method
- Harmonic oscillator (HO) basis truncated in a particular way ($N_{\max }$)
- Why HO basis?
- Lowest filled HO shells match magic numbers of light nuclei $\left(2,8,20-{ }^{4} \mathrm{He},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}\right)$
- Equivalent description in relative(Jacobi)-coordinate and Slater determinant basis

- Short- and medium range correlations
- Bound-states, narrow resonances

$$
8 \Psi^{A}=\sum_{N=0}^{N_{\max }} \sum_{i} c_{N i} \Phi_{N i}^{H O}\left(\vec{\eta}_{1}, \vec{\eta}_{2}, \ldots, \vec{\eta}_{A-1}\right)
$$

$$
23 \Psi_{\mathrm{SD}}^{A}=\sum_{N=0}^{N_{\max }} \sum_{j} c_{N j}^{\mathrm{SD}} \Phi_{\mathrm{SD} N j}^{H O}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right)=\Psi^{A} \varphi_{000}\left(\vec{R}_{C M}\right)
$$

- Basis expansion method
- Harmonic oscillator (HO) basis truncated in a particular way ($N_{\max }$)
- Why HO basis?
- Lowest filled HO shells match magic numbers of light nuclei $\left(2,8,20-{ }^{4} \mathrm{He},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}\right)$
- Equivalent description in relative(Jacobi)-coordinate and Slater determinant basis
- Short- and medium range correlations
- Bound-states, narrow resonances

$$
\text { 33 } \Psi^{A}=\sum_{N=0}^{N_{\text {max }}} \sum_{i} c_{N i} \Phi_{N i}^{H O}\left(\vec{\eta}_{1}, \vec{\eta}_{2}, \ldots, \vec{\eta}_{A-1}\right)
$$

$83 \Psi_{\mathrm{SD}}^{A}=\sum_{N=0}^{N_{\max }} \sum_{j} c_{N j}^{\mathrm{SD}} \Phi_{\mathrm{SD} N j}^{H O}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right)=\Psi^{A} \varphi_{000}\left(\vec{R}_{C M}\right)$

$$
E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{h} \Omega
$$

PCTC Chiral NN+3N interaction used in this study

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
- The Hamiltonian fully determined in $A=2$ and $A=3,4$ systems
- Nucleon-nucleon scattering, deuteron properties, ${ }^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}$ binding energy, ${ }^{3} \mathrm{H}$ half life
- Light nuclei - NCSM
- Medium mass nuclei - Self-Consistent Green's Function method

NN N3LO (Entem-Machleidt 2003) 3N N2LO w local/non-local regulator

PCTC Chiral NN+3N interaction used in this study

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
- The Hamiltonian fully determined in $A=2$ and $A=3,4$ systems
- Nucleon-nucleon scattering, deuteron properties, ${ }^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}$ binding energy, ${ }^{3} \mathrm{H}$ half life
- Light nuclei - NCSM
- Medium mass nuclei - Self-Consistent Green's Function method

NN N3LO (Entem-Machleidt 2003) 3N N2LO w local/non-local regulator

[^0]
Nuclear structure calculations for light stable nuclei within NCSM

- Parity violation: ${ }^{9} \mathrm{BeNC},{ }^{25} \mathrm{MgNC}$
- ${ }^{9} \mathrm{Be},{ }^{13} \mathrm{C},{ }^{14,15} \mathrm{~N},{ }^{25} \mathrm{Mg}$
- Nuclear EDM
- ${ }^{3} \mathrm{He},{ }^{6,7} \mathrm{Li},{ }^{9} \mathrm{Be},{ }^{10,11} \mathrm{~B},{ }^{13} \mathrm{C},{ }^{14,15} \mathrm{~N},{ }^{19} \mathrm{~F}$
- ORNL Summit - NCSD code with GPU acceleration

Calculations of parity-violating and parity- and time-reversal-violating terms

One-body contribution from nucleon EDMs easily evaluated

$$
D^{(1)}=\langle\psi| \sum_{i=1}^{A} \frac{1}{2}\left[\left(d_{p}+d_{n}\right)-\left(d_{p}-d_{n}\right) \tau_{i}^{z}\right] \sigma_{i}^{z}|\psi\rangle
$$

- d_{p}, d_{n} : intrinsic nucleon EDMs
- $\quad|\psi\rangle$: Nuclear state with maximal magnetic quantum number
- Proportional to matrix elements of σ^{z}, not enhanced by nuclear structure

Similarly, the Z-boson exchange between nucleon axial-vector and electron-vector currents is easily calculated

$$
\begin{aligned}
\kappa_{a x} & \simeq-2 C_{2 p}\left\langle s_{p, z}\right\rangle-2 C_{2 n}\left\langle s_{n, z}\right\rangle \\
\left\langle s_{\nu, z}\right\rangle & \equiv\left\langle\psi_{\mathrm{gs}} I^{\pi} I_{z}=I\right| \hat{s}_{\nu, z}\left|\psi_{\mathrm{gs}} I^{\pi} I_{z}=I\right\rangle \\
C_{2 \mathrm{p}} & =-C_{2 \mathrm{n}}=g_{A}\left(1-4 \sin ^{2} \theta_{W}\right) / 2 \simeq 0.05
\end{aligned}
$$

发TRIUMF

Parity-violating

 and parity- plus time-reversal-violating nucleon-nucleon interactions

Parity violating nucleon-nucleon interaction

- Meson exchange approach
Barry R. Holsteln
- Chiral EFT
- Unknown parameters (LECs)
- DDH (1980) - estimates based on the quark model

$$
\times\left(\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right\}+i\left(1+\chi_{v}\right) \vec{\sigma}_{1} \times \vec{\sigma}_{2} \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right]\right.
$$

- Experiments give conflicting limits on the weak couplings

$$
-g_{\omega}\left(h_{\omega}{ }^{0}+h_{\omega}{ }^{1}\left(\frac{\vec{\tau}_{1}+\dot{\tau}_{2}}{2}\right)^{z}\right)
$$

$$
\times\left(\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\omega}(r)\right\}+i\left(1+\chi_{s}\right) \vec{\sigma}_{1} \times \vec{\sigma}_{2} \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\omega}(r)\right]\right.
$$

frontiers in Physics	REVIEW published: 21 July 2020 doi: 10.3389/fphy.2020.00218

$$
\begin{aligned}
V_{12}^{\mathrm{p} \cdot \mathrm{v}}= & \frac{f_{\pi} g_{\pi N N}}{2^{1 / 2}} i\left(\frac{\vec{\tau}_{1} \times \dot{\tau}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\pi}(r)\right] \\
& -g_{o}\left(h_{o}^{0} \vec{\tau}_{1} \cdot \vec{\tau}_{2}+h_{o}^{1}\left(\frac{\vec{\tau}_{1}+\vec{\tau}_{2}}{2}\right)^{z}+h_{o}{ }^{2} \frac{\left(3 \tau_{1}^{2} \tau_{2}{ }^{2}-\vec{\tau}_{1} \cdot \vec{\tau}_{2}\right)}{2(6)^{1 / 2}}\right)
\end{aligned}
$$

$$
-\left(g_{o} h_{\omega}{ }^{1}-g_{0} h_{0}^{1}\right)\left(\frac{\vec{t}_{1}-\vec{t}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right\}
$$

$$
-g_{0} h_{\rho}^{1_{0}} i\left(\frac{\vec{t}_{1} \times \vec{\tau}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right],
$$

Parity- and Time-Reversal-Violating Nuclear Forces

$$
\begin{aligned}
f_{\pi}(r) & =\frac{e^{-m_{\pi} r}}{4 \pi r} \\
f_{\rho}(r) & =f_{\omega}(r)=\frac{e^{-m_{\rho} r}}{4 \pi r}
\end{aligned}
$$

Parity violating nucleon-nucleon interaction

- Meson exchange approach
- Chiral EFT
- Unknown parameters (LECs)
- DDH (1980) - estimates based on the quark model

$$
\times\left(\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right\}+i\left(1+\chi_{v}\right) \vec{\sigma}_{1} \times \vec{\sigma}_{2} \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right]\right.
$$

- Experiments give conflicting limits on the weak couplings

$$
\begin{aligned}
V_{12}^{\mathrm{pv.v}}= & \frac{f_{\pi} g_{\pi N N}}{2^{1 / 2}} i\left(\frac{\vec{\tau}_{1} \times \vec{\tau}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\pi}(r)\right] \\
& -g_{\rho}\left(h_{o}^{0} \dot{\tau}_{1} \cdot \vec{\tau}_{2}+h_{o}{ }^{1}\left(\frac{\vec{\tau}_{1}+\vec{\tau}_{2}}{2}\right)^{z}+h_{o}{ }^{2} \frac{\left(3 \tau_{1}^{2} \tau_{2}{ }^{2}-\vec{\tau}_{1} \cdot \vec{\tau}_{2}\right)}{2\left(\sigma_{1}\right)^{1 / 2}}\right)
\end{aligned}
$$

$$
-g_{\omega}\left(h_{\omega}{ }^{0}+h_{\omega}{ }^{1}\left(\frac{\vec{\tau}_{1}+\dot{\tau}_{2}}{2}\right)^{z}\right)
$$

$$
\times\left(\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\omega}(r)\right\}+i(1+\chi s) \vec{\sigma}_{1} \times \vec{\sigma}_{2} \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\omega}(r)\right]\right.
$$

$$
-\left(g_{o} h_{\omega}{ }^{1}-g_{o} h_{0}{ }^{1}\right)\left(\frac{\vec{\tau}_{1}-\vec{\tau}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right\}
$$

$$
-g_{0} h_{\rho}^{1_{0}} i\left(\frac{\vec{t}_{1} \times \vec{\tau}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right],
$$

$$
\begin{aligned}
& f_{\pi}(r)=\frac{e^{-m_{\pi} r}}{4 \pi r}, \\
& f_{o}(r)=f_{\omega}(r)=\frac{e^{-m_{o} r}}{4 \pi r} .
\end{aligned}
$$

$$
\begin{aligned}
& +\bar{N}\left[h_{\rho}{ }^{0} \vec{\tau} \cdot \stackrel{\rightharpoonup}{\phi}_{\mu}{ }^{\circ}+h_{\rho}{ }^{1} \phi_{\mu}^{o 3}+h_{\rho}{ }^{2} \frac{\left(3 \tau^{3} \phi_{\mu}^{\rho 3}-\vec{\tau} \cdot \bar{\phi}_{\mu}{ }^{\rho}\right)}{2(6)^{1 / 2}}\right] \gamma^{\mu} \gamma_{5} N \\
& +\bar{N}\left[h_{\omega}{ }^{0} \phi_{\mu}{ }^{\omega}+h_{\omega}{ }^{1} \tau^{3} \phi_{\mu}{ }^{\omega}\right] \gamma^{\mu} \gamma_{5} N \\
& -h_{\rho}^{\prime 2}\left(\overrightarrow{\tilde{\tau}} \times \dot{\phi}_{\Delta}{ }^{2}\right)^{3} \frac{\sigma^{4} k_{v}}{2 M} \gamma_{5} N .
\end{aligned}
$$

$$
\begin{aligned}
& +g_{\omega} \bar{N}\left(\gamma^{\mu}+\frac{i \chi_{s}}{2 M} \sigma^{\omega \omega} k_{v}\right) \phi_{\mu^{\omega}} N
\end{aligned}
$$

- Meson exchange approach
- Chiral EFT
- Unknown parameters (LECs)
- DDH (1980) - estimates based on the quark model
- Two recent precision experiments constraining the parameters
$f_{\pi} \equiv h_{\pi}^{1}$
$h_{\rho-\omega} \equiv h_{\omega}^{1}+0.46 h_{\rho}^{1}-0.46 h_{\omega}^{0}-0.76 h_{\rho}^{0}-0.02 h_{\rho}^{2}$

$$
\begin{aligned}
V_{12}^{\text {p.v. }}= & \frac{f_{\pi} g_{\pi N N}}{2^{1 / 2}} i\left(\frac{\vec{\tau}_{1} \times \vec{\tau}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\pi}(r)\right] \\
& -g_{\rho}\left(h_{\rho}{ }^{0} \vec{\tau}_{1} \cdot \vec{\tau}_{2}+h_{\rho}{ }^{1}\left(\frac{\vec{\tau}_{1}+\vec{\tau}_{2}}{2}\right)^{z}+h_{\rho}{ }^{2} \frac{\left(3 \tau_{1}{ }^{z} \tau_{2}{ }^{z}-\vec{\tau}_{1} \cdot \vec{\tau}_{2}\right)}{2(6)^{1 / 2}}\right)
\end{aligned}
$$

$$
\times\left(\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\nu}(r)\right\}+i\left(1+\chi_{v}\right) \vec{\sigma}_{1} \times \vec{\sigma}_{2} \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\rho}(r)\right]\right.
$$

$$
-g_{\omega}\left(h_{\omega}{ }^{0}+h_{\omega}{ }^{1}\left(\frac{\dot{\tau}_{1}+\dot{\tau}_{2}}{2}\right)^{z}\right)
$$

$$
\times\left(\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\omega}(r)\right\}+i\left(1+\chi_{s}\right) \vec{\sigma}_{1} \times \vec{\sigma}_{2} \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\omega}(r)\right]\right.
$$

$$
-\left(g_{\omega} h_{\omega}{ }^{1}-g_{\rho} h_{\rho}{ }^{1}\right)\left(\frac{\vec{\tau}_{1}-\vec{\tau}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\rho}(r)\right\}
$$

$$
-g_{\rho} h_{\rho}^{\prime 1} i\left(\frac{\vec{\tau}_{1} \times \vec{\tau}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\rho}(r)\right],
$$

$$
\begin{aligned}
f_{\pi}(r) & =\frac{e^{-m_{\pi} r}}{4 \pi r} \\
f_{\rho}(r) & =f_{\omega}(r)=\frac{e^{-m_{\rho} r}}{4 \pi r}
\end{aligned}
$$

Parity and time-reversal violating nucleon-nucleon interaction

$$
\begin{aligned}
H_{P V T V}(r)= & \frac{1}{2 m_{n}} \sigma_{-} \cdot \nabla\left(-\bar{G}_{\omega}^{0} y_{\omega}(r)\right) \\
& +\tau_{1} \cdot \tau_{2} \sigma_{-} \cdot \nabla\left(\bar{G}_{\pi}^{0} y_{\pi}(r)-\bar{G}_{\rho}^{0} y_{\rho}(r)\right) \\
& +\frac{\tau_{+}^{Z}}{2} \sigma_{-} \cdot \nabla\left(\bar{G}_{\pi}^{1} y_{\pi}(r)-\bar{G}_{\rho}^{1} y_{\rho}(r)-\bar{G}_{\omega}^{1} y_{\omega}(r)\right) \\
& +\frac{\tau_{-}^{Z}}{2} \sigma_{+} \cdot \nabla\left(\bar{G}_{\pi}^{1} y_{\pi}(r)+\bar{G}_{\rho}^{1} y_{\rho}(r)-\bar{G}_{\omega}^{1} y_{\omega}(r)\right) \\
& +\left(3 \tau_{1}^{Z} \tau_{2}^{Z}-\tau_{1} \cdot \tau_{2}\right) \sigma_{-} \cdot \nabla\left(\bar{G}_{\pi}^{2} y_{\pi}(r)-\bar{G}_{\rho}^{2} y_{\rho}(r)\right)
\end{aligned}
$$

- Based on one meson exchange model

$$
y_{x}(r)=e^{-m_{x} r} /(4 \pi r)
$$

$$
\begin{aligned}
\sigma_{ \pm} & =\sigma_{1} \pm \sigma_{2} \\
\tau_{ \pm}^{z} & =\tau_{1}^{z} \pm \tau_{2}^{z}
\end{aligned}
$$

$$
\begin{aligned}
H_{P V T V}(r)= & \frac{1}{2 m_{n}} \sigma_{-} \cdot \nabla\left(-\bar{G}_{\omega}^{0} y_{\omega}(r)\right) \\
& +\tau_{1} \cdot \tau_{2} \sigma_{-} \cdot \nabla\left(\bar{G}_{\pi}^{0} y_{\pi}(r)-\bar{G}_{\rho}^{0} y_{\rho}(r)\right) \\
& +\frac{\tau_{+}^{Z}}{2} \sigma_{-} \cdot \nabla\left(\bar{G}_{\pi}^{1} y_{\pi}(r)-\bar{G}_{\rho}^{1} y_{\rho}(r)-\bar{G}_{\omega}^{1} y_{\omega}(r)\right) \\
& +\frac{\tau_{-}^{Z}}{2} \sigma_{+} \cdot \nabla\left(\bar{G}_{\pi}^{1} y_{\pi}(r)+\bar{G}_{\rho}^{1} y_{\rho}(r)-\bar{G}_{\omega}^{1} y_{\omega}(r)\right) \\
& +\left(3 \tau_{1}^{Z} \tau_{2}^{Z}-\boldsymbol{\tau}_{1} \cdot \tau_{2}\right) \sigma_{-} \cdot \nabla\left(\bar{G}_{\pi}^{2} y_{\pi}(r)-\bar{G}_{\rho}^{2} y_{\rho}(r)\right)
\end{aligned}
$$

- Based on one meson exchange model

$$
y_{x}(r)=e^{-m_{x} r} /(4 \pi r)
$$

$$
\begin{aligned}
\sigma_{ \pm} & =\sigma_{1} \pm \sigma_{2} \\
\tau_{ \pm}^{z} & =\tau_{1}^{z} \pm \tau_{2}^{z}
\end{aligned}
$$

- Coupling constants

发TRIUMF

NCSM calculations of anapole and electric dipole moments in light nuclei

$H_{\text {PVTV }}$ introduces parity admixture in the ground state (perturbation theory):

$$
\begin{gathered}
|0\rangle \quad \longrightarrow|0\rangle+|\tilde{0}\rangle \\
|\tilde{0}\rangle=\sum_{n \neq 0} \frac{1}{E_{0}-E_{n}}|n\rangle\langle n| H_{P V T V}|0\rangle
\end{gathered}
$$

Nuclear EDM is dominated by polarization contribution:

$$
D^{(p o l)}=\langle 0| \widehat{D}_{z}|\tilde{0}\rangle+c . c .
$$

$$
\begin{aligned}
& \boldsymbol{S}=\frac{e}{10} \sum_{i=1}^{Z}\left(r_{i}^{2} r_{i}-\frac{5}{3}\left\langle r^{2}\right\rangle_{\mathrm{ch}} \boldsymbol{r}_{i}\right) \\
& \widehat{D}_{Z}=\frac{e}{2} \sum_{i=1}^{A}\left(1+\tau_{i}^{Z}\right) z_{i}
\end{aligned}
$$

$H_{\text {PVTV }}$ introduces parity admixture in the ground state (perturbation theory):

$$
\begin{gathered}
|0\rangle \quad \longrightarrow|0\rangle+|\tilde{0}\rangle \\
|\tilde{0}\rangle=\sum_{n \neq 0} \frac{1}{E_{0}-E_{n}}|n\rangle\langle n| H_{P V T V}|0\rangle
\end{gathered}
$$

Low lying states of opposite parity can lead to enhancement!

Nuclear EDM is dominated by polarization contribution:

$$
D^{(p o l)}=\langle 0| \widehat{D}_{z}|\tilde{0}\rangle+c . c .
$$

$$
\begin{aligned}
& \boldsymbol{S}=\frac{e}{10} \sum_{i=1}^{Z}\left(r_{i}^{2} r_{i}-\frac{5}{3}\left\langle r^{2}\right\rangle_{\mathrm{ch}} \boldsymbol{r}_{i}\right) \\
& \widehat{D}_{z}=\frac{e}{2} \sum_{i=1}^{A}\left(1+\tau_{i}^{Z}\right) z_{i}
\end{aligned}
$$

Parity violating nucleon-nucleon interaction and the nuclear anapole moment

- Parity violating (non-conserving) $\mathrm{V}_{\mathrm{NN}}{ }^{\mathrm{PNC}}$ interaction
- Conserves total angular momentum I
- Mixes opposite parities
- Has isoscalar, isovector and isotensor components
- Admixes unnatural parity states in the ground state

$$
\begin{aligned}
\left|\psi_{\mathrm{gs}} I\right\rangle & =\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle+\sum_{j}\left|\psi_{j} I^{-\pi}\right\rangle \\
& \times \frac{1}{E_{\mathrm{gs}}-E_{j}}\left\langle\psi_{j} I^{-\pi}\right| V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle
\end{aligned}
$$

$$
V_{12}^{\mathrm{p} \cdot \mathrm{v} .}=\frac{f_{\pi} g_{\pi N N} 2^{1 / 2}}{i} i\left(\frac{\overrightarrow{1}_{1} \times \overrightarrow{\boldsymbol{T}}_{2}}{2}\right)^{2}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\pi}(r)\right]
$$

$$
-g_{\rho}\left(h_{o}{ }^{0_{1}} \cdot \dot{\tau}_{2}+h_{o}{ }^{1}\left(\frac{\vec{\tau}_{1}+\vec{\tau}_{2}}{2}\right)^{z}+h_{o}{ }^{2} \frac{\left(3 \tau_{1}{ }^{2} \tau_{2}{ }^{2}-\vec{\tau}_{1} \cdot \dot{\tau}_{2}\right)}{2\left((6)^{1 / 2}\right.}\right)
$$

$$
\times\left(\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right\}+i\left(1+\chi_{v}\right) \vec{\sigma}_{1} \times \vec{\sigma}_{2} \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right]\right.
$$

$$
-g_{\omega}\left(h_{\omega}{ }^{0}+h_{\omega}{ }^{1}\left(\frac{\vec{\tau}_{1}+\vec{\tau}_{2}}{2}\right)^{z}\right)
$$

$$
\times\left(\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\omega}(r)\right\}+i(1+\chi s) \vec{\sigma}_{1} \times \vec{\sigma}_{2} \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{\omega}(r)\right]\right.
$$

$$
-\left(g_{\omega} h_{\omega}{ }^{1}-g_{0} h_{o}^{1}\right)\left(\frac{\vec{\tau}_{1}-\vec{t}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left\{\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right\}
$$

$$
-g_{0} h_{\rho}^{1_{0}} i\left(\frac{\vec{t}_{1} \times \vec{\tau}_{2}}{2}\right)^{z}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot\left[\frac{\vec{p}_{1}-\vec{p}_{2}}{2 M}, f_{o}(r)\right],
$$

$$
\begin{aligned}
& f_{\pi}(r)=\frac{e^{-m_{a} r}}{4 \pi r}, \\
& f_{o}(r)=f_{\omega}(r)=\frac{e^{-m_{o} r}}{4 \pi r} .
\end{aligned}
$$

- Parity violating (non-conserving) $\mathrm{V}_{\mathrm{NN}}{ }^{\mathrm{PNC}}$ interaction
- Conserves total angular momentum I
- Mixes opposite parities
- Has isoscalar, isovector and isotensor components
- Admixes unnatural parity states in the ground state

$$
\begin{aligned}
\left|\psi_{\mathrm{gs}} I\right\rangle & =\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle+\sum_{j}\left|\psi_{j} I^{-\pi}\right\rangle \\
& \times \frac{1}{E_{\mathrm{gs}}-E_{j}}\left\langle\psi_{j} I^{-\pi}\right| V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle
\end{aligned}
$$

- Anapole moment operator dominated by spin contribution

$$
\boldsymbol{a}=-\pi \int d^{3} r r^{2} \boldsymbol{j}(\boldsymbol{r})
$$

$$
\begin{aligned}
& \hat{\boldsymbol{a}}_{s}=\frac{\pi e}{m} \sum_{i=1}^{A} \mu_{i}\left(\boldsymbol{r}_{i} \times \boldsymbol{\sigma}_{i}\right) \\
& \mu_{i}=\mu_{p}\left(1 / 2+t_{z, i}\right)+\underline{\mu}_{n}\left(1 / 2-t_{z, i}\right)
\end{aligned}
$$

$$
a_{s}=\left\langle\psi_{\mathrm{gs}} I I_{z}=I\right| \hat{a}_{s, 0}^{(1)}\left|\psi_{\mathrm{gs}} I I_{z}=I\right\rangle
$$

- Here is what we want to calculate:

$$
\kappa_{A}=\frac{\sqrt{2} e}{G_{F}} a_{s} \quad \kappa_{A}=-i 4 \pi \frac{e^{2}}{G_{F}} \frac{\hbar}{m c} \frac{(I I 10 \mid I I)}{\sqrt{2 I+1}} \sum_{j}\left\langle\psi_{\mathrm{gs}} I^{\pi}\right|\left|\sqrt{4 \pi / 3} \sum_{i=1}^{A} \mu_{i} r_{i}\left[Y_{1}\left(\hat{r}_{i}\right) \sigma_{i}\right]^{(1)}\right|\left|\psi_{j} I^{-\pi}\right\rangle \frac{1}{E_{\mathrm{gs}}-E_{j}}\left\langle\psi_{j} I^{-\pi}\right| V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle
$$

How to calculate the sum of intermediate unnatural parity states?

$$
\left|\psi_{\mathrm{gs}} I\right\rangle=\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle+\sum_{j}\left|\psi_{j} I^{-\pi}\right\rangle \frac{1}{E_{\mathrm{gs}}-E_{j}}\left\langle\psi_{j} I^{-\pi}\right| V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle
$$

- Solving Schroedinger equation with inhomogeneous term

$$
\left(E_{\mathrm{gs}}-H\right)\left|\psi_{\mathrm{gs}} I\right\rangle=V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle
$$

- To invert this equation, we apply the Lanczos algorithm

$$
\left|\psi_{\mathrm{gs}} I\right\rangle=\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle+\sum_{j}\left|\psi_{j} I^{-\pi}\right\rangle \frac{1}{E_{\mathrm{gs}}-E_{j}}\left\langle\psi_{j} I^{-\pi}\right| V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle
$$

- Solving Schroedinger equation with inhomogeneous term

$$
\left(E_{\mathrm{gs}}-H\right)\left|\psi_{\mathrm{gs}} I\right\rangle=V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle
$$

- To invert this equation, we apply the Lanczos algorithm
- Bring matrix to tri-diagonal form ($\mathbf{v}_{1}, \mathbf{v}_{2} \ldots$ orthonormal, H Hermitian)

$$
\begin{array}{|l|}
\hline H \mathbf{v}_{1}=\alpha_{1} \mathbf{v}_{1}+\beta_{1} \mathbf{v}_{2} \\
H \mathbf{v}_{2}=\beta_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\beta_{2} \mathbf{v}_{3} \\
H \mathbf{v}_{3}= \\
\beta_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\beta_{3} \mathbf{v}_{4} \\
H \mathbf{v}_{4}=
\end{array} \quad \beta_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}+\beta_{4} \mathbf{v}_{5},
$$

$-n^{\text {th }}$ iteration computes $2 n^{\text {th }}$ moment

- Eigenvalues converge to extreme (largest in magnitude) values
$-\sim 150-200$ iterations needed for 10 eigenvalues (even for 10^{9} states)

$$
\left|\psi_{\mathrm{gs}} I\right\rangle=\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle+\sum_{j}\left|\psi_{j} I^{-\pi}\right\rangle \frac{1}{E_{\mathrm{gs}}-E_{j}}\left\langle\psi_{j} I^{-\pi}\right| V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle
$$

- Solving Schroedinger equation with inhomogeneous term

$$
\left(E_{\mathrm{gs}}-H\right)\left|\psi_{\mathrm{gs}} I\right\rangle=V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle
$$

Few-Body Systems 33, 259-276 (2003)
DOI 10.1007/s00601-003-0017-z

- To invert this equation, we apply the Lanczos algorithm

$$
\begin{aligned}
& \left|\mathbf{v}_{1}\right\rangle=V_{\mathrm{NN}}^{\mathrm{PNC}}\left|\psi_{\mathrm{gs}} I^{\pi}\right\rangle \\
& \left|\psi_{\mathrm{gs}} I\right\rangle \approx \sum_{k} g_{k}\left(E_{0}\right)\left|\mathbf{v}_{k}\right\rangle \quad \hat{g}_{1}(\omega)=\frac{1}{\omega-\alpha_{1}-\frac{\beta_{1}^{2}}{\omega-\alpha_{2}-\frac{\beta_{2}^{2}}{\omega-\alpha_{3}-\beta_{3}^{2}}}}
\end{aligned}
$$

Lanczos continued fraction method

${ }^{3} \mathrm{He}$ EDM Benchmark Calculation

Discrepancy between calculations?

	PLB 665:165-172 (2008) (NN EFT)	$\begin{array}{\|l} \hline \text { PRC } \\ 87: 015501 \\ (2013) \end{array}$	$\begin{aligned} & \text { PRC } \\ & 91: 054005 \\ & (2015) \end{aligned}$	Our calculation (NN EFT)
\bar{G}_{π}^{0}	0.015	($\times 1 / 2$)	($\times 1 / 2$)	0.0073 (x 1/2)
\bar{G}_{π}^{1}	0.023	($\mathrm{x} 1 / 2$)	($\times 1 / 2$)	0.011 ($\mathrm{x} 1 / 2$)
$\bar{\sigma}_{\pi}^{2}$	0.037	($\mathrm{x} 1 / 5$)	($\mathrm{x} 1 / 2$)	0.019 ($\mathrm{x} 1 / 2$)
\bar{G}_{ρ}^{0}	-0.0012	($\mathrm{x} 1 / 2$)	($\mathrm{x} 1 / 2$)	-0.00062 (x 1/2)
\bar{G}_{ρ}^{1}	0.0013	($\times 1 / 2$)	($\mathrm{x} 1 / 2$)	0.00063 (x 1/2)
\bar{G}_{ρ}^{2}	-0.0028	($\mathrm{x} 1 / 5$)	($\mathrm{x} 1 / 2$)	-0.0014 (x 1/2)
\bar{G}_{ω}^{0}	0.0009	($\mathrm{x} 1 / 2$)	($\mathrm{x} 1 / 2$)	0.00042 (x 1/2)
\bar{G}_{ω}^{1}	-0.0017	($\mathrm{x} 1 / 2$)	($\times 1 / 2$)	-0.00086 (x 1/2)

Our results confirm those of Yamanaka and Hiyama, PRC 91:054005 (2015)

Ab initio calculations of electric dipole moments of light nuclei TRIUMF, 4004 Westrook Mall, Vancouver British Columbia V6T 2A3, Canada
$N_{\text {max }}$ convergence for ${ }^{3} \mathrm{He}$
N3LO NN

- Overall, convergence very good, comparable to that of the magnetic moment

Comparison to valence nucleon model (dotted lines)

$$
\begin{aligned}
\kappa_{\mathrm{A}} & =\frac{9}{10} \frac{\alpha \mu_{i}}{m_{p} r_{0}} g_{i} A^{2 / 3} \frac{K}{I+1} \\
& \simeq 1.15 \times 10^{-3} g_{i} \mu_{i} A^{2 / 3} \frac{K}{I+1}, \\
& K=(I+1 / 2)(-1)^{I-\ell_{i}+1 / 2}
\end{aligned}
$$

Anapole moments from ab initio calculations larger in absolute value

Nuclear spin-dependent parity-violating effects from NCSM

- Contributions from nucleon axial-vector and the anapole moment

	${ }^{9} \mathrm{Be}$	${ }^{13} \mathrm{C}$	${ }^{14} \mathrm{~N}$	${ }^{15} \mathrm{~N}$	${ }^{25} \mathrm{Mg}$		
I^{π}	$3 / 2^{-}$	$1 / 2^{-}$	1^{+}	$1 / 2^{-}$	$5 / 2^{+}$		
$\mu^{\text {exp. }}$	-1.177^{a}	0.702^{b}	0.404^{c}	-0.283^{d}	-0.855^{e}		
	NCSM						calculations
μ	-1.05	0.44	0.37	-0.25	-0.50		
κ_{A}	0.016	-0.028	0.036	0.088	0.035		
$\left\langle s_{p, z}\right\rangle$	0.009	-0.049	-0.183	-0.148	0.06		
$\left\langle s_{n, z}\right\rangle$	0.360	-0.141	-0.1815	0.004	0.30		
κ_{ax}	0.035	-0.009	0.0002	0.015	0.024		
κ	0.050	-0.037	0.037	0.103	0.057		

$\kappa_{a x} \simeq-2 C_{2 p}\left\langle s_{p, z}\right\rangle-2 C_{2 n}\left\langle s_{n, z}\right\rangle \simeq-0.1\left\langle s_{p, z}\right\rangle+0.1\left\langle s_{n, z}\right\rangle$
$\left\langle s_{\nu, z}\right\rangle \equiv\left\langle\psi_{\mathrm{gs}} I^{\pi} I_{z}=I\right| \hat{s}_{\nu, z}\left|\psi_{\mathrm{gs}} I^{\pi} I_{z}=I\right\rangle$
$C_{2 \mathrm{p}}=-C_{2 \mathrm{n}}=g_{A}\left(1-4 \sin ^{2} \theta_{W}\right) / 2 \simeq 0.05$

Nuclear spin-dependent parity-violating effects from NCSM

- Contributions from nucleon axial-vector and the anapole moment

	${ }^{9} \mathrm{Be}$	${ }^{13} \mathrm{C}$	${ }^{14} \mathrm{~N}$	${ }^{15} \mathrm{~N}$	${ }^{25} \mathrm{Mg}$
I^{π}	$3 / 2^{-}$	$1 / 2^{-}$	1^{+}	$1 / 2^{-}$	$5 / 2^{+}$
$\mu^{\text {exp. }}$	-1.177^{a}	0.702^{b}	0.404^{c}	-0.283^{d}	-0.855^{e}
NCSM					
calculations					
μ	-1.05	0.44	0.37	-0.25	-0.50
κ_{A}	0.016	-0.028	0.036	0.088	0.035
$\left\langle s_{p, z}\right\rangle$	0.009	-0.049	-0.183	-0.148	0.06
$\left\langle s_{n, z}\right\rangle$	0.360	-0.141	-0.1815	0.004	0.30
κ_{ax}	0.035	-0.009	0.0002	0.015	0.024
κ	0.050	-0.037	0.037	0.103	0.057

Expecting a significant enhancement of the anapole moment for ${ }^{11} \mathrm{Be}$
${ }^{11} \mathrm{Be}$ anapole moment calculations in progress NCSM with continuum (NCSMC) applied

Calculated EDMs of selected stable nuclei

ab initio calculations of electric dipole moments of light nucle

	d_{p}	d_{n}	\bar{G}_{π}^{0}	\bar{G}_{π}^{1}	\bar{G}_{π}^{2}	\bar{G}_{ρ}^{0}	\bar{G}_{ρ}^{1}	\bar{G}_{ρ}^{2}	\bar{G}_{ω}^{0}	G	μ	$\mu^{\text {exp. }}$
${ }^{3} \mathrm{He}$	-0.031	0.905	0.0073	0.011	0.019	-0.00062	0.000063	-0.0014	0.00042	-0.00086	-1.79	-2.127
${ }^{6} \mathrm{Li}$	0.892	0.890	0.00006	0.0171	0.0002	-0.000003	0.00158	-0.00002	-0.000002	-0.0016	+0.84	+0.822
${ }^{7} \mathrm{Li}$	0.930	0.018	-0.0096	0.0106	-0.0233	0.00131	0.00085	0.0029	-0.00072	-0.0013	+2.99	+3.256
${ }^{9} \mathrm{~B}$	0.018	0.720	0.0007	0.0116	0.0053	0.00019	0.00005	-0.0002	0.00046	-0.0004	-1.05	-1.177
${ }^{10} \mathrm{~B}$	0.852	0.848	-0.0001	0.0281	-0.0002	0.00001	0.00075	0.00002	-0.00002	-0.0017	+1.83	+1.801
${ }^{11} \mathrm{~B}$	0.444	0.050	-0.0070	0.0127	-0.0219	0.00039	0.00019	0.0019	-0.00016	-0.0010	+2.09	+2.689
${ }^{13} \mathrm{C}$	-0.098	-0.282	-0.0058	-0.0084	-0.0316	0.00016	-0.00052	0.0037	0.00004	0.0010	+0.44	+0.702
${ }^{14} \mathrm{~N}$	-0.366	-0.363	0.0003	-0.0172	0.0006	-0.00003	-0.00081	-0.0001	0.00002	0.0014	$+0.37$	+0.404
${ }^{15} \mathrm{~N}$	-0.296	0.008	0.0102	-0.0095	0.0228	-0.00052	-0.00044	-0.0015	0.00039	0.0008	-0.25	-0.283
${ }^{19} \mathrm{~F}$	0.818	-0.052	-0.0175	0.0089	-0.0226	0.00236	0.00125	0.0027	-0.00096	-0.0014	+2.85	$+2.629$

Table I. The nucleonic and polarization contributions to EDMs of ${ }^{3} \mathrm{He}$, stable p-shell nuclei, and ${ }^{19} \mathrm{~F}$ (in $e \mathrm{fm}$) decomposed as coefficients of d_{p}, d_{n}, and \bar{G}_{χ}^{T}, where χ stands for π, ρ, or ω exchanges. In the last two columns, calculated and experimental (from Ref. [49]) nuclear magnetic dipole moments (in μ_{N}) are compared. SRG-evolved chiral NN+3N(lnl) PTC interaction from Ref. [34] was used except for ${ }^{3} \mathrm{He}$ where the chiral N^{3} LO PTC NN [35] was utilized.

Conclusions

- Ab initio no-core shell model capable to calculate accurately nuclear structure effects needed for analysis of parityviolation and time-reversal violation experiments in atoms and molecules
- First results available
- 10\% precision within the reach
- Different nuclei can be used to probe different terms of the parity \& time-reversal violating interaction
- Theoretical calculations of EDMs allow us to suggest promising candidates for planned experiments in storage rings
- Improvements include
- SRG renormalization of the parity- \& time-reversal violating interactions and the anapole \& E1 operators
- Higher-order terms of the anapole operator
- Chiral EFT based parity- \& time-reversal violating interaction with sub-leading terms
- Outlook
- Calculation of the ${ }^{11} \mathrm{Be}$ EDM and the anapole moment that are expected to be strongly enhanced
- 11Be has low lying states of opposite parity, but ground state is an extended halo state, NCSM with continuum (NCSMC) must be applied
- NCSM calculations of Schiff moments for light nuclei (also useful for benchmarking with other ab initio methods)
- PV and PVTV NN interaction matrix elements made available to the SDSU and ORNL groups for applications in LSM and CCM, respectively

发TRIUMF

Thank you!

 Merci!

[^0]: PHYSICAL REVIEW C 105, 014302 (2022)

