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Outline

§ Motivation

§ Radioactive molecule (RadMol) experimental program at TRIUMF

§ Ab initio nuclear theory – no-core shell model (NCSM)

§ Parity-violating and parity- plus time-reversal-violating nucleon-nucleon interactions

§ NCSM calculations of anapole and electric dipole moments in light nuclei
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Why investigate the Electric Dipole Moment (EDM) and Schiff Moment?

§ Unsolved problem in physics: matter-antimatter asymmetry of the universe

§ Standard model predicts some CP violation, not enough to explain this asymmetry

§ The EDM and Schiff moment is a promising probe for CP violation beyond the 
standard model, as well as CP violating QCD �̅�	parameter 



5CP violation and the EDM
A non-zero EDM of any finite system requires P and T violation, which implies CP violation through the 
CPT theorem

Consider the neutron:

Under a Parity (P) Transformation: Under a Time-reversal (T) Transformation:



6CP violation and the EDM/Schiff moment

Alternative: Nuclear EDM and nuclear Schiff moment 

§ Nuclear structure can enhance the EDM or the Schiff moment

§ Nuclear EDMs can be measured in storage rings (CERN feasibility study: arXiv:1912.07881)

§ Nuclear Schiff moments can be measured using (radioactive) molecules

Problem with neutron EDM: very small

To understand the nuclear EDM and Schiff moment, nuclear structure effects must be understood



7Parity violation in atomic and molecular systems

§ Important for tests of the

§ Standard Model
§ Information about parity violating nuclear forces 
§ Test of nuclear theory and low-energy quantum chromodynamics  

§ Physics beyond the standard model
§ Atomic PNC sensitive to a variety of “new physics” 

§ measures a set of model-independent electron-quark electroweak coupling 
constants that are different from those that are probed by high-energy 
experiments

§ Low-mass Z′ boson - the best limits on its parity violating interaction with electrons, 
protons, and neutrons from the data on atomic parity violation 



8Parity violation in atomic and molecular systems

§ Spin independent
§ Z-boson exchange between electron axial-

vector and nucleon-vector currents 

§ Spin dependent
§  Z-boson exchange between nucleon axial-

vector and electron-vector currents (b)
§ Electromagnetic interaction of atomic electrons 

with the nuclear anapole moment (c)
§ Combined effect of the AeVN and hyperfine 

interaction (d)
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FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. N and e

� label nucleons and
atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

HPV =
GFp
2

X

q

⇣
C

(1)

q
ē�µ�5e q̄�

µ
q + C

(2)

q
ē�µe q̄�

µ
�5q

⌘
,

(32)
where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
(1)

q ; the constants C
(2)

q describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,
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,

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle ✓W:
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,

where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di↵erence between proton and
neutron distributions, we reduce the corresponding part
of HPV to an e↵ective weak Hamiltonian in the electron
sector

HW = QW

GFp
8
�5 ⇢ (r) , (33)

where ⇢ (r) is the nuclear density and QW is a nuclear
weak charge. The non-relativistic limit of the operator
�5 ⇢ (r) is

1

2c
[2⇢(r)(� · p)� i(� ·r⇢)] ,

where p is the linear momentum operator and � are elec-
tron Pauli matrices.
The nuclear weak charge QW entering the e↵ective

weak Hamiltonian is

QW ⌘ 2Z C
(1)

p
+ 2N C

(1)

n
,

where Z and N are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and QW ⇡ �N . This is a “tree-level” [or

26

e e

Z 0

Ae

VN

e e

Z 0

AN

Ve
e e e e

Z 0

Ae

VN

(a) (c)(b) (d)

(( ( ( ( ( ( (

FIG. 5 (Color online) Major diagrams contributing to the
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atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
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where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
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q ; the constants C
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q describe the coupling of
the electron vector currents to quark axial-vector cur-
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where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
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n contribution dominates HPV except for the 1H
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The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
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9Parity violation in atomic and molecular systems

§ Nuclear anapole moment
§ Weak interactions inside the nucleus lead to P-odd moments 

§ Magnetic vector potential A = aδ(r)
§ Electromagnetic coupling to electrons 

§ Nuclear anapole arises due to nucleon-nucleon interaction, 
mediated by meson exchange, where one of the nucleon-
meson vertexes is strong and another is weak and P-
violating

§  Determination of anapole moments from atomic parity 
violation provides a window into hadronic parity non-
conservation (PNC) 
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experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)
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ē�µ�5e q̄�

µ
q + C

(2)

q
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and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.
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the quark vector currents is parametrized by the con-
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where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.
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FIG. 7 (Color online) The toroidal component of current den-
sity j produces anapole moment a, with magnetic fieldB that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with a, with its associated conventional dipolar
magnetic field not shown.

defining the constant ⌘NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., / (nuclear radius)2 /
A

2/3, where A is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.,
1980), who deduced SM estimates of their values. These
six hadronic PNC parameters are f⇡, h

0,1,2

⇢
, h

0,1

!
, where

the subscript (⇡, ⇢,!) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e↵ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings (⇥107) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di�cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and 4He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.
Haxton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e↵ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).
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where the weak-interaction constants C
(2)

n,p were intro-
duced in Sec. IV.A and

N = (I + 1/2)(�1)I+`N+1/2

is the relativistic angular quantum number for the un-
paired nucleon in a state with orbital angular momen-
tum `N . Notice that this contribution is substantially
suppressed compared to the VnAe diagram 5(a) because

|C(2)

N /C
(1)

n
| = gA(1� 4 sin2 ✓W) ⇡ 0.1

and only the unpaired nucleon contributes to Fig. 5(b)
whereas all nucleons coherently contribute to Fig. 5(a).

The ⌘NAM coe�cient parameterizes the nuclear
anapole moment (NAM) contribution to atomic parity
violation. It is illustrated in Fig. 5(c) and discussed
in Sec. IV.C.2. Parity violation in the nucleus leads
to toroidal currents that in turn generate a parity-odd,
time-reversal-even (P-odd, T-even) moment, known as
the nuclear anapole moment, that couples electromag-
netically to atomic electrons. The nuclear shell model
expression for the anapole moment (Flambaum et al.,
1984),

⌘NAM = 1.15⇥ 10�3
N

I(I + 1)
µN gNA

2/3
, (38)

depends on the atomic number A, the magnetic moment
µN of the unpaired nucleon expressed in units of the
nuclear magneton, and the weak coupling constant gN .
Their values are µp ⇡ 2.8, µn ⇡ �1.9, gp ⇡ 5, and
gn ⇡ �1.

The combined action of the hyperfine interaction and
the spin-independent Z-exchange interaction from nu-
cleon vector (VnAe) currents leads to the third nuclear-
spin dependent parity violating e↵ect, Fig. 5(d). This
contribution is quantified by a parameter ⌘hf . An an-
alytical approximation for ⌘hf was derived by Flam-
baum and Khriplovich (1985b) and values of ⌘hf were
determined for various cases of experimental interest by
Bouchiat and Piketty (1991) and Johnson et al. (2003).
Johnson et al. (2003) also tabulated the values of ⌘hf

for microwave transitions between ground-state hyper-
fine levels in atoms of potential experimental interest.

Recently, Flambaum (2016) pointed out a novel nu-
clear spin-dependent e↵ect: the quadrupole moment of
the neutron distribution leads to a tensor weak interac-
tion that mixes opposite parity states in atoms with total
angular momentum di↵erence  2. This e↵ect should be
carefully investigated in future work to see if it influences
determination of the anapole moments from APV mea-
surements. The e↵ect is of interest on its own as a probe
of the neutron distributions in nuclei (Flambaum et al.,
2017). The atom or molecule should contain a nucleus
with I > 1/2, and there is an enhancement for heavy and
deformed nuclei.

An outstanding question is the relative importance
of the nuclear spin-dependent contributions. The ⌘hf

coe�cient can be carefully evaluated and it is usually
suppressed compared to ⌘NAM and ⌘axial. Generically,
because of the A

2/3 scaling, the anapole contribution
dominates for heavier nuclei. For lighter nuclei, the
axial contribution is more important and APV experi-

ments can be a sensitive probe of C(2)

n,p electroweak pa-
rameters, providing a window on the AnVe interactions
that are typically studied with deep inelastic scatter-
ing (PVDIS-Collaboration, 2014). The boundary be-
tween the axial- and anapole-dominated regimes depends
on quantum numbers of the valence and type of the va-

lence nucleon (DeMille et al., 2008a). Values of C(2)

n,p can
set constraints on exotic new physics such as leptopho-
bic Z 0 bosons (Buckley and Ramsey-Musolf, 2012), while
NAMs probe hadronic PNC.

2. Nuclear anapole moments as a probe of hadronic parity
violation

The traditional multipolar expansion of electromag-
netic potentials generated by a finite distribution of cur-
rents and charges leads to the identification of mag-
netic (MJ) and electric (EJ) multipolar moments (Jack-
son, 1999). Non-vanishing nuclear multipolar moments
(charge E0, magnetic-dipole M1, electric-quadrupole E2,
. . . ) respect parity and time reversal, i.e. they are P-even
and T-even, and describe multipolar fields outside the fi-
nite distribution. Weak interactions inside the nucleus
lead to additional P-odd moments (Gray et al., 2010);
the leading moment is referred to as the anapole mo-
ment. Zel’dovich and Vaks were the first to point out
the possibility of such a moment (Zel’dovich, 1958).

The anapole moment a of a current density distribu-
tion j(r) is defined as

a = �⇡

Z
d
3
r r

2 j(r), (39)

with magnetic vector potential A = a�(r), leading to
the electromagnetic coupling of electrons to the nuclear
anapole moment, (↵ · A). A classical analog of the
anapole moment is a Tokamak-like configuration shown
in Fig. 7. The inner and outer parts of the toroidal cur-
rents are weighted di↵erently by r

2 in Eq. (39), leading
to a nonvanishing value of the anapole moment. Mi-
croscopically, a nuclear anapole moment can be related
to a chiral distribution of nuclear magnetization caused
by parity-violating nuclear forces (Bouchiat and Piketty,
1991). Due to the Wigner-Eckart theorem, the NAM
(just as the nuclear magnetic moment) is proportional to
the nuclear spin I so that

a =
GF

|e|
p
2
⌘NAMI,
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Measurement of Parity
Nonconservation and an Anapole

Moment in Cesium
C. S. Wood, S. C. Bennett, D. Cho,* B. P. Masterson,†

J. L. Roberts, C. E. Tanner,‡ C. E. Wieman§

The amplitude of the parity-nonconserving transition between the 6S and 7S states of
cesium was precisely measured with the use of a spin-polarized atomic beam. This
measurement gives Im(E1pnc)/b 5 21.5935(56) millivolts per centimeter and provides an
improved test of the standard model at low energy, including a value for the S parameter
of 21.3(3)exp (11)theory. The nuclear spin–dependent contribution was 0.077(11) millivolts
per centimeter; this contribution is a manifestation of parity violation in atomic nuclei and
is a measurement of the long-sought anapole moment.

It has been recognized for more than 20
years that electroweak unification leads to
parity nonconservation (PNC) in atoms
(1). This phenomenon is the lack of mirror-
reflection symmetry and is displayed by any
object with a left or right handedness. Per-
haps the most well-known example of a
PNC effect is the asymmetry in nuclear beta
decay first observed in 1957 by Wu and
collaborators (2). Precise measurements of
PNC in a number of different atoms have
provided important tests of the standard
model of elementary particle physics at low
energy (3). Atomic PNC is uniquely sensi-
tive to a variety of “new physics” (beyond
the standard model) because it measures a
set of model-independent electron-quark
electroweak coupling constants that are dif-
ferent from those that are probed by high-
energy experiments. Specifically, the stan-
dard model is tested by comparing a mea-
sured value of atomic PNC with the corre-
sponding theoretical value predicted by the
standard model. This prediction requires, as
input, the mass of the Z boson and the
electronic structure of the atom in question.
The Z mass is now known to 77 parts per
million (4), but the uncertainties in the
atomic structure are 1 to 10%, depending
on the atom. In recent years, PNC measure-
ments in several atoms have achieved un-
certainties of a few percent (5, 6). Of these
atoms, the structure of cesium is the most
accurately known (1%) because it is an
alkali atom with a single valence electron
outside of a tightly bound inner core. Thus,

higher precision measurements of PNC in
cesium provide a sensitive probe of physics
beyond the standard model.

In addition to exploring the physics of
the standard model, high-precision atomic
PNC experiments also offer a different ap-
proach for studying the effects of parity
violation in atomic nuclei. In 1957, it was
predicted that the combination of parity
violation and electric charges would lead to
the existence of a so-called anapole mo-
ment (7), but up until now, such a moment
has not been measured. Fifteen years ago, it
was pointed out that an anapole moment in
the nucleus would lead to small nuclear-
spin–dependent contributions to atomic
PNC that could be observed as a difference
in the values of PNC measured on different
atomic transitions (8). With the determi-
nation of the anapole moment, the mea-
surement of this difference thus provides a
valuable probe of the relatively poorly un-
derstood PNC in nuclei.

Here, we report a factor of 7 improve-
ment in the measurement of PNC in atomic
cesium. This work provides an improved
test of the standard model and a definitive
observation and measurement of an anapole
moment.

This experiment is our third-generation
measurement of PNC in atomic cesium.
Conceptually, the experiment is similar to
our previous two (6, 9). As a beam of
atomic cesium passes through a region of
perpendicular electric, magnetic, and laser
fields, we excite the highly forbidden 6S to
7S transition. The handedness of this region
is reversed by reversing each of the field
directions. The parity violation is apparent
as a small modulation in the 6S-7S excita-
tion rate that is synchronous with all of
these reversals. There are numerous exper-
imental differences from our earlier work,
however, including the use of a spin-polar-

ized atomic beam and a more efficient de-
tection method. This paper describes the
basic concept of the experiment, the appa-
ratus, the data analysis, the extensive stud-
ies that have been done on possible system-
atic errors, and finally, the results and some
of their implications. Because this experi-
ment has involved 7 years of apparatus de-
velopment and 5 years studying potential
systematic errors, we provide only a rela-
tively brief summary of the work here. Fur-
ther details on both the technology and the
systematic errors will be presented in subse-
quent, longer publications.

Experimental concept. In the absence of
electric fields and weak neutral currents, an
electric dipole (E1) transition between the
6S and 7S states of the cesium atom (Fig. 1)
is forbidden by the parity selection rule. The
weak neutral current interaction violates
parity and mixes a small amount (;10211)
of the P state into the 6S and 7S states,
characterized by the quantity Im(E1PNC) (Im
selects the imaginary portion of a complex
number). This mixing results in a parity-
violating E1 transition amplitude APNC be-
tween these two states. To obtain an observ-
able that is first order in this amplitude, we
apply a dc electric field E that also mixes S
and P states. This field gives rise to a “Stark-
induced” E1 transition amplitude AE that is
typically 105 times larger than APNC and can
interfere with it.

A complete analysis of the relevant tran-
sition rates is given in (9). To get a nonzero
interference between AE and APNC, we ex-
cite the 6S to 7S transition with an ellipti-
cally polarized laser field of the form ezz 1
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Fig. 1. Partial cesium energy-level diagram includ-
ing the splitting of S states by the magnetic field.
The case of 540-nm light exciting the F 5 3, m 5
3 level is shown. Diode lasers 1 and 2 optically
pump all of the atoms into the (3, 3) level, and laser
3 drives the 6SF54 (Fdet) to 6PF55 transition to
detect the 7S excitation. PNC is also measured for
excitation from the (3, 23), (4, 4), and (4, 24) 6S
levels. The diode lasers excite different transitions
for the latter two cases.
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reflection symmetry and is displayed by any
object with a left or right handedness. Per-
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PNC effect is the asymmetry in nuclear beta
decay first observed in 1957 by Wu and
collaborators (2). Precise measurements of
PNC in a number of different atoms have
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model of elementary particle physics at low
energy (3). Atomic PNC is uniquely sensi-
tive to a variety of “new physics” (beyond
the standard model) because it measures a
set of model-independent electron-quark
electroweak coupling constants that are dif-
ferent from those that are probed by high-
energy experiments. Specifically, the stan-
dard model is tested by comparing a mea-
sured value of atomic PNC with the corre-
sponding theoretical value predicted by the
standard model. This prediction requires, as
input, the mass of the Z boson and the
electronic structure of the atom in question.
The Z mass is now known to 77 parts per
million (4), but the uncertainties in the
atomic structure are 1 to 10%, depending
on the atom. In recent years, PNC measure-
ments in several atoms have achieved un-
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atoms, the structure of cesium is the most
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1 3 1025 to 7 3 1025 of the main fields.
The fractional shift in the PNC signal re-
sulting from combinations of such stray and
misaligned fields was ,4 3 1024.

Although this procedure was similar in
concept to our previous work, here it was
more difficult and time consuming because
of the higher accuracy required. This re-
quirement made it necessary to consider not
only the average fields, but also their gradi-
ents across the interaction region. The
study of gradient effects led to the discovery
of another error, which arises from the gra-
dient in the stray By (Table 1, number 2).
This field gradient combines with the ve-
locity gradient across the atomic beam to
break the symmetry of the standing wave
field in a polarization-sensitive manner and
thereby gives an error proportional to
AEAM1. This error can be eliminated by
carefully minimizing the stray By gradient.

The birefringence of the PBC output-
mirror coating (2 3 1026 radians per reflec-
tion) will also convert the AEAM1 interfer-
ence into a PNC error (9, 16). We have
reduced this error to a negligible level
(,0.05% of PNC) through a combination
of steps. We obtained low-birefringence
mirror coatings (17) and carefully mounted
and temperature stabilized the mirrors to
minimize additional birefringence. Also, by
rotating the output mirror we could mea-
sure and orient the birefringence before and
during the data runs. By orienting the bire-

fringence axis to within 5° of the z or x
direction, we reduced the fractional error to
0.5% of the PNC signal in each block. The
periodic 90.0(5)° rotations of the mirror
during the data runs reduced the average
fractional error to ,0.05%.

A third error proportional to AEAM1
comes from the distortion in the 6S-7S line
shape due to ac Stark shifts produced by the
green laser field (6, 18). Because of this
distortion, a modulation in the laser power
inside the PBC that is synchronous with the
polarization reversal results in a PNC error.
To eliminate this error, we measured the
polarization–synchronous power modula-
tions to 1 part in 105 of the total power.
This measurement was done in an auxiliary
experiment that detected power changes in
a polarization-insensitive manner by ob-
serving the resulting ac Stark shifts on the
6S-7S transition frequency.

We also tested for any unanticipated
errors that might arise from the AEAM1
interference by taking PNC data with po-
larization ratios ⎪εx /εz⎪ 1 and 2. The ratio
APNC/AM1 differs by a factor of 2 for these
two cases; the fact that we obtain the same
value of Im(E1PNC)/b for both polarizations
indicates that there are no significant sys-
tematic errors proportional to AM1.

In addition to the tests above, we ap-
plied large electric and magnetic fields and
gradients in the x, y, and z directions and
real and imaginary optical fields in the x
and z directions. We confirmed that certain
applied fields produced the false PNC sig-
nals we expected, and others produced the
correct changes in the 44 other modulation
combinations that we observed during the
PNC data runs and the auxiliary measure-
ments. These studies revealed another po-
tential systematic error (Table 1, number
5), which arises from imperfections in the
polarization of the green light. This error is

related to the distortion in the 6S-7S line
shape combined with a nonzero Re(εx)/εz,
just as a previously discussed error (Table 1,
number 4) was related to the line-shape
distortion combined with an intracavity
power modulation. To keep this error small,
we measured and minimized Re(εx)/εz be-
fore each block. It was adjusted so that the
error was typically less than one-half of the
PNC statistical uncertainty; we then ap-
plied a correction to the results. We inten-
tionally acquired nearly equal numbers of
blocks with positive and negative values of
Re(εx)/εz in each run, so the average cor-
rection was very small.

In such a complex and precise experi-
ment, there is always the worry that there
could be some undiscovered systematic er-
ror still lurking in the darkness. We have
made numerous checks to reduce that pos-
sibility. We have repeatedly changed many
aspects of the experiment (for example,
alignments, field plates, PBC mirrors, laser
power, atomic beam, laser control systems,
optics, and parity-reversal electronics and
timing) to ensure these did not cause any
unexplained changes in the PNC signal or
the many other modulation signals. We
reduced all sources of technical noise until
every observed fluctuation in the PNC data
was consistent with the independently mea-
sured short-term statistical noise on the 6S-
7S rate, and this noise was dominated by
the shot-noise fluctuations. Finally, it can-
not be overstated how important it is to
have the 31 other modulation signals that
are obtained from the PNC data. These
signals provide a wealth of real-time infor-
mation about operating conditions in the
experiment, including the accuracy of all
individual reversals.

Results. The data, after inclusion of the
appropriate calibration factors and correc-
tions listed above, match well to a Gaussian
distribution (Fig. 3). This agreement is con-
firmed by the x2 probabilities, which are
25% for the 4-3 line and 76% for the 3-4
line. Our final result is

2Im(E1PNC)/b 5 H
1.6349~80! mV/cm
1.5576(77) mV/cm

for the 6SF54 to 7SF53, and 6SF53 to 7SF54
transitions, respectively. The difference was
0.077(11) mV/cm, and the nuclear spin–
independent average was 1.5935(56) mV/
cm. The statistical uncertainties for the two
transitions, 0.0078 and 0.0073 mV/cm, re-
spectively, dominate the error. The system-
atic uncertainties are based on statistical
uncertainties in the determination of vari-
ous calibration factors and systematic shifts,
and therefore, it is appropriate to add them
in quadrature. The final results are in good
agreement with previous measurements in
cesium (Fig. 4) and are much more precise.

Fig. 3. Histograms of 1.5 hour blocks of PNC
results for the 6SF53 to 7SF54 and the 6SF54 to
7SF53 transitions. The solid bars are the data, and
the open bars are the theoretical distributions ex-
pected for random samples with standard devia-
tions matching the independently measured
short-term noise in the data.

Fig. 4. Historical comparison of cesium PNC re-
sults. The squares are values for the 4-3 transition,
the open circles are the 3-4 transition, and the
solid circles are averages over the hyperfine tran-
sitions. The band is the standard-model predic-
tion for the average, including radiative correc-
tions. The 61s width shown is dominated by the
uncertainty of the atomic structure.
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FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. N and e

� label nucleons and
atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

HPV =
GFp
2

X

q

⇣
C

(1)

q
ē�µ�5e q̄�

µ
q + C

(2)

q
ē�µe q̄�

µ
�5q

⌘
,

(32)
where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
(1)

q ; the constants C
(2)

q describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,

C
(1)

p
= 2C(1)

u
+ C

(1)

d
,

C
(1)

n
= C

(1)

u
+ 2C(1)

d
,

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle ✓W:

C
(1)

p
=

1

2

�
1� 4 sin2✓W

�
,

C
(1)

n
= �1

2
,

C
(2)

p
= �C

(2)

n
= gAC

(1)

p
,

where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di↵erence between proton and
neutron distributions, we reduce the corresponding part
of HPV to an e↵ective weak Hamiltonian in the electron
sector

HW = QW

GFp
8
�5 ⇢ (r) , (33)

where ⇢ (r) is the nuclear density and QW is a nuclear
weak charge. The non-relativistic limit of the operator
�5 ⇢ (r) is

1

2c
[2⇢(r)(� · p)� i(� ·r⇢)] ,

where p is the linear momentum operator and � are elec-
tron Pauli matrices.
The nuclear weak charge QW entering the e↵ective

weak Hamiltonian is

QW ⌘ 2Z C
(1)

p
+ 2N C

(1)

n
,

where Z and N are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and QW ⇡ �N . This is a “tree-level” [or
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FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. N and e

� label nucleons and
atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

HPV =
GFp
2

X

q

⇣
C

(1)

q
ē�µ�5e q̄�

µ
q + C

(2)

q
ē�µe q̄�

µ
�5q

⌘
,

(32)
where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
(1)

q ; the constants C
(2)

q describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,

C
(1)

p
= 2C(1)

u
+ C

(1)

d
,

C
(1)

n
= C

(1)

u
+ 2C(1)

d
,

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle ✓W:

C
(1)

p
=

1

2

�
1� 4 sin2✓W

�
,

C
(1)

n
= �1

2
,

C
(2)

p
= �C

(2)

n
= gAC

(1)

p
,

where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di↵erence between proton and
neutron distributions, we reduce the corresponding part
of HPV to an e↵ective weak Hamiltonian in the electron
sector

HW = QW

GFp
8
�5 ⇢ (r) , (33)

where ⇢ (r) is the nuclear density and QW is a nuclear
weak charge. The non-relativistic limit of the operator
�5 ⇢ (r) is

1

2c
[2⇢(r)(� · p)� i(� ·r⇢)] ,

where p is the linear momentum operator and � are elec-
tron Pauli matrices.
The nuclear weak charge QW entering the e↵ective

weak Hamiltonian is

QW ⌘ 2Z C
(1)

p
+ 2N C

(1)

n
,

where Z and N are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and QW ⇡ �N . This is a “tree-level” [or

Anapole moment 
dominates the nuclear-
spin-dependent parity 
violating effects in 
heavy atoms ~ A2/3



11Nuclear spin dependent parity violating effects in light polyatomic molecules 

§ Polyatomic molecules possess opposite-parity 
states that may be brought to near degeneracy 
using a magnetic field. This opens the possibility 
to measure nuclear spin dependent parity-
violating effects in light nuclei where nuclear 
structure calculations are tractable

§ Experiments proposed for 9BeNC, 25MgNC
§ Expected to measure the spin-dependent parity-

violating matrix elements with 70 times better 
sensitivity

ARTICLE

Nuclear-spin dependent parity violation in optically
trapped polyatomic molecules
E.B. Norrgard 1, D.S. Barker1, S. Eckel1, J.A. Fedchak 1, N.N. Klimov1 & J. Scherschligt 1

Improved nuclear spin-dependent parity violation measurements will enable experimental

determination of poorly known electroweak coupling parameters. Here, we investigate the

suitability of optically trapped linear polyatomic molecules as probes of nuclear spin-

dependent parity violation. The presence of closely spaced, opposite-parity ‘-doublets is a

general feature of such molecules, allowing parity-violation-sensitive pairs of levels to be

brought to degeneracy in magnetic fields typically 100 times smaller than in diatomics.

Assuming laser cooling and trapping of polyatomics at the current state-of-the-art for

diatomics, we expect to measure nuclear spin-dependent parity-violating matrix elements iW

with 70 times better sensitivity than the current best measurements. Our scheme should

allow for 10% measurements of iW in nuclei as light as Be or as heavy as Yb, with averaging

times on the order of 10 days and 1 s, respectively.

https://doi.org/10.1038/s42005-019-0181-1 OPEN

1 Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. Correspondence and requests for materials should
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12Nuclear spin dependent parity violating effects in light polyatomic molecules 

§ Experiments proposed for 9BeNC, 25MgNC
§ In light atoms, the exchange of Standard Model 

Z bosons (or potential Z′ bosons) between an 
electron and individual nucleons can be as 
important as the anapole moment. It remains 
poorly characterized 
§ Ve AN : Z0 exchange between e and quarks, 

couplings C2u, C2d known with uncertainties 
of 300% and 70%, respectively

§ To extract the underlying physics, atomic, 
molecular, and nuclear structure effects must 
be understood
§ Ab initio calculations

3

FIG. 1: Potential nuclear spin-dependent parity violation measurement scheme. (Left) Laser cooled triatomic
molecules are prepared in the first bending mode to access the `-doublet structure, and are launched upward into an
interaction region to form a molecule fountain. Oscillating electric field E drives electric dipole transitions between
states of opposite parity. Magnetic field B tunes to degeneracy a particular pair of opposite-parity states | ±i to
enhance their interaction via the e↵ective parity violating Hamiltonian H

e↵
NSD�PV. Population transfer from the

initial state to the degenerate opposite-parity state is read out by laser spectroscopy after molecules fall back out of
the interaction region. (Right) Stark interference: State transfer (orange) is parity dependent due to the combined
NSD-PV interactions (wavy line) and electric dipole interaction interfering constructively or destructively depending

on the relative orientations of the electron spin, nuclear spin, and molecule axis.

PVDIS/SoLID, a precision NSD-PV measurement in one
of the systems considered here would represent the first
experimental determination of C2u and C2d.

The third contribution, hfs, originates in the nuclear-
spin-independent weak interaction combined with the hy-
perfine interaction [23], and in the single-particle approx-
imation is given by

hfs = �1

3
QW

↵µN

mpr0A
1/3

' 2.5⇥ 10�4
A

2/3
µN , (5)

with µN the magnetic moment of the nucleus and QW

the nuclear weak charge. The hyperfine interaction scales
like A

2/3, similar to the anapole interaction, but due to
the small numerical prefactor is strongly suppressed.

Equations 2 and 3 estimate a and ax respectively in
the single particle (i.e. valence nucleon) limit. This model
ignores nucleon-nucleon interactions (apart from the par-
ity violating e↵ects), and is an especially rough approxi-
mation for nuclei with partially filled shells. In Section III
we use a more sophisticated no-core shell model (NCSM)
[37] to calculate the anapole moments and ax of the 9Be,
13C, 14,15N, and 25Mg nuclei.

We should note another NSD-PV e↵ect produced by
the (tensor-type) interaction between the electrons and
the nuclear weak quadrupole moment. Measurements of
these moments will allow the first determination of the
quadrupole moments of the neutron distribution in nu-

clei and provide a test of the theory of nuclear forces
with applications to nuclei and neutron stars [38–40]. As
with other NSD-PV e↵ects, the e↵ect of the nuclear weak
quadruple moment is expected to be enhanced in certain
systems [41].
Eq. (1) can be rewritten for the 2⌃1/2 and 2⇧1/2 elec-

tronic states [15, 24] as

H
e↵
NSD-PV = WPV

⇣
n̂⇥ Se↵

⌘
· I/I, (6)

where n̂ is the unit vector pointing from the heavier to
the lighter nucleus along the internuclear axis, and Se↵

is the e↵ective spin of the valence electron. In order to
precisely determine the e↵ective coupling constant  from
experiments, the parameter WPV needs to be known with
high accuracy. This parameter depends on the electronic
structure and is specific to the given atom or molecule
and to the electronic state. It is defined by the matrix
element between two di↵erent |⌦i states [42],

WPV ⌘ GFp
2
h+ 1

2 | ⇢(r)↵+ |� 1
2 i (7)

with

↵+ = ↵x + i↵y =

✓
0 �x

�x 0

◆
+ i

✓
0 �y

�y 0

◆
, (8)

where �x and �y are the Pauli matrices and ⇢(r) is the
nuclear density distribution function, which is assumed
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FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. N and e

� label nucleons and
atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

HPV =
GFp
2

X

q

⇣
C

(1)

q
ē�µ�5e q̄�

µ
q + C

(2)

q
ē�µe q̄�

µ
�5q

⌘
,

(32)
where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
(1)

q ; the constants C
(2)

q describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,

C
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p
= 2C(1)
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(1)

d
,
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n
= C

(1)

u
+ 2C(1)

d
,

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle ✓W:

C
(1)

p
=

1

2

�
1� 4 sin2✓W

�
,

C
(1)

n
= �1

2
,

C
(2)

p
= �C

(2)

n
= gAC

(1)

p
,

where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di↵erence between proton and
neutron distributions, we reduce the corresponding part
of HPV to an e↵ective weak Hamiltonian in the electron
sector

HW = QW

GFp
8
�5 ⇢ (r) , (33)

where ⇢ (r) is the nuclear density and QW is a nuclear
weak charge. The non-relativistic limit of the operator
�5 ⇢ (r) is

1

2c
[2⇢(r)(� · p)� i(� ·r⇢)] ,

where p is the linear momentum operator and � are elec-
tron Pauli matrices.
The nuclear weak charge QW entering the e↵ective

weak Hamiltonian is

QW ⌘ 2Z C
(1)

p
+ 2N C

(1)

n
,

where Z and N are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and QW ⇡ �N . This is a “tree-level” [or
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Radioactive Molecule (RadMol) 
experimental program at TRIUMF
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RadMol
a radioactive molecule lab for fundamental physics 

Goal:
dedicated laboratory to study of radioactive molecules
to host 3 experimental stations 
precision studies for searches for new physics
Molecular EDM with unprecedented sensitivity to  nuclear 

T-breaking Schiff moments
provision for expansions into other fields

TRIUMF advantages:
large variety in radioactive ion beams (RIB)
high beamtime availability (3 independent RIBs)
existing laboratory space for large, multi-station program

Current Canadian Team: 
12 faculty and staff physicists

RadMol Collaboration:



1
5

The Case of 223FrAg
• Schiff moment: 

intrinsic enhancement of 107 compared to 199Hg
➡ x1000 improvement on certain CPV-parameters with ‘established’ methods

• ultracold molecule assembled from laser-cooled Fr and Ag atoms

• 223Fr (T1/2=22 min) at ISAC: 1.3 · 107 ions/sec 

• infrastructure and expertise at TRIUMF’s Fr trapping facility

• first exp. goal: measurement of Fr s-wave scattering length
input to form ultracold Fr approaching Bose Einstein Condensate
determined from two-colour photoassociation (2PA)

J Kłos et al., New J. Phys. 24, 025005 (2022)

predicted pathway to
cold, ground state FrAg

Offline MOT setup at UBC to develop 
2PA with low atom number

Awarded US$2.8 million grant by 
Gordon and Betty Moore Foundation 

(led by D. DeMille)

Slide by Stephan Malbrunot-Ettenauer



Charged-ion molecules – ThF+, AcF+, PaF3+

Shift from new physics!

New physics è very tiny shifts of quantum states in molecule.

16

Developing first techniques in 
TRIUMF’s TITAN ion trap facility

Slide by Kia Boon Ng and Stephan Malbrunot-Ettenauer

227ThF+ 
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Ab initio nuclear theory
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Chiral Effective 
Field Theory

(parameters fitted 
to NN data)

First principles or ab initio nuclear theory

Quantum Chromodynamics
(QCD)

Current ab anitio 
nuclear theory

HΨ(A) = EΨ(A)

• Ab initio
² Degrees of freedom: Nucleons  
² All nucleons are active
² Exact Pauli principle
² Realistic inter-nucleon interactions

² Accurate description of NN (and 3N) data

² Controllable approximations



19Chiral Effective Field Theory

§ Inter-nucleon forces from chiral effective field theory
§ Based on the symmetries of QCD

§ Chiral symmetry of QCD (mu»md»0), spontaneously 
broken with pion as the Goldstone boson

§ Degrees of freedom: nucleons + pions
§ Systematic low-momentum expansion to a given order 

(Q/Λχ)
§ Hierarchy
§ Consistency
§ Low energy constants (LEC)

§ Fitted to data
§ Can be calculated by lattice QCD

Lawrence Livermore National Laboratory 4 LLNL#PRES#XXXXXX 

To develop such an ab initio nuclear theory we: 
 1) Start with accurate nuclear forces (and currents) 

+ ... + ... + ... 

NN force NNN force NNNN force 

Q0 

LO 

Q2 

NLO 

Q3 

N2LO 

Q4 

N3LO 

Worked out by Van Kolck, Keiser, 
Meissner, Epelbaum, Machleidt, ... 

"  Two- plus three-nucleon (NN+3N) 
forces from chiral effective field 
theory (EFT) 

 

Λχ~1 GeV : 
Chiral symmetry breaking scale



20Conceptually simplest ab initio method: No-Core Shell Model (NCSM)

§ Basis expansion method
§ Harmonic oscillator (HO) basis truncated in a particular way (Nmax)
§ Why HO basis? 

§ Lowest filled HO shells match magic numbers of light nuclei 
(2, 8, 20 – 4He, 16O, 40Ca)

§ Equivalent description in relative(Jacobi)-coordinate and 
Slater determinant basis

§ Short- and medium range correlations
§ Bound-states, narrow resonances

NCSM

ΨSD
A = cSDNjΦSDNj

HO (!r 1,
!r 2 , ... ,

!r A )
j
∑

N=0

Nmax

∑ =ΨA ϕ000 (
!
RCM )

ΨA = cNiΦNi
HO ( !η 1,

!
η 2 ,...,

!
η A−1)

i
∑

N=0

Nmax

∑

1max += NN
<latexit sha1_base64="nFBDs0FU5EzUfdHPvWKEssg3kK4=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF29GMCawu4TZyWwyZB7LzKwQQj7DiwdFvPo13vwbJ8keNLGgoajqprsryTgz1ve/vdLK6tr6RnmzsrW9s7tX3T94NCrXhLaI4kp3EmwoZ5K2LLOcdjJNsUg4bSfDm6nffqLaMCUf7CijscB9yVJGsHVSGA0SrKM7Qfu4W635dX8GtEyCgtSgQLNb/Yp6iuSCSks4NiYM/MzGY6wtI5xOKlFuaIbJEPdp6KjEgpp4PDt5gk6c0kOp0q6kRTP198QYC2NGInGdAtuBWfSm4n9emNv0Kh4zmeWWSjJflOYcWYWm/6Me05RYPnIEE83crYgMsMbEupQqLoRg8eVl8nhWDy7q/v15rXFdxFGGIziGUwjgEhpwC01oAQEFz/AKb571Xrx372PeWvKKmUP4A+/zBybUkSs=</latexit>
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a b s t r a c t

Motivated by limitations of the Bloch–Horowitz–Brandow perturbative approach to
nuclear structure we have developed the non-perturbative ab initio no core shell model
(NCSM) capable of solving the properties of nuclei exactly for arbitrary nucleon–nucleon
(NN) and NN + three-nucleon (NNN) interactions with exact preservation of all
symmetries. We present the complete ab initio NCSM formalism and review highlights
obtained with it since its inception. These highlights include the first ab initio nuclear-
structure calculations utilizing chiralNNN interactions, which predict the correct low-lying
spectrum for 10B and explain the anomalous long 14C �-decay lifetime. We also obtain the
small quadrupole moment of 6Li. In addition to explaining long-standing nuclear structure
anomalies, the ab initio NCSM provides a predictive framework for observables that are
not yet measured or are not directly measurable. For example, reactions between short-
lived systems and reaction rates near zero energy are relevant to fusion research but may
not be known from experiment with sufficient precision. We, therefore, discuss, in detail,
the extension of the ab initio NCSM to nuclear reactions and sketch a number of promising
future directions for research emerging from theNCSM foundation, including amicroscopic
non-perturbative framework for the theorywith a core. Having a parameter-free approach,
we can construct systems with a core, which will provide an ab initio pathway to heavier
nuclei.
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21Conceptually simplest ab initio method: No-Core Shell Model (NCSM)

§ Basis expansion method
§ Harmonic oscillator (HO) basis truncated in a particular way (Nmax)
§ Why HO basis? 

§ Lowest filled HO shells match magic numbers of light nuclei 
(2, 8, 20 – 4He, 16O, 40Ca)

§ Equivalent description in relative(Jacobi)-coordinate and 
Slater determinant basis

§ Short- and medium range correlations
§ Bound-states, narrow resonances
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Motivated by limitations of the Bloch–Horowitz–Brandow perturbative approach to
nuclear structure we have developed the non-perturbative ab initio no core shell model
(NCSM) capable of solving the properties of nuclei exactly for arbitrary nucleon–nucleon
(NN) and NN + three-nucleon (NNN) interactions with exact preservation of all
symmetries. We present the complete ab initio NCSM formalism and review highlights
obtained with it since its inception. These highlights include the first ab initio nuclear-
structure calculations utilizing chiralNNN interactions, which predict the correct low-lying
spectrum for 10B and explain the anomalous long 14C �-decay lifetime. We also obtain the
small quadrupole moment of 6Li. In addition to explaining long-standing nuclear structure
anomalies, the ab initio NCSM provides a predictive framework for observables that are
not yet measured or are not directly measurable. For example, reactions between short-
lived systems and reaction rates near zero energy are relevant to fusion research but may
not be known from experiment with sufficient precision. We, therefore, discuss, in detail,
the extension of the ab initio NCSM to nuclear reactions and sketch a number of promising
future directions for research emerging from theNCSM foundation, including amicroscopic
non-perturbative framework for the theorywith a core. Having a parameter-free approach,
we can construct systems with a core, which will provide an ab initio pathway to heavier
nuclei.
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22PCTC Chiral NN+3N interaction used in this study

§ Quite reasonable description of binding energies across the nuclear charts becomes feasible
§ The Hamiltonian fully determined in A=2 and A=3,4 systems

§ Nucleon–nucleon scattering, deuteron properties, 3H and 4He binding energy, 3H half life
§ Light nuclei – NCSM
§ Medium mass nuclei – Self-Consistent Green’s Function method 
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FIG. 21. Ratio of expectation values of three- (V3N) and
two-body (V2N) operators in the NNLOsat and NN+3N(lnl)
Hamiltonians. For the latter, the two-body part of the
centre-of-mass kinetic energy has been subtracted. For the
NN+3N(lnl) interaction, V3N contains original (i.e. SRG-
unevolved) three-body forces while induced three-body op-
erators have been included in V2N. Calculations are per-
formed at the ADC(2) level. Results are shown for N =
Z = {2, 8, 16, 20, 24, 40} nuclei (full symbols), plus 48S and
78Ni (empty symbols).

applied only to specific cases [18, 54], but never tested
in a systematic way. In the present work its main
ground-state properties as well as some selected excita-
tion spectra have been studied extensively in light and
medium-mass nuclei. Results in light systems are very
encouraging, with NCSM calculations in overall good
agreement with experiment even for spectra that are
known to be particularly sensitive to nuclear forces. To-
tal energies are well reproduced across the whole light
sector of the nuclear chart. In medium-mass nuclei,
present calculations focused on three representative iso-
topic chains. Total binding energies are found to be in
remarkable agreement with experimental values all the
way up to nickel isotopes once ADC(3) correlations are
included, thus correcting for the overbinding generated
with NN+3N(400). ADC(2) calculations of di↵erential
quantities, where ADC(3) contributions essentially can-
cel out, are also very satisfactory and are able to cap-
ture main trends and magic gaps in two-neutron sepa-
ration energies along all three chains. As evidenced in
Fig. 20, although largely improving on NN+3N(400),
rms charge radii obtained with the NN+3N(lnl) inter-
action still underestimate experiment and do not reach
the quality of NNLOsat. On the other hand this interac-
tion yields an excellent spectroscopy, also where NNLOsat

strives to give even a qualitatively correct account of
experimental data. One-nucleon addition and removal
spectra in neutron-rich calcium are well reproduced. Im-
pressively, the evolution of the energy di↵erences between
the ground and first excited states along potassium iso-
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FIG. 22. Binding energy per particle for a set of doubly
closed-shell nuclei computed with three di↵erent NN + 3N
interactions and compared to available experimental data.
NNLOsat andNN+3N(lnl) values come from the present work
and refer to ADC(3) calculations. 1.8/2.0 (EM) results were
obtained via full-space IM-SRG(2) calculations and originally
published in Ref. [30].

topes follows closely the experimental measurements.
Further insight can be gained by gauging the impor-

tance of 3N operators in the two interactions. In Fig. 21
the ratio of 3N over 2N contributions to the total en-
ergy is displayed for a selection of nuclei as a function of
mass number A for NNLOsat and NN+3N(lnl). In the
former, 3N operators are much more relevant, reaching
almost 20% of the 2N contribution in heavier systems.
On the contrary, the ratio stays rather low, around 5%,
for NN+3N(lnl). This has first of all practical conse-
quences, as in the majority of many-body calculations
the treatment of 3N operators is usually not exact, fol-
lowing either a normal-ordered two-body approximation
(see e.g. [27]) or some generalisation of it [70]. Hence a
strong 3N component is in general not desirable. On top
of that, one might worry about the hierarchy of many-
body forces from the standpoint of EFT, and possible
need to include subleading 3N or 4N operators that could
have a sizeable e↵ect.
Finally, let us compare NN+3N(lnl) and NNLOsat to

an interaction that has been extensively employed in nu-
clear structure studies in the last few years. Usually la-
belled as 1.8/2.0 (EM) and first introduced in Ref. [32], it
has proven to yield an accurate reproduction of ground-
state energies (as well as low-energy excitation spectra)
over a wide range of nuclei [30, 54, 112, 113]. Further-
more, it leads to a satisfactory description of infinite nu-
clear matter properties [11, 32, 114]. In Fig. 22 bind-
ing energies per particle obtained within in-medium simi-
larity renormalisation group (IM-SRG) calculations with
the 1.8/2.0 (EM) interaction [30] are compared, for a
set of closed-shell systems, to the ones computed at the
ADC(3) level withNN+3N(lnl) and NNLOsat. The three
sets of calculations achieve an overall excellent reproduc-
tion of experimental data. While NNLOsat results supe-

5

0

1

2

3

4

5

6

7

8

9

10

11

12

E x [M
eV

]

11B

NN+3N(lnl)

2h- Ω 4h- Ω 6h- Ω 8h- Ω Expt
3/2-

1/2-

5/2-
3/2-

7/2-

5/2-

1/2-

3/2-

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

E x [M
eV

]

12C
NN+3N(lnl)

2h- Ω 4h- Ω 6h- Ω 8h- Ω Expt
0+ 0

2+ 0

1+ 0
4+ 0

0+ 0

2+ 0
1+ 1

2+ 1
0+ 1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

E x [M
eV

]

13C

NN+3N(lnl)

2h- Ω 4h- Ω 6h- Ω 8h- Ω Expt
1/2-

3/2-

5/2-
1/2-
3/2-
7/2-

3/2- 3/2

FIG. 3. The same as in Fig. 1 for 11B and 12,13C. Basis sizes Nmax=2�8 are displayed. The importance-truncated NCSM [52, 53]
was used in the Nmax=8 space for carbon isotopes.

p-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of A nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric A-nucleon harmonic oscillator
(HO) states. The basis contains up to Nmax HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter ⌦,
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2N
and 3N interactions [58–62]. Except for A=3, 4 nuclei,
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FIG. 4. Ground-state energies of s-shell and selected p-
shell nuclei calculated with theNN+3N(lnl) Hamiltonian (red
lines) compared to experiment (blue lines). The error bars
indicate uncertainties of the NCSM extrapolation. SRG evo-
lution with �=2 fm�1 and HO frequency of ~⌦=20 MeV were
used.

here and in the following of the paper an SRG evolution
is applied to the NN+3N(400) and NN+3N(lnl) inter-
actions down to a scale of �=2 fm�1. On the contrary,
calculations with NNLOsat are performed with the bare
Hamiltonian.

In Figs. 1, 2 and 3 the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely 6,7,9Li and
8,9Be. The 2+0 and 1+2 0 states in 6Li as well as some
of the excited states in 7Li and 8,9Be are broad reso-
nances. Here a more realistic description of 6Li and 9Be
would require a better treatment of continuum e↵ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of 6Li are unbound with
respect to the emission of an ↵ particle and that 7Li has
only one excited state below the ↵-separation threshold.
Similarly, 8Be is never bound and even its ground state
in unstable against decay into two ↵. The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3N interaction in particular [65].
Here a good description is achieved by NN+3N(lnl), with
only the 1+2 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of T=1 states in 12C, also known to be sensitive to the 3N
interaction. On the other hand, the alpha-cluster dom-
inated 0+0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3N(lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in 9Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3N forces (see, e.g. [65]).

Ground-state energies of 3H, 3,4He, and selected p-shell
nuclei from 6He to 16O are shown in Fig. 4. The calcu-
lated values (red lines) obtained with theNN+3N(lnl) in-
teraction are compared to experiment (blue lines). Theo-

1.8/2.0 (EM) results: J. Simonis, S. R. Stroberg, K. Hebeler, 
J. D. Holt, and A. Schwenk, Phys. Rev. C 96, 014303 (2017). 
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Background: Recent advances in nuclear structure theory have led to the availability of several complementary
ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After
successful benchmarks of different approaches, the focus is moving to the development of improved models
of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of
nuclear systems. In particular, none of the existing two- plus three-body interactions is capable of satisfactorily
reproducing all the observables of interest in medium-mass nuclei.
Purpose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.
Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and
successful) two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting
potential is labeled NN+ 3N(lnl). The objective of the present work is to investigate the performance of this
new Hamiltonian across light and medium-mass nuclei.
Methods: Binding energies, nuclear radii, and excitation spectra are computed using state-of-the-art no-core
shell model and self-consistent Green’s function approaches. Calculations with NN+ 3N(lnl) are compared to
two other representative Hamiltonians currently in use, namely NNLOsat and the older NN+ 3N (400).
Results: Overall, the performance of the novel NN+ 3N(lnl) interaction is very encouraging. In light nuclei, total
energies are generally in good agreement with experimental data. Known spectra are also well reproduced with
a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way
from oxygen to nickel isotopes. Except for those involving excitation processes across the N = 20 gap, which is
overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with
NNLOsat. Although largely improving on NN+ 3N (400) results, charge radii calculated with NN+ 3N(lnl) still
underestimate experimental values, as opposed to the ones computed with NNLOsat that successfully reproduce
available data on nickel.
Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a
promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being
adjusted solely on A = 2, 3, 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent
reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well
under similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus
allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear
radii persists and will necessitate novel developments.
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I. INTRODUCTION

In the past decade, advances in many-body approaches and
internucleon interactions have enabled significant progress in
ab initio calculations of nuclear systems. At present, sev-
eral complementary methods to solve the (time-independent)
many-body Schrödinger equation are available, tailored to
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either light systems [1,2], medium-mass nuclei [3–8], or
extended nuclear matter [9–11]. New developments, which
promise to extend (most of) these methods to higher accuracy
and/or heavy nuclei, are being currently proposed [12,13].

Over the past few years, benchmark calculations have
allowed assessment of the systematic errors associated with
both the use of a necessarily finite-dimensional Hilbert space
and the truncation of the many-body expansion at play in each
of the formalisms of interest. In state-of-the-art implemen-
tations, these errors add up to at most 5%, much less than
the uncertainty attributable to the input nuclear Hamiltonian
[14–18]. As a result, ab initio calculations have also acquired
the role of diagnostic tools as the focus of the community
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§ Quite reasonable description of binding energies across the nuclear charts becomes feasible
§ The Hamiltonian fully determined in A=2 and A=3,4 systems

§ Nucleon–nucleon scattering, deuteron properties, 3H and 4He binding energy, 3H half life
§ Light nuclei – NCSM
§ Medium mass nuclei – Self-Consistent Green’s Function method 
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FIG. 3. The same as in Fig. 1 for 11B and 12,13C. Basis sizes Nmax=2�8 are displayed. The importance-truncated NCSM [52, 53]
was used in the Nmax=8 space for carbon isotopes.

p-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of A nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric A-nucleon harmonic oscillator
(HO) states. The basis contains up to Nmax HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter ⌦,
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2N
and 3N interactions [58–62]. Except for A=3, 4 nuclei,
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shell nuclei calculated with theNN+3N(lnl) Hamiltonian (red
lines) compared to experiment (blue lines). The error bars
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lution with �=2 fm�1 and HO frequency of ~⌦=20 MeV were
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here and in the following of the paper an SRG evolution
is applied to the NN+3N(400) and NN+3N(lnl) inter-
actions down to a scale of �=2 fm�1. On the contrary,
calculations with NNLOsat are performed with the bare
Hamiltonian.

In Figs. 1, 2 and 3 the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely 6,7,9Li and
8,9Be. The 2+0 and 1+2 0 states in 6Li as well as some
of the excited states in 7Li and 8,9Be are broad reso-
nances. Here a more realistic description of 6Li and 9Be
would require a better treatment of continuum e↵ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of 6Li are unbound with
respect to the emission of an ↵ particle and that 7Li has
only one excited state below the ↵-separation threshold.
Similarly, 8Be is never bound and even its ground state
in unstable against decay into two ↵. The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3N interaction in particular [65].
Here a good description is achieved by NN+3N(lnl), with
only the 1+2 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of T=1 states in 12C, also known to be sensitive to the 3N
interaction. On the other hand, the alpha-cluster dom-
inated 0+0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3N(lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in 9Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3N forces (see, e.g. [65]).

Ground-state energies of 3H, 3,4He, and selected p-shell
nuclei from 6He to 16O are shown in Fig. 4. The calcu-
lated values (red lines) obtained with theNN+3N(lnl) in-
teraction are compared to experiment (blue lines). Theo-
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Background: Recent advances in nuclear structure theory have led to the availability of several complementary
ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After
successful benchmarks of different approaches, the focus is moving to the development of improved models
of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of
nuclear systems. In particular, none of the existing two- plus three-body interactions is capable of satisfactorily
reproducing all the observables of interest in medium-mass nuclei.
Purpose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.
Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and
successful) two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting
potential is labeled NN+ 3N(lnl). The objective of the present work is to investigate the performance of this
new Hamiltonian across light and medium-mass nuclei.
Methods: Binding energies, nuclear radii, and excitation spectra are computed using state-of-the-art no-core
shell model and self-consistent Green’s function approaches. Calculations with NN+ 3N(lnl) are compared to
two other representative Hamiltonians currently in use, namely NNLOsat and the older NN+ 3N (400).
Results: Overall, the performance of the novel NN+ 3N(lnl) interaction is very encouraging. In light nuclei, total
energies are generally in good agreement with experimental data. Known spectra are also well reproduced with
a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way
from oxygen to nickel isotopes. Except for those involving excitation processes across the N = 20 gap, which is
overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with
NNLOsat. Although largely improving on NN+ 3N (400) results, charge radii calculated with NN+ 3N(lnl) still
underestimate experimental values, as opposed to the ones computed with NNLOsat that successfully reproduce
available data on nickel.
Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a
promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being
adjusted solely on A = 2, 3, 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent
reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well
under similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus
allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear
radii persists and will necessitate novel developments.
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In the past decade, advances in many-body approaches and
internucleon interactions have enabled significant progress in
ab initio calculations of nuclear systems. At present, sev-
eral complementary methods to solve the (time-independent)
many-body Schrödinger equation are available, tailored to
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either light systems [1,2], medium-mass nuclei [3–8], or
extended nuclear matter [9–11]. New developments, which
promise to extend (most of) these methods to higher accuracy
and/or heavy nuclei, are being currently proposed [12,13].

Over the past few years, benchmark calculations have
allowed assessment of the systematic errors associated with
both the use of a necessarily finite-dimensional Hilbert space
and the truncation of the many-body expansion at play in each
of the formalisms of interest. In state-of-the-art implemen-
tations, these errors add up to at most 5%, much less than
the uncertainty attributable to the input nuclear Hamiltonian
[14–18]. As a result, ab initio calculations have also acquired
the role of diagnostic tools as the focus of the community
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FIG. 2. The same as in Fig. 1 for 8,9Be and 10B. Basis sizes Nmax = 2–8 are displayed.

are compared to experiment (blue lines). Theoretical error
bars represent the NCSM extrapolation uncertainty. Over-
all, experimental data are very reasonably reproduced, with
differences of at most a few percent. The agreement is the
best for Tz = 0 and |Tz| = 1/2 nuclei. Some deficiency of
the interaction is observed with increasing |Tz|; for example,
while 4He is in perfect agreement with experiment, the 6He
and 8He are barely bound. Note, however, that, again, a
proper treatment of continuum effects, not included here, is
likely to provide additional binding to systems close to the
dripline [46]. Overall, the performance of the NN + 3N(lnl)
Hamiltonian in light nuclei is very encouraging.

IV. MEDIUM-MASS NUCLEI

A. Self-consistent Green’s function theory

In standard, i.e., Dyson, self-consistent Green’s func-
tion theory (DSCGF) [3,68], the solution of the A-body
Schrödinger equation is achieved via its rewriting in terms of
one-, two-,..., A-body objects named propagators or, indeed,
Green’s functions (GFs). Green’s functions are expanded in a
perturbative series, which in self-consistent schemes is recast
in terms of the exact GFs so that a large portion of nonskeleton
diagrams are implicitly resummed. One is mostly interested

in the one-body Green’s function since this provides access to
all one-body observables and to the ground-state energy via
the so-called Galitskii-Migdal-Koltun sum rule [69,70]. The
latter can be properly generalized to account for three-body
forces [71]. In addition, the one-body GF contains informa-
tion on neighboring nuclei. Specifically, the residues from
its Lehmann representation are related to transition matrix
elements for one-nucleon addition and removal, while the
poles give direct access to ground and excited states of (A ±
1)-nucleon systems. Note that in all calculations the intrinsic
form of the Hamiltonian is employed; i.e., the center-of-mass
kinetic energy is subtracted from the start. Since the latter
depends on the number of nucleons at play, different cal-
culations are performed with the Hamiltonian corresponding
to mass number A or A ± 1 depending on whether ground-
state quantities or nucleon addition or removal spectra are
computed, as detailed in Ref. [72].

The one-body GF is obtained by solving the Dyson equa-
tion that is intrinsically nonperturbative and in which the
irreducible self-energy encodes all nontrivial many-body cor-
relations arising from the interactions of a nucleon with
the nuclear medium. The self-energy is particularly impor-
tant since it encodes information on both the A-nucleon
ground state and the scattering states of the A + 1 system.

FIG. 3. The same as in Fig. 1 for 11B and 12,13C. Basis sizes Nmax = 2–8 are displayed. The importance-truncated NCSM [62,63] was used
in the Nmax = 8 space for carbon isotopes.
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p-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of A nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric A-nucleon harmonic oscillator
(HO) states. The basis contains up to Nmax HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter ⌦,
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2N
and 3N interactions [58–62]. Except for A=3, 4 nuclei,

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

E gs
 [M

eV
]

3H
3He

4He 6Li
6He

7Li
7Be

8He

8Be

9Li

9Be
10Be

10B
10C

11B

12C 13C
14C 14N

14O

16O

NN+3N(lnl) Expt

FIG. 4. Ground-state energies of s-shell and selected p-
shell nuclei calculated with theNN+3N(lnl) Hamiltonian (red
lines) compared to experiment (blue lines). The error bars
indicate uncertainties of the NCSM extrapolation. SRG evo-
lution with �=2 fm�1 and HO frequency of ~⌦=20 MeV were
used.

here and in the following of the paper an SRG evolution
is applied to the NN+3N(400) and NN+3N(lnl) inter-
actions down to a scale of �=2 fm�1. On the contrary,
calculations with NNLOsat are performed with the bare
Hamiltonian.

In Figs. 1, 2 and 3 the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely 6,7,9Li and
8,9Be. The 2+0 and 1+2 0 states in 6Li as well as some
of the excited states in 7Li and 8,9Be are broad reso-
nances. Here a more realistic description of 6Li and 9Be
would require a better treatment of continuum e↵ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of 6Li are unbound with
respect to the emission of an ↵ particle and that 7Li has
only one excited state below the ↵-separation threshold.
Similarly, 8Be is never bound and even its ground state
in unstable against decay into two ↵. The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3N interaction in particular [65].
Here a good description is achieved by NN+3N(lnl), with
only the 1+2 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of T=1 states in 12C, also known to be sensitive to the 3N
interaction. On the other hand, the alpha-cluster dom-
inated 0+0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3N(lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in 9Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3N forces (see, e.g. [65]).

Ground-state energies of 3H, 3,4He, and selected p-shell
nuclei from 6He to 16O are shown in Fig. 4. The calcu-
lated values (red lines) obtained with theNN+3N(lnl) in-
teraction are compared to experiment (blue lines). Theo-
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Background: Recent advances in nuclear structure theory have led to the availability of several complementary
ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After
successful benchmarks of different approaches, the focus is moving to the development of improved models
of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of
nuclear systems. In particular, none of the existing two- plus three-body interactions is capable of satisfactorily
reproducing all the observables of interest in medium-mass nuclei.
Purpose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.
Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and
successful) two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting
potential is labeled NN+ 3N(lnl). The objective of the present work is to investigate the performance of this
new Hamiltonian across light and medium-mass nuclei.
Methods: Binding energies, nuclear radii, and excitation spectra are computed using state-of-the-art no-core
shell model and self-consistent Green’s function approaches. Calculations with NN+ 3N(lnl) are compared to
two other representative Hamiltonians currently in use, namely NNLOsat and the older NN+ 3N (400).
Results: Overall, the performance of the novel NN+ 3N(lnl) interaction is very encouraging. In light nuclei, total
energies are generally in good agreement with experimental data. Known spectra are also well reproduced with
a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way
from oxygen to nickel isotopes. Except for those involving excitation processes across the N = 20 gap, which is
overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with
NNLOsat. Although largely improving on NN+ 3N (400) results, charge radii calculated with NN+ 3N(lnl) still
underestimate experimental values, as opposed to the ones computed with NNLOsat that successfully reproduce
available data on nickel.
Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a
promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being
adjusted solely on A = 2, 3, 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent
reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well
under similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus
allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear
radii persists and will necessitate novel developments.

DOI: 10.1103/PhysRevC.101.014318

I. INTRODUCTION

In the past decade, advances in many-body approaches and
internucleon interactions have enabled significant progress in
ab initio calculations of nuclear systems. At present, sev-
eral complementary methods to solve the (time-independent)
many-body Schrödinger equation are available, tailored to

*vittorio.soma@cea.fr
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either light systems [1,2], medium-mass nuclei [3–8], or
extended nuclear matter [9–11]. New developments, which
promise to extend (most of) these methods to higher accuracy
and/or heavy nuclei, are being currently proposed [12,13].

Over the past few years, benchmark calculations have
allowed assessment of the systematic errors associated with
both the use of a necessarily finite-dimensional Hilbert space
and the truncation of the many-body expansion at play in each
of the formalisms of interest. In state-of-the-art implemen-
tations, these errors add up to at most 5%, much less than
the uncertainty attributable to the input nuclear Hamiltonian
[14–18]. As a result, ab initio calculations have also acquired
the role of diagnostic tools as the focus of the community

2469-9985/2020/101(1)/014318(19) 014318-1 ©2020 American Physical Society
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One-body contribution from nucleon EDMs easily evaluated
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0.1hsp,zi+0.1hsn,zi. The spin operator matrix elements
are defined as

hs⌫,zi⌘h gs I
⇡
Iz=I|ŝ⌫,z| gs I

⇡
Iz=Ii, (15)

with ⌫=p, n.
Our results for the anapole moment coupling constants

A and ax in 9Be, 13C, 14,15N and 25Mg are summarised
in Table I. Overall, the basis size convergence of the re-
sults is quite reasonable, as shown in Fig. 2 presenting
dependence of A of 9Be on the NCSM basis size charac-
terised by Nmax. We can thus evaluate the uncertainties
due to the basis size convergence at about 10% (25% for
25Mg). The other sources of uncertainty are renormaliza-
tion and incompleteness of the transition operators and
uncertainties due to the description of nuclear and the
parity non-conserving forces.

In Table I, we also present NCSM results for magnetic
moments, where we can compare our results with exper-
imental values. Overall, we find a qualitative agreement
with experiment with some underestimation of absolute
values. This is not surprising, as the present calculations
included only the one-body M1 operator. It is well estab-
lished that two-body currents contribute non-negligibly
to M1 matrix elements in light nuclei [57]. While the
dominant sources of uncertainty are di↵erent for the cal-
culated dipole moments and the NSD-PV parameters, we
can still use the deviation of the former from experiment
as a rough estimate of the accuracy of the calculations of
the latter.

Table I also contains the single particle model esti-
mates of the di↵erent contributions to NSD parity violat-
ing constant  = A+ax+hfs obtained using equations
(2-5) for nuclei in molecules considered in the present
work. Note that the 14N nucleus contains a valence pro-
ton and a valence neutron, both in the p1/2 orbital with
K = 1. The nuclear magnetic moment µN =0.404 is
given, to a good accuracy, by the sum of the magnetic mo-
ments of 13C (with valence p1/2 neutron) and 15N (with
valence p1/2 proton). Therefore, we took the sum of the
valence proton and neutron contributions for the other
constants.

The NCSM A results are higher in absolute values
than the single particle model ones by a factor of 2–3,
except for 14N. The largest di↵erences are found in the
mid-shell nuclei 9Be, 13C and 25Mg, for which the single-
particle model has limited applicability. The 14N anapole
moment is proportional to the sum of the 15N and 13C
anapole moments that have opposite signs and conse-
quently it is particularly sensitive to the V PNC

NN parametri-
sation and the other computational details.

The NCSM ax results are close to the single-particle
model for 13C and 15N while they di↵er more substan-
tially for the mid-shell 9Be and 25Mg. For 14N, the ax'0
as hsp,zi'hsn,zi.

The results obtained within the single particle model
predict that the Z boson exchange constant ax domi-
nates for the light nuclei containing a valence neutron,
that is 25Mg, 13C, and 9Be are significantly more sensi-

9Be 13C 14N 15N 25Mg
I⇡ 3/2� 1/2� 1+ 1/2� 5/2+

µexpt -1.177 0.702 0.404 -0.283 -0.855
NCSM calculations

µ -1.05 0.44 0.37 -0.25 -0.50
A 0.016 -0.028 0.036 0.088 0.035
hsp,zi 0.009 -0.049 -0.183 -0.148 0.06
hsn,zi 0.360 -0.141 -0.1815 0.004 0.30
ax 0.035 -0.019 0.0002 0.015 0.024
 0.050 -0.046 0.037 0.103 0.057

Single particle model calculations
V. p. n n n, p p n
V. o. p3/2 p1/2 p1/2 p1/2 d5/2
K -2 1 1 1 -3
A 0.007 -0.007 0.035 0.044 0.014
ax 0.050 -0.017 0.0 0.017 0.050
hfs -0.001 0.001 0.0006 -0.0004 -0.002
 0.056 -0.023 0.036 0.060 0.062

TABLE I: Magnetic moments (in µN), anapole
moment coupling constants, spin operator matrix
elements, and ax coupling constants for 9Be, 13C,

14,15N and 25Mg obtained within NCSM. The results
obtained using the single particle model are also shown,
along with the valence particle (V.p.) and the valence

orbital (V.o) for each nucleus.

1 3 5 7 9 11
Nmax

0

0.005

0.01

0.015

0.02

0.025

0.03

κ A

NCSM 
SP model9Be

FIG. 2: Dependence of the anapole moment coupling
constant A for 9Be on the size of the NCSM basis

characterized by Nmax. The dashed line represents A
obtained in the single-particle model.

tive to ax, while in the 14N and 15N nuclei the anapole
moment e↵ect dominates. However, a di↵erent picture
emerges from the NCSM calculations: ax still domi-
nates in 9Be, while 14N and 15N are more sensitive to
the anapole moments, and 25Mg and 13C have roughly
the same sensitivities to the two e↵ects. Furthermore,
within the single particle model, the total NSD-PV ef-
fect is roughly equivalent in 9Be, 15N, 25Mg, while the

26

e e

Z 0

Ae

VN

e e

Z 0

AN

Ve
e e e e

Z 0

Ae

VN

(a) (c)(b) (d)

(( ( ( ( ( ( (

FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. N and e

� label nucleons and
atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

HPV =
GFp
2

X

q

⇣
C

(1)

q
ē�µ�5e q̄�

µ
q + C

(2)

q
ē�µe q̄�

µ
�5q

⌘
,

(32)
where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
(1)

q ; the constants C
(2)

q describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,

C
(1)

p
= 2C(1)

u
+ C

(1)

d
,

C
(1)

n
= C

(1)

u
+ 2C(1)

d
,

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle ✓W:

C
(1)

p
=

1

2

�
1� 4 sin2✓W

�
,

C
(1)

n
= �1

2
,

C
(2)

p
= �C

(2)

n
= gAC

(1)

p
,

where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di↵erence between proton and
neutron distributions, we reduce the corresponding part
of HPV to an e↵ective weak Hamiltonian in the electron
sector

HW = QW

GFp
8
�5 ⇢ (r) , (33)

where ⇢ (r) is the nuclear density and QW is a nuclear
weak charge. The non-relativistic limit of the operator
�5 ⇢ (r) is

1

2c
[2⇢(r)(� · p)� i(� ·r⇢)] ,

where p is the linear momentum operator and � are elec-
tron Pauli matrices.
The nuclear weak charge QW entering the e↵ective

weak Hamiltonian is

QW ⌘ 2Z C
(1)

p
+ 2N C

(1)

n
,

where Z and N are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and QW ⇡ �N . This is a “tree-level” [or

2

possible to measure NSD-PV e↵ects in all three nuclei of
these molecules, which would allow the various underly-
ing parity violating e↵ects to be deconvolved.

Light triatomic molecules are especially attractive can-
didates for precision measurements of NSD-PV. Proper
interpretation of an NSD-PV measurement relies on
accurate molecular and nuclear structure parameters.
High-accuracy theoretical determination of the molecu-
lar properties becomes more computationally tractable
for lighter systems, and, even more importantly, nuclear
calculations are significantly more accurate and more re-
liable than in heavy elements. Here, we perform rig-
orous, high accuracy calculations of the molecular and
nuclear parameters required to interpret NSD-PV mea-
surements in molecules composed of light elements Be,
C, N, and Mg. We find that the parameters characteriz-
ing the molecule-specific sensitivity are in line with those
of isoelectronic diatomic molecules [19, 20], as well as
prior semiemprical estimates [18, 21]. However, our ab
initio nuclear calculations find the nuclear anapole mo-
ment interactions to be much stronger (typically 2 to 3
times larger) than predicted by a standard single-particle
model [7, 8, 22, 23], while NSD-PV e↵ects attributed
to Z boson exchange are typically reduced. This high-
lights the necessity of including many-body e↵ects for
correctly interpreting NSD-PV measurements, even in
light nuclear systems. Moreover, the Be and Mg cyanide
and isocyanide molecules considered here have favorable
laser cooling and trapping properties which are essential
to enabling high-sensitivity measurements through long
interaction time.

II. THEORY

The NSD-PV interaction with the atomic or molecular
electrons can be defined by the following e↵ective Hamil-
tonian [8, 24],

H
e↵
NSD-PV =

GFp
2

⇣↵ · I
I

⌘
⇢(r), (1)

where GF is the Fermi weak interaction coupling con-
stant. The Dirac matrices ↵ are defined in the usual
way, I is the nuclear spin, and ⇢(r) is the nuclear den-
sity distribution function normalized to 1.

In a given nucleus, various underlying electroweak in-
teractions contribute to the total NSD-PV e↵ect:  =
A + ax + hfs. In this section, we proceed by consider-
ing each of these three terms in turn, then explore how
to evaluate Eq. (1) in a molecular system.

The e↵ective coupling constant A describes the
strength of the nuclear anapole moment interaction. In
a simple valence nucleon model, A takes the following
form [8, 24],

A =
9

10

↵µ⌫

mPr0
g⌫A

2/3 K

I + 1

' 1.15⇥ 10�3
g⌫µ⌫A

2/3 K

I + 1
,

(2)

where ↵ ' 1/137 is the fine structure constant, mP is
the proton mass, r0 ' 1.2 fm is the scale of the nuclear
radius, µ⌫ (µp=2.8 for proton, µp=-1.9 for neutron) is
the nucleon magnetic moment in nuclear magnetons, A
is the mass number, and K = (I + 1/2)(�1)I�`⌫+1/2,
with l⌫ being the orbital angular momentum of the ex-
ternal unpaired nucleon. The anapole contribution also
depends on the poorly-known dimensionless constants g⌫
(⌫ = p, n), which characterize the nucleon-nucleus weak
potential. In Refs. [8, 25] these constants were expressed
in terms of the meson exchange model, and in Ref. [26]
the results based on di↵erent calculations of the meson-
nucleon interactions are presented. Using the most recent
experimental data [27], the authors of Ref. [26] obtained
gp = 3.4 ± 0.8 and gn = 0.9 ± 0.6. In the following, we
will use central points gp = 3.4 and gn = 0.9 for the nu-
merical estimates. We note that this updated estimate
of gn has opposite sign compared to the one used in ear-
lier molecule NSD-PV considerations [18, 28]. One of the
aims of the measurements of NSD-PV e↵ects is to extract
the accurate values of these constants.
The nuclear anapole moment of 133Cs was confirmed

at a 7� significance level by Wood et al., with the value
of A ' 0.392 ± 0.056 [5]. A more accurate theorecti-
cal treatment performed after the experiment obtained
a similar value [25]. Further NSD-PV measurements in
Cs with improved accuracy have been proposed [29, 30],
and additional experiments have been designed to mea-
sure the anapole moment in other atoms with unpaired
nucleons, such as 137Ba (using the BaF molecule) [15],
163Dy [31], 171Yb [32], and 212Fr [33].

The second contribution, ax, is associated with the Z
exchange interaction between the electron vector and the
nucleon axial-vector currents (VeAN ) [9]; the magnitude
of ax within the nuclear shell model is defined as [7]

ax = C2
1/2�K

I + 1
, (3)

where C2 represents the VeAN coupling and takes the
value C2 ⌘ �C2p for proton and C2 ⌘ �C2n for neutron
[34]. Here, C2p and C2n are given by

C2p = �C2n = gA(1� 4 sin2 ✓W )/2 ' 0.05, (4)

with gA ' 1.26 being a scale factor accounting for the
partially conserved axial vector current, and sin2✓W =
0.23126(5) [35].
The PVDIS experiment [10] combined with the Cs

PV measurement [5] provides the best determination
to date of the linear combination 2C2u � C2d (u and
d standing for the up and the down quarks, respec-
tively) with a 50% uncertainty, with substantial improve-
ment expected from the upcoming SoLID experiment
[11]; the orthogonal quadrature is currently known with
several times less precision. Measurements of NSD-PV
in light molecule systems are highly complimentary to
the on-going scattering-based measurements. Because
9Be and 25Mg possess an unpaired neutron, measure-
ments of NSD-PV in these nuclei are primarily sensi-
tive to C2n ' �0.4C2u + 0.8C2d [36]. Combined with

ax ' �2C2phsp,zi � 2C2nhsn,zi ' �0.1hsp,zi+ 0.1hsn,zi

<latexit sha1_base64="S8PyppkZ4qBjgkSaOwRyBVsi4us="></latexit>

Similarly, the Z-boson exchange between nucleon axial-vector and electron-vector currents is easily calculated
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PARITY VIOLATING NUCLEAR FORCE 485 
Our predictions for the weak coupling constantsf, , h, 011V2 and /r>l have been described 
in previous sections, and will be summarized again in the next section. In order to 
avoid any ambiguity as to conventions involved in the definitions of &‘P.c. and 
S’D.“., we also give the expression of the NN potential which results from the above 
exchanges in the nonrelativistic limit 

l,p.~. _ .hgnNN i +l x +2 
12 2112 ( 2 

_ g, (&oi, . +, + &l ( +1 ; +2 )z + /j,2 (3Tl”T;(6;l,~ * +2) ) 

+ ..+ 
x (4 - &J * p12-Mp2 

I ,.&(r)j + i(l + XA 6 X 62 * [ '12>j2 ,M)] 

- g, (h,O + h,l ( ill i2 )‘) 

where 

.txr) = z 3 

(11% 

(116) A(r) =fw(r) = s. 
The strong coupling constants are assumed to be positive. 

In the comparison with experiment, corrections to the potential due to 27r exchange 
will be neglected. They have been found to be negligible for the Al = 0 and 2 parts 
of the potential where they modify slightly the radial shape of the p exchange potential 
[41]. For the d1= 1 part, they involve new components which correspond to the 
exchange of 27r in a P state, and since this is the quantum number of the pparticle, 
some double counting may occur. Examination of our results shows that the 27~ 
exchange contribution induced by the weak rrNN interaction and the p exchange 
contribution which arises from the same process at the quark level may be comparable 
in sign and magnitude. This result, which is not surprising in a picture where rNN 
and pNN p.n.c. coupling constants have been derived as consistently as possible, 
indicates that the above potential probably takes into account most of the 27r 
exchange contributions. While it is difficult to make a precise statement about the 
contribution of other exchanges involving several mesons, it is reasonable to expect 
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We discuss the weak amplitudes which determine the parity violating nuclear force. 
By use of the quark model and the SU(6), symmetry, we unite the treatment of pion and 
vector meson vertices, and describe the interrelation of past techniques which have been 
applied to this problem. This allows us to catalog the uncertainties in the amplitudes, and 
to provide reasonable bounds on their values. The connection of OUT results with experiment 
is also discussed. 

I. INTRODUCTION 

Although many properties of the weak interaction are presently under scrutiny 
via studies at the very highest-energy accelerators, there is also a great deal of interest 
in experiments which probe the weak force via low-energy, parity violating nuclear 
processes [I]. Although a substantial experimental as well as theoretical effort has been 
exerted in this field for well over a decade, we are still far from a trenchant under- 
standing of such reactions. 

The reasons for this are simple. On the experimental side, effects, such as detection 
of circular polarization in an electromagnetic decay of a nuclear state, are expected 
to be very small-roughly at the level 5 lo- p/M, where p is a typical nucleon 
momentum and M is the nucleon mass. Thus experiments are extraordinarily difficult 
and must be carefully screened for systematic biases. On the theoretical end the 
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Parity-violating and time-reversal conserving (PVTC) and parity-violating and

time-reversal-violating (PVTV) forces in nuclei form only a tiny component of the

total interaction between nucleons. The study of these tiny forces can nevertheless

be of extreme interest because they allow one to obtain information on fundamental

symmetries using nuclear systems. The PVTC interaction derives from the weak

interaction between the quarks inside nucleons and nuclei, therefore the study of PVTC

effects opens a window on the quark-quark weak interaction. The PVTV interaction is

sensitive to more exotic interactions at the fundamental level, in particular to strong CP

violation in the Standard Model Lagrangian, or even to exotic phenomena predicted

in various beyond-the-Standard-Model scenarios. The presence of these interactions

can be revealed either by studying various asymmetries in polarized scattering of

nuclear systems, or by measuring the presence of non-vanishing permanent electric

dipole moments of nucleons, nuclei and diamagnetic atoms and molecules. In this

contribution, we review the derivation of the nuclear PVTC and PVTV interactions within

various frameworks. We focus in particular on the application of chiral effective field

theory, which allows for a more strict connection with the fundamental interactions at

the quark level. We investigate PVTC and PVTV effects induced by these potentials on

several few-nucleon observables, such as the longitudinal asymmetries in proton-proton

scattering and the 3He(n⃗,p)3H reaction, the radiative neutron-proton capture, and the

electric dipole moments of the deuteron and the trinucleon system.

Keywords: fundamental symmetries in nuclei, nuclear forces, effective field theory, chiral perturbation theory,

few-body systems

1. INTRODUCTION

The interaction between nucleons is at the heart of nuclear physics and has been a subject
of great scientific interest for many decades. The strong nuclear forces have their origin in
the residual interaction between quarks and gluons inside colorless nucleons and are described
by quantum chromodynamics (QCD). The resulting parity-conserving, time-reversal-conserving
(PCTC) nuclear interactions are known to exhibit a complicated pattern, involving a delicate
interplay of strongly state-dependent repulsive and attractive pieces. While the nucleon-nucleon
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Our predictions for the weak coupling constantsf, , h, 011V2 and /r>l have been described 
in previous sections, and will be summarized again in the next section. In order to 
avoid any ambiguity as to conventions involved in the definitions of &‘P.c. and 
S’D.“., we also give the expression of the NN potential which results from the above 
exchanges in the nonrelativistic limit 
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The strong coupling constants are assumed to be positive. 

In the comparison with experiment, corrections to the potential due to 27r exchange 
will be neglected. They have been found to be negligible for the Al = 0 and 2 parts 
of the potential where they modify slightly the radial shape of the p exchange potential 
[41]. For the d1= 1 part, they involve new components which correspond to the 
exchange of 27r in a P state, and since this is the quantum number of the pparticle, 
some double counting may occur. Examination of our results shows that the 27~ 
exchange contribution induced by the weak rrNN interaction and the p exchange 
contribution which arises from the same process at the quark level may be comparable 
in sign and magnitude. This result, which is not surprising in a picture where rNN 
and pNN p.n.c. coupling constants have been derived as consistently as possible, 
indicates that the above potential probably takes into account most of the 27r 
exchange contributions. While it is difficult to make a precise statement about the 
contribution of other exchanges involving several mesons, it is reasonable to expect 
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We discuss the weak amplitudes which determine the parity violating nuclear force. 
By use of the quark model and the SU(6), symmetry, we unite the treatment of pion and 
vector meson vertices, and describe the interrelation of past techniques which have been 
applied to this problem. This allows us to catalog the uncertainties in the amplitudes, and 
to provide reasonable bounds on their values. The connection of OUT results with experiment 
is also discussed. 

I. INTRODUCTION 

Although many properties of the weak interaction are presently under scrutiny 
via studies at the very highest-energy accelerators, there is also a great deal of interest 
in experiments which probe the weak force via low-energy, parity violating nuclear 
processes [I]. Although a substantial experimental as well as theoretical effort has been 
exerted in this field for well over a decade, we are still far from a trenchant under- 
standing of such reactions. 

The reasons for this are simple. On the experimental side, effects, such as detection 
of circular polarization in an electromagnetic decay of a nuclear state, are expected 
to be very small-roughly at the level 5 lo- p/M, where p is a typical nucleon 
momentum and M is the nucleon mass. Thus experiments are extraordinarily difficult 
and must be carefully screened for systematic biases. On the theoretical end the 

* Laboratoire associe au CNRS. 
+ This work is supported in part through funds provided by the U.S. Department of Energy (DOE) 

under Contract EY-76-C-02-3069. 
449 

00034916/80/02044947$05.00/0 
Copyright 0 1980 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 

484 DESPLANQUES, DONOGHUE, AND HOLSTEIN 

problem. Our only handle is a quark model calculation, within the framework of the 
MIT bag model, given in Appendix A. In the nonrelativistic SU(6) limit it reproduces 
the above results for b, and 6, . Away from this limit it identifies another contribution, 
that of odd parity baryon poles. These add with opposite signs to 7~ and p amplitudes 
and therefore break the SU(6) predictions. The prediction of the model is that the 
pion pieces become larger and the vector meson pieces become smaller. However, the 
relative rates among pionic decays by themselves or vector meson decays by them- 
selves are unchanged. We then have a situation where all SU(6), WNV predictions 
for b, , bt are resealed by some common number $ -C 1. The quark model actually 
finds a strong cancellation so that 71’ m 0. However in a quark model as crude as 
this a strong cancellation is always suspect. We feel that these considerations set the 
range of possible variation in b, and b t, namely from the SU(6), value (7’ = 1) to 
7’ = 0. Likewise, as discussed in Section IV, c, also is uncertain. Thus the range for 
the full amplitudes is from the SU(6), value to the value found in the modified 
factorization approach. As with the NNz- vertex, in Section VII we will suggest a 
benchmark for NNV amplitudes, although the range described above is more secure 
theoretically than any selection of a “best value.” 

VI. COMPARISON WITH EXPERIMENT 

We intend in this section to compare with experiment the predictions that we obtain 
for the Weinberg-Salam model. As already mentioned, parity violating effects in 
nuclei are usually assumed to be due to the parity violating nucleon-nucleon inter- 
action arising from the exchange of mesons, TT, p, and w. These interactions are known 
once we define the p.c. and p.v. meson-nucleon interactions, which we write as 

(113) 

and6 

2P.V. MNN = (2)-1/2f,N(i x &‘)3 N 

cvk 
(114) 

B The definition of /Pp of Ref. [41] has been changed to make it consistent with the one of Ref. 
1421. 
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measurement uncertainties (e.g. survey) to minimize the
di↵erence between simulated and measured wire yields.
This minimization process established the uncertainty
on the geometry factors. The corresponding uncertainty
in the asymmetry was determined by repeating the �2-
minimization of Eqns. 8 for each simulated set of geom-
etry factors. For the PV asymmetry, the result is shown
in Fig. 2(right).

A possible overall rotation of the wire frame stack with
respect to the holding field would also mix the PV and
PC asymmetries. The rotation angle was measured to be
zero, with an uncertainty of 3 mrad, using field probes
and survey equipment. The corresponding uncertainty
in the PV asymmetry is APC ⇥ 3⇥ 10�3 ' 0.1⇥ 10�8, 7
times smaller than our statistical error. A possible false
asymmetry from the RFSR signal coupling to the front-
end detector and DAQ electronics was measured during
weekly beam-o↵ runs. The averaged beam-o↵ or pedestal
asymmetry is Aped = (0.024± 0.2)⇥ 10�8. The 3He tar-
get material produced extremely low background, being
essentially insensitive to gamma background. The sig-
nal background from neutron capture induced �-decay
in the target windows and other chamber materials was
investigated using simulations and signal decay patterns
in the chamber during beam-o↵ periods; none were seen.
Stern-Gerlach steering was evaluated based on the mea-
sured field gradient in the experiment holding field. The
beam polarization and spin-flip e�ciency were measured
in dedicated runs [20]. The final result, including statis-
tical and all systematic error is

APV = (1.58± 0.97 (Stat)± 0.24 (Sys))⇥ 10�8 . (9)

CONCLUSION

This result provides an important benchmark that ex-
tends our knowledge of the spin-isospin structure of the
hadronic weak interaction, because the uncertainty in
APV is an order of magnitude smaller than the current
theoretical reasonable ranges. The NPDGamma collabo-
ration reported a measurement of the isovector pion cou-
pling h1

⇡ = (2.6± 1.2) ⇥ 10�7 [5]. If we insert this value
into Eqn. 1, the contribution to APV is �4.9 ⇥ 10�8,
indicating that there must be considerable cancellation
between the h1

⇡ term and heavy meson terms.
When our result is combined with the NPDGamma

asymmetry [5] a constraint on a linear combination of
heavy-meson couplings is obtained. These constraints
are shown in Fig. 3. A least squares fit to the two asym-
metries gives

h⇢�! ⌘ h1
! + 0.46h1

⇢ � 0.46h0
! � 0.76h0

⇢ � 0.02h2
⇢

= (12.9± 5.7)⇥ 10�7 . (10)

This analysis is possible because both reactions have
been calculated with small model uncertainty, using the

FIG. 3. A least squares fit to the NPDGamma [5] asymmetry
and the n3He asymmetry gives a constraint on a combina-
tion of heavy meson couplings, where h⇢�! ⌘ h1

! + 0.46h1
⇢ �

0.46h0
! � 0.76h0

⇢ � 0.02h2
⇢ = (12.9± 5.7)⇥ 10�7

DDH potential model of the hadronic weak interaction.
In order to improve our knowledge of the spin-isospin
structure of the hadronic weak interaction additional
measurements in few-body systems with small experi-
mental uncertainties are required. Equally important are
calculations of the asymmetries with small model uncer-
tainties.
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Our predictions for the weak coupling constantsf, , h, 011V2 and /r>l have been described 
in previous sections, and will be summarized again in the next section. In order to 
avoid any ambiguity as to conventions involved in the definitions of &‘P.c. and 
S’D.“., we also give the expression of the NN potential which results from the above 
exchanges in the nonrelativistic limit 

l,p.~. _ .hgnNN i +l x +2 
12 2112 ( 2 

_ g, (&oi, . +, + &l ( +1 ; +2 )z + /j,2 (3Tl”T;(6;l,~ * +2) ) 

+ ..+ 
x (4 - &J * p12-Mp2 

I ,.&(r)j + i(l + XA 6 X 62 * [ '12>j2 ,M)] 

- g, (h,O + h,l ( ill i2 )‘) 

where 

.txr) = z 3 

(11% 

(116) A(r) =fw(r) = s. 
The strong coupling constants are assumed to be positive. 

In the comparison with experiment, corrections to the potential due to 27r exchange 
will be neglected. They have been found to be negligible for the Al = 0 and 2 parts 
of the potential where they modify slightly the radial shape of the p exchange potential 
[41]. For the d1= 1 part, they involve new components which correspond to the 
exchange of 27r in a P state, and since this is the quantum number of the pparticle, 
some double counting may occur. Examination of our results shows that the 27~ 
exchange contribution induced by the weak rrNN interaction and the p exchange 
contribution which arises from the same process at the quark level may be comparable 
in sign and magnitude. This result, which is not surprising in a picture where rNN 
and pNN p.n.c. coupling constants have been derived as consistently as possible, 
indicates that the above potential probably takes into account most of the 27r 
exchange contributions. While it is difficult to make a precise statement about the 
contribution of other exchanges involving several mesons, it is reasonable to expect 
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10University of Nevada, Las Vegas, Nevada 89154, USA

11University of New Hampshire, Durham, New Hampshire 03824, USA
12University of Michigan, Ann Arbor, Michigan 48109, USA
13University of Kentucky, Lexington, Kentucky 40506, USA

14University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
15University of Tennessee, Chattanooga, Tennessee 37403 USA

16Physics Department, North Carolina State University, Raleigh, North Carolina 27695, USA
17Mississippi State University, Mississippi State, Mississippi 39759, USA

18Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
19Paul Scherrer Institut, CH-5232 Villigen, Switzerland

20Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
21High Energy Accelerator Research Organization (KEK), Tukuba-shi, 305-0801, Japan

22Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
23Western Kentucky University, Bowling Green, Kentucky 42101, USA
24Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

25Saarland University, Institute of Experimental Ophthalmology, Kirrberger Str. 100, Bldg. 22,
66424 Homburg/Saar, Germany

26Triangle Universities Nuclear Lab, Durham, North Carolina 27708, USA
27Joint Institute for Nuclear Research, Dubna 141980, Russia

28National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

(Received 11 March 2018; revised manuscript received 22 October 2018; published 13 December 2018)

We report the first observation of the parity-violating gamma-ray asymmetry Anp
γ in neutron-proton

capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron
Source at Oak Ridge National Laboratory. Anp

γ isolates the ΔI ¼ 1, 3S1 → 3P1 component of the weak
nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single
coupling constant in either the DDHmeson exchange model or pionless effective field theory. We measured
Anp
γ ¼ ½−3.0# 1.4ðstatÞ # 0.2ðsystÞ& × 10−8, which implies a DDH weak πNN coupling of h1π ¼

½2.6 # 1.2ðstatÞ # 0.2ðsystÞ& × 10−7 and a pionless EFT constant of C3S1→3P1=C0 ¼ ½−7.4# 3.5ðstatÞ #
0.5ðsystÞ& × 10−11 MeV−1. We describe the experiment, data analysis, systematic uncertainties, and
implications of the result.

DOI: 10.1103/PhysRevLett.121.242002

PHYSICAL REVIEW LETTERS 121, 242002 (2018)
Editors' Suggestion

0031-9007=18=121(24)=242002(7) 242002-1 © 2018 American Physical Society

5

measurement uncertainties (e.g. survey) to minimize the
di↵erence between simulated and measured wire yields.
This minimization process established the uncertainty
on the geometry factors. The corresponding uncertainty
in the asymmetry was determined by repeating the �2-
minimization of Eqns. 8 for each simulated set of geom-
etry factors. For the PV asymmetry, the result is shown
in Fig. 2(right).

A possible overall rotation of the wire frame stack with
respect to the holding field would also mix the PV and
PC asymmetries. The rotation angle was measured to be
zero, with an uncertainty of 3 mrad, using field probes
and survey equipment. The corresponding uncertainty
in the PV asymmetry is APC ⇥ 3⇥ 10�3 ' 0.1⇥ 10�8, 7
times smaller than our statistical error. A possible false
asymmetry from the RFSR signal coupling to the front-
end detector and DAQ electronics was measured during
weekly beam-o↵ runs. The averaged beam-o↵ or pedestal
asymmetry is Aped = (0.024± 0.2)⇥ 10�8. The 3He tar-
get material produced extremely low background, being
essentially insensitive to gamma background. The sig-
nal background from neutron capture induced �-decay
in the target windows and other chamber materials was
investigated using simulations and signal decay patterns
in the chamber during beam-o↵ periods; none were seen.
Stern-Gerlach steering was evaluated based on the mea-
sured field gradient in the experiment holding field. The
beam polarization and spin-flip e�ciency were measured
in dedicated runs [20]. The final result, including statis-
tical and all systematic error is

APV = (1.58± 0.97 (Stat)± 0.24 (Sys))⇥ 10�8 . (9)

CONCLUSION

This result provides an important benchmark that ex-
tends our knowledge of the spin-isospin structure of the
hadronic weak interaction, because the uncertainty in
APV is an order of magnitude smaller than the current
theoretical reasonable ranges. The NPDGamma collabo-
ration reported a measurement of the isovector pion cou-
pling h1

⇡ = (2.6± 1.2) ⇥ 10�7 [5]. If we insert this value
into Eqn. 1, the contribution to APV is �4.9 ⇥ 10�8,
indicating that there must be considerable cancellation
between the h1

⇡ term and heavy meson terms.
When our result is combined with the NPDGamma

asymmetry [5] a constraint on a linear combination of
heavy-meson couplings is obtained. These constraints
are shown in Fig. 3. A least squares fit to the two asym-
metries gives

h⇢�! ⌘ h1
! + 0.46h1

⇢ � 0.46h0
! � 0.76h0

⇢ � 0.02h2
⇢

= (12.9± 5.7)⇥ 10�7 . (10)

This analysis is possible because both reactions have
been calculated with small model uncertainty, using the

FIG. 3. A least squares fit to the NPDGamma [5] asymmetry
and the n3He asymmetry gives a constraint on a combina-
tion of heavy meson couplings, where h⇢�! ⌘ h1

! + 0.46h1
⇢ �

0.46h0
! � 0.76h0

⇢ � 0.02h2
⇢ = (12.9± 5.7)⇥ 10�7

DDH potential model of the hadronic weak interaction.
In order to improve our knowledge of the spin-isospin
structure of the hadronic weak interaction additional
measurements in few-body systems with small experi-
mental uncertainties are required. Equally important are
calculations of the asymmetries with small model uncer-
tainties.
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to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR
CALCULATIONS

In the NCSM, nuclei are considered to be systems of A
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric A-nucleon
harmonic oscillator (HO) states. The basis contains up
to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

| gs Ii = | gs I
⇡i+

X

j

| j I
�⇡i (9)

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i ,

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h

1
⇡=2.6⇥ 10�7 taken

from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term

(Egs �H)| gs Ii = V
PNC
NN | gs I

⇡i . (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with

as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A

A = �i4⇡
e
2

GF

~
mc

(II10|II)p
2I + 1

(14)

⇥
X

j

h gs I
⇡||

p
4⇡/3

AX

i=1

µiri[Y1(r̂i)�i]
(1)|| j I

�⇡i

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i .

Here, (II10|II)=I/

p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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5University of Tennessee, Knoxville, Tennessee 37996, USA
6University of New Hampshire, Durham, New Hampshire 03824, USA

7University of Kentucky, Lexington, Kentucky 40526, USA
8Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

9University of Tennessee Chattanooga, Chattanooga, Tennessee 37403, USA
10University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
11Western Kentucky University, Lexington, Kentucky 40526, USA

(Received 24 April 2020; accepted 4 August 2020; published 23 September 2020)

We report the first precision measurement of the parity-violating asymmetry in the direction of proton
momentum with respect to the neutron spin, in the reaction 3Heðn; pÞ3H, using the capture of polarized cold
neutrons in an unpolarized active 3He target. The asymmetry is a result of the weak interaction between
nucleons, which remains one of the least well-understood aspects of electroweak theory. The measurement
provides an important benchmark for modern effective field theory and potential model calculations.
Measurements like this are necessary to determine the spin-isospin structure of the hadronic weak
interaction. Our asymmetry result is APV ¼ ½1.55% 0.97ðstatÞ % 0.24ðsysÞ& × 10−8, which has the smallest
uncertainty of any hadronic parity-violating asymmetry measurement so far.

DOI: 10.1103/PhysRevLett.125.131803

Introduction.—The electroweak component of the
standard model (SM) describes the weak couplings of
W and Z gauge bosons to quarks and therefore, in principle,
the hadronic weak interaction (HWI). In nuclei, the HWI
causes parity-violating (PV) admixtures in nuclear wave
functions and produces small, but observable, PV spin-
momentum correlations, photon circular polarizations, and
anapole moments. However, the computational difficulties
associated with nonperturbative QCD dynamics currently
preclude first-principles calculations of hadronic PV
observables. As a result, the HWI is the least well under-
stood sector of the standard model. The most ambitious
effort to carry out a QCD calculation on the lattice has been
that of Wassem [1].
Desplanques, Donoghue, and Holstein (DDH) [2] intro-

duced a physically motivated meson-exchange potential
model. The resulting PV nucleon-nucleon potential is a
sum over the six parity-odd, time-reversal-even, rotation-
ally invariant operators that can be constructed from the

spin, isospin, momenta, and coordinates of the interacting
nucleons and six meson-exchange coupling constants. The
six floating coupling constants (h1π , h0ρ, h1ρ, h2ρ, h0ω, and h1ω)
are labeled by meson type and total isospin change (ΔI).
Modern calculations recast this in terms of pionless
effective field theory (EFT) and chiral EFT, using low
energy constants [3–6]. To determine the spin-isospin
structure of the HWI, one needs precision measurements
of all PV asymmetries for which there are theoretical
predictions, to constrain all couplings in the DDH theory
or EFT.
An inherent problem in the experimental determination

of the structure of the HWI is that asymmetries in calcu-
lable few-body systems are very small (∼10−7 → ∼10−8)
and difficult to measure. Here we present the first precision
measurement of the parity-violating asymmetry in the
direction of proton momentum with respect to the neutron
spin, in the reaction 3Heðn; pÞ3H, a few body system for
which the asymmetry has been calculated, using both the
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HPVTV introduces parity admixture in the ground state (perturbation theory):

Nuclear EDM is dominated by polarization contribution:
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HPVTV introduces parity admixture in the ground state (perturbation theory):

Nuclear EDM is dominated by polarization contribution:
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PARITY VIOLATING NUCLEAR FORCE 485 
Our predictions for the weak coupling constantsf, , h, 011V2 and /r>l have been described 
in previous sections, and will be summarized again in the next section. In order to 
avoid any ambiguity as to conventions involved in the definitions of &‘P.c. and 
S’D.“., we also give the expression of the NN potential which results from the above 
exchanges in the nonrelativistic limit 

l,p.~. _ .hgnNN i +l x +2 
12 2112 ( 2 

_ g, (&oi, . +, + &l ( +1 ; +2 )z + /j,2 (3Tl”T;(6;l,~ * +2) ) 

+ ..+ 
x (4 - &J * p12-Mp2 

I ,.&(r)j + i(l + XA 6 X 62 * [ '12>j2 ,M)] 

- g, (h,O + h,l ( ill i2 )‘) 

where 

.txr) = z 3 

(11% 

(116) A(r) =fw(r) = s. 
The strong coupling constants are assumed to be positive. 

In the comparison with experiment, corrections to the potential due to 27r exchange 
will be neglected. They have been found to be negligible for the Al = 0 and 2 parts 
of the potential where they modify slightly the radial shape of the p exchange potential 
[41]. For the d1= 1 part, they involve new components which correspond to the 
exchange of 27r in a P state, and since this is the quantum number of the pparticle, 
some double counting may occur. Examination of our results shows that the 27~ 
exchange contribution induced by the weak rrNN interaction and the p exchange 
contribution which arises from the same process at the quark level may be comparable 
in sign and magnitude. This result, which is not surprising in a picture where rNN 
and pNN p.n.c. coupling constants have been derived as consistently as possible, 
indicates that the above potential probably takes into account most of the 27r 
exchange contributions. While it is difficult to make a precise statement about the 
contribution of other exchanges involving several mesons, it is reasonable to expect 

Parity violating nucleon-nucleon interaction and the nuclear anapole moment

§ Parity violating (non-conserving) VNNPNC interaction
§ Conserves total angular momentum I
§ Mixes opposite parities 
§ Has isoscalar, isovector and isotensor components
§ Admixes unnatural parity states in the ground state

4

to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR
CALCULATIONS

In the NCSM, nuclei are considered to be systems of A
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric A-nucleon
harmonic oscillator (HO) states. The basis contains up
to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

| gs Ii = | gs I
⇡i+

X

j

| j I
�⇡i (9)

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i ,

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h

1
⇡=2.6⇥ 10�7 taken

from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term

(Egs �H)| gs Ii = V
PNC
NN | gs I

⇡i . (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with

as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A

A = �i4⇡
e
2

GF

~
mc

(II10|II)p
2I + 1

(14)

⇥
X

j

h gs I
⇡||

p
4⇡/3

AX

i=1

µiri[Y1(r̂i)�i]
(1)|| j I

�⇡i

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i .

Here, (II10|II)=I/

p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �

§ Anapole moment operator dominated by 
spin contribution
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where the weak-interaction constants C
(2)

n,p were intro-
duced in Sec. IV.A and

N = (I + 1/2)(�1)I+`N+1/2

is the relativistic angular quantum number for the un-
paired nucleon in a state with orbital angular momen-
tum `N . Notice that this contribution is substantially
suppressed compared to the VnAe diagram 5(a) because

|C(2)

N /C
(1)

n
| = gA(1� 4 sin2 ✓W) ⇡ 0.1

and only the unpaired nucleon contributes to Fig. 5(b)
whereas all nucleons coherently contribute to Fig. 5(a).

The ⌘NAM coe�cient parameterizes the nuclear
anapole moment (NAM) contribution to atomic parity
violation. It is illustrated in Fig. 5(c) and discussed
in Sec. IV.C.2. Parity violation in the nucleus leads
to toroidal currents that in turn generate a parity-odd,
time-reversal-even (P-odd, T-even) moment, known as
the nuclear anapole moment, that couples electromag-
netically to atomic electrons. The nuclear shell model
expression for the anapole moment (Flambaum et al.,
1984),

⌘NAM = 1.15⇥ 10�3
N

I(I + 1)
µN gNA

2/3
, (38)

depends on the atomic number A, the magnetic moment
µN of the unpaired nucleon expressed in units of the
nuclear magneton, and the weak coupling constant gN .
Their values are µp ⇡ 2.8, µn ⇡ �1.9, gp ⇡ 5, and
gn ⇡ �1.

The combined action of the hyperfine interaction and
the spin-independent Z-exchange interaction from nu-
cleon vector (VnAe) currents leads to the third nuclear-
spin dependent parity violating e↵ect, Fig. 5(d). This
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The natural (i.e., ground-state) parity eigenstates are
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natural parity states in the ground state,
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which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h

1
⇡=2.6⇥ 10�7 taken

from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term

(Egs �H)| gs Ii = V
PNC
NN | gs I

⇡i . (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with

as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A
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Here, (II10|II)=I/

p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A

A = �i4⇡
e
2

GF

~
mc

(II10|II)p
2I + 1

(14)

⇥
X

j

h gs I
⇡||

p
4⇡/3

AX

i=1

µiri[Y1(r̂i)�i]
(1)|| j I

�⇡i

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i .

Here, (II10|II)=I/

p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �

§ Here is what we want to calculate:

4

to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR
CALCULATIONS

In the NCSM, nuclei are considered to be systems of A
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric A-nucleon
harmonic oscillator (HO) states. The basis contains up
to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

| gs Ii = | gs I
⇡i+

X

j

| j I
�⇡i (9)

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i ,

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h

1
⇡=2.6⇥ 10�7 taken

from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term

(Egs �H)| gs Ii = V
PNC
NN | gs I

⇡i . (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator
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as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A

A = �i4⇡
e
2

GF

~
mc

(II10|II)p
2I + 1

(14)

⇥
X

j

h gs I
⇡||

p
4⇡/3

AX

i=1

µiri[Y1(r̂i)�i]
(1)|| j I

�⇡i

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i .

Here, (II10|II)=I/

p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �

32

FIG. 7 (Color online) The toroidal component of current den-
sity j produces anapole moment a, with magnetic fieldB that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with a, with its associated conventional dipolar
magnetic field not shown.

defining the constant ⌘NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., / (nuclear radius)2 /
A

2/3, where A is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.,
1980), who deduced SM estimates of their values. These
six hadronic PNC parameters are f⇡, h

0,1,2

⇢
, h

0,1

!
, where

the subscript (⇡, ⇢,!) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e↵ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings (⇥107) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di�cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and 4He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.
Haxton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e↵ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).



37How to calculate the sum of intermediate unnatural parity states?

§ Solving Schroedinger equation with inhomogeneous term

§ To invert this equation, we apply the Lanczos algorithm
— Bring matrix to tri-diagonal form (v1, v2 … orthonormal, H  Hermitian)

—  nth iteration computes 2nth moment
— Eigenvalues converge to extreme (largest in magnitude) values
— ~ 150-200 iterations needed for 10 eigenvalues (even for 109 states)
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to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.
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to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.
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was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-
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the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h
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from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term
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To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of
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which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by
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with
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Using Eqs. (9), (11), (12), and (13) we calculate the
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We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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order of chiral perturbation expansion (N3LO) [45] and
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formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
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âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with
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Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,
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which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h

1
⇡=2.6⇥ 10�7 taken

from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term

(Egs �H)| gs Ii = V
PNC
NN | gs I

⇡i . (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

âs =
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µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by
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as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A
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p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.
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termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
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Hv1 =α1v1 + β1v2

Hv2 = β1v1 +α2v2 + β2v3

Hv3 =             β2v2 +α3v3 + β3v4

Hv4 =                        β3v3 +α4v4 + β4v5

|v1i = V PNC
NN | gs I

⇡i
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where the coefficients ĝi(ω) are finite continued fractions
formed from the entries in the tridiagonal matrix. For example,

ĝ1(ω) = 1

ω − α1 − β2
1

ω−α2−
β2

2
ω−α3−β2

3

.

. . . (12)

With each additional iteration, one additional Lanczos vector is
added to the expansion, and each continued fraction increases
in rank by one through the addition of a new αn+1 and βn.
As most Green’s function applications involve convolutions
with relatively smooth operators, often Ĝn(ω)|v1⟩ becomes
numerically equivalent to G(ω)|v1⟩ after a few Lanczos
iterations (∼20) [13].

An important consequence of Eq. (11) is that, once the
Lanczos calculation is completed, the Green’s function is
known as a function of ω. This will be important in the
applications we discuss later.

III. ELECTROWEAK RESPONSE FUNCTIONS AT
ARBITRARY q2

The discussion of the previous section addressed the special
case of a fixed operator, like the GT operator, that governs
the weak nuclear response along the q = 0 line in the (ω, q)
response plane. However, many electroweak processes of
interest—intermediate-energy electron or neutrino scattering,
muon capture, etc.—involve appreciable three-momentum
transfers (and the associated excitation of radial modes in the
nucleus). That is, the relevant response function is

S(ω, q) =
N∑

i=1

|⟨ψEi
|O(q)|g.s.⟩|2δ(ω − Ei), (13)

where O(q) is (an assumed one-body) electroweak operator
that depends explicitly on q. If one naively applies the
formalism of the preceding section, a new calculation would
be needed for each desired q, because the operator evolves
with q. This would require tediously stepping over a grid of
fixed q’s computing a Lanczos calculation for each value, to
map the full surface above the response plane.

Here we discuss procedures for evaluating S(ω, q) very
efficiently as a function of q (and ω) over the entire response
plane, at the cost of only a few Lanczos calculations. The
approach depends on the assumption that the shell-model
basis of Slater determinants has been formed from harmonic-
oscillator single-particle wave functions. This choice allows
one to exploit attractive properties of the matrix elements of
O(q) between such wave functions.

While we will delay details of the test application (electro-
magnetic response functions for 28Si) to the next section, here
we sketch the basic idea. One can write O(q)|g.s.⟩ in second
quantization,

∑

α,β

⟨α|O(q)|β⟩a†
αaβ |g.s.⟩, (14)

where α and β represent a complete set of single-particle
quantum numbers. For the choice of harmonic oscillators, ma-
trix elements of the standard charge, longitudinal, transverse
electric, and transverse magnetic multipoles can be evaluated
in closed form, leading to [14,15]

⟨α|OJ (q)|β⟩ = y(J−K)/2e−ypαβ(y). (15)

Here we denote the multipolarity of the operator by J,K =
2(1) for normal (abnormal) parity operators, and y = (qb/2)2,
where b is the oscillator parameter. The crucial point is that
p(y) is a finite polynomial in y or q2. In the 28Si test case, the
most complicated operator that arises has only three nonzero
terms in p(y).

We first go through a schematic argument to show how this
y dependence might be exploited. Denoting the order of the
polynomial p by m, it follows that

O(q)|g.s.⟩
= y(J−K)/2e−y

(
c0

∣∣v0
1

〉
+ c1y

∣∣v1
1

〉
+ · · · + cmym

∣∣vm
1

〉)

≡ y(J−K)/2e−yc(y)|v1(y)⟩, (16)

with a notation analogous to that of Eq. (6) and with the
strength cj chosen to make |vj

1 ⟩ a unit vector. For parity-
conserving interactions and standard phase conventions, all
quantities can be taken as real, with the c’s non-negative.
The |vj

1 ⟩, of course, are not orthonormal. Similarly c(y) and
|v1(y)⟩ can be viewed as a y-dependent strength and unit vector,
respectively. It follows that

S(ω, q) = yJ−Ke−2y |c(y)|2
N∑

i=1

|⟨ψEi
|v1(y)⟩|2δ(ω − Ei),

(17)

where

|c(y)|2|⟨ψEi
|v1(y)⟩|2 =

m∑

j,k=0

c∗
kcj y

j+k⟨vk
1 |ψEi

⟩⟨ψEi
|vj

1 ⟩, (18)

so that the response function has a similar polynomial form. It
also follows that moments of S(ω) have the form
∫ ∞

0
S(ω)ωλdω = yJ−Ke−2y |c(y)|2

N∑

i=1

|⟨ψEi
|v1(y)⟩|2Eλ

i .

(19)

These last two results simply state that if one had a complete
set of N eigenvalues and eigenfunctions, each contributing
transition probability would have a simple, analytical behavior
in y.

Of course, these results are only of academic interest: As
we are assuming that N is prohibitively large, a complete
diagonalization is impossible. This leaves a much more
interesting question: Can we find an analog of Eq. (7) or (8), an
efficient Lanczos representation of S(ω, q), that also exploits
the polynomial behavior of the response in y? If so, it would
appear to be a practical way to construct the response over the
entire (ω, q) plane.

We have explored several of the possibilities, uncovering
some of the numerical pitfalls. Even the less successful
methods are interesting conceptually, so we describe the

065501-4

Few-Body Systems 33, 259–276 (2003)

DOI 10.1007/s00601-003-0017-z

Efficient Method for Lorentz Integral
Transforms of Reaction Cross Sections

M. A. Marchisio1, N. Barnea2, W. Leidemann1, and G. Orlandini1

1 Dipartimento di Fisica, Universit!aa di Trento and INFN (Gruppo Collegato di Trento),

I-38050 Povo (Trento), Italy
2 Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

Received June 3, 2003; accepted July 30, 2003

Published online December 4, 2003; # Springer-Verlag 2003

Abstract. The Lorentz integral transform (LIT) method, which allows ab-
initio calculations of few-body cross sections, is reformulated via the Lanczos
algorithm. The new technique, being quite general, is tested on inclusive and
exclusive photonuclear reactions on three- and four-body nuclei. Due to the
rapid convergence of the algorithm one gains a substantial decrease in CPU
time with an excellent agreement with the results of a conventional LIT calcu-
lation. The present work opens up the possibility of ab-initio calculations for
inclusive and exclusive processes for systems with a number of particles
N ! 6.

1 Introduction

The study of reaction cross sections is an important tool to reveal the dynamics of
particle systems. For systems with a small number of particles one aims at micro-
scopic calculations trying to take into account all relevant degrees of freedom of
the considered process. However, calculations via the classical approach, where
one uses initial and continuum state wave functions, are very difficult to perform
for reactions at energies beyond the three-body breakup thresholds. The Lorentz
integral transform (LIT) method [1] offers an alternative solution to the problem:
The transition matrix elements entering in the cross sections are obtained in a direct
way, without the explicit knowledge of the complicated continuum wave functions,
but taking into account final state interactions correctly. Various applications of this
method for electromagnetic reactions on light nuclei can be found in the literature
[1–8].

The LIT method is based on Schr€oodinger-like equations with source terms
(which depend on the kind of reaction one is treating), whose solutions have bound-
state-like asymptotic boundary conditions. The solutions of these equations can be

| gs Ii ⇡
X

k

gk(E0)|vki
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PLB 665:165-172 
(2008)
(NN EFT) 

PRC 
87:015501 
(2013)

PRC 
91:054005 
(2015)

Our calculation
(NN EFT)

0𝑮𝝅𝟎 0.015 (x 1/2) (x 1/2) 0.0073  (x 1/2)
0𝑮𝝅𝟏 0.023 (x 1/2) (x 1/2) 0.011  (x 1/2)
0𝑮𝝅𝟐 0.037 (x 1/5) (x 1/2) 0.019  (x 1/2)
0𝑮𝝆𝟎 -0.0012 (x 1/2) (x 1/2) -0.00062 (x 1/2)

0𝑮𝝆𝟏 0.0013 (x 1/2) (x 1/2) 0.00063  (x 1/2)

0𝑮𝝆𝟐 -0.0028 (x 1/5) (x 1/2) -0.0014 (x 1/2)
0𝑮𝝎𝟎 0.0009 (x 1/2) (x 1/2) 0.00042  (x 1/2)

0𝑮𝝎𝟏 -0.0017 (x 1/2) (x 1/2) -0.00086 (x 1/2)

Nmax convergence for 3HeDiscrepancy between calculations?
N3LO NN

Our results confirm those of Yamanaka and Hiyama, PRC 91:054005 (2015)
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Figure 1. The polarization contribution to 3He EDM (in e fm)
due to the ⇡-exchange PTV NN interaction (5). Dependence
on the NCSM basis size characterized by Nmax for two HO
frequencies is shown. Chiral N3LO PTC NN interaction from
Ref. [35] was used.

with the electric dipole moment operator projected in the
z-direction.

To compute matrix elements of the V
PTV
NN interaction

(5) and solve the equation (6), we adapted codes used for
calculations of anapole moments of light nuclei reported
in Ref. [48]. To benchmark our codes, we calculated the
EDM of 3He using PTC chiral N3LO NN interaction [35]
without any renormalization as 3He EDM results for this
interaction together with the PTV interaction (5) were
published in Ref. [17]. The NCSM basis convergence for
the polarization contribution to 3He EDM is shown in
Fig. 1 and our D

(1) and D
(pol) results are summarized

in Table I. The D
(pol)

Nmax convergence is quite satis-
factory while that of D(1) is still faster. In Fig. 1, the
odd Nmax values correspond to the unnatural states in
Eq. (4), i.e., the largest space for the ground-state was
Nmax=16. While our D

(1) results agree with those re-
ported in Ref. [17] (Table 1, the EFT NN column in
that paper), the present D

(pol) results are smaller by a
factor of 1/2 compared to Ref. [17] (Table 2, the EFT
NN columns in that paper). It should be noted that the
same 1/2 discrepancy was reported in Ref. [20] for the
isoscalar and isovector terms, while a discrepancy of 1/5
was found for the isotensor terms. Similarly, a factor
of 1/2 di↵erence was found in Ref. [25] although for all
the terms. Our results are then consistent with those of
Ref. [25]. The NCSM was applied in Ref. [17] (and also in
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Figure 2. The polarization contribution to 6Li and 9Be EDM
(in e fm) due to the isovector ⇡-exchange PTV NN interac-
tion (5). Dependence on the NCSM basis size characterized
by Nmax is shown. SRG-evolved chiral NN+3N(lnl) PTC in-
teraction from Ref. [34] was used. The HO frequency ~⌦=20
MeV was used.

Ref. [19]). However, the Jacobi-coordinate HO basis was
employed as opposed to the SD HO basis used here, i.e.,
di↵erent codes were utilized. We plan to reexamine the
codes used in Ref. [17] to investigate the issue further.
Basis-size convergence of the polarization contribu-

tions to the EDM for p-shell nuclei is also quite reasonable
and comparable to that of the anapole moments [48]. In
Fig. 2, we show the Nmax convergence of the isovector
⇡-exchange contribution for 6Li and 9Be as a representa-
tive example. Again, the the oddNmax values correspond
to the unnatural-parity states in Eq. (4). The largest
spaces that we were able to reach for 6,7Li wereNmax=11,
while for 9Be Nmax=9. For 10,11B, our calculations have
been performed up to Nmax=7. For 13C, 14,15N we also
reached Nmax=7 basis space. However, we applied the
importance truncation [50, 51] at Nmax=7 for these iso-
topes. The 19F is on the borderline of NCSM applica-
bility. Only calculations up to Nmax=5 were performed
although without any importance truncation. The M -
scheme dimension was 189 million in this case.

OurD(1) andD
(pol) results for all considered nuclei are

shown in Table I. In Fig. 3, we display all the calculated
polarization contributions to the EDMs of the p-shell sta-
ble nuclei and 19F. We can evaluate the uncertainties of
our results due to the basis size convergence at about
10% (20% for 19F). The other sources of uncertainty are
renormalization and incompleteness of the transition op-
erators and the uncertainties due to the description of the
nuclear PTC and PTV forces. A rough estimate of the
accuracy of our calculations can be obtained by a com-
parison of the calculated and experimental magnetic mo-
ments shown in the last two columns of Table I. For 19F,
we obtain in addition the magnetic moment +3.73 µN

for the 5/2+ excited state that can be compared to the
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Measurements of nuclear spin-dependent parity-violating (NSD-PV) effects provide an excellent opportunity
to test nuclear models and to search for physics beyond the Standard Model. Molecules possess closely
spaced states with opposite parity which may be easily tuned to degeneracy to greatly enhance the observed
parity-violating effects. A high-sensitivity measurement of NSD-PV effects using light triatomic molecules is in
preparation [E. B. Norrgard et al., Commun. Phys. 2, 77 (2019)]. Importantly, by comparing these measurements
in light nuclei with prior and ongoing measurements in heavier systems, the contribution to NSD-PV from
Z0-boson exchange between the electrons and the nuclei may be separated from the contribution of the nuclear
anapole moment. Furthermore, light triatomic molecules offer the possibility to search for new particles, such
as the postulated Z ′ boson. In this work, we detail a sensitive measurement scheme and present high-accuracy
molecular and nuclear calculations needed for interpretation of NSD-PV experiments on triatomic molecules
composed of light elements, Be, Mg, N, and C. The ab initio nuclear structure calculations, performed within
the no-core shell model provide a reliable prediction of the magnitude of different contributions to the NSD-PV
effects in the four nuclei. These results differ significantly from the predictions of the standard single-particle
model and highlight the importance of including many-body effects in such calculations. In order to extract
the NSD-PV contributions from measurements, a parity-violating interaction parameter WPV, which depends
on the molecular structure, needs to be known with a high accuracy. We have calculated these parameters
for the triatomic molecules of interest using the relativistic coupled-cluster approach. In order to facilitate
the interpretation of future experiments we provide uncertainties on the calculated parameters. A scheme for
measurement using laser-cooled polyatomic molecules in a molecular fountain is presented, along with an
estimate of the expected sensitivity of such an experiment. This experimental scheme, combined with the
presented state-of-the-art calculations, opens exciting prospects for a measurement of the anapole moment and
the PV effects due to the electron-nucleon interactions with unprecedented accuracy and for a new path towards
detection of signatures of physics beyond the Standard Model.
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I. INTRODUCTION

Measurements and calculations of parity-violating effects
in atoms and molecules are important both for the verifica-
tion of the Standard Model (SM) and for the investigation
of phenomena that cannot be explained within this model,
such as the nature of dark matter and matter-antimatter asym-
metry. One of the candidates for the dark-matter particles is
a low-mass Z ′ boson [1–3]. The best limits on the parity-
violating interaction of this Z ′ boson with electrons, protons,
and neutrons were obtained from the data on atomic par-
ity violation [4]; in particular, information on its interaction
with nucleons was extracted from the measurements of the

*a.borschevsky@rug.nl

nuclear anapole moment of the 133Cs nucleus in Ref. [5].
The possibility to study the nuclear anapole moments in
additional systems, and thus to set further constraints on
this interaction, provides a major motivation for the current
work.

The notion of the anapole moment was introduced by
Zel’dovich in 1958 [6]. The nuclear anapole moment was
originally considered in Ref. [7] and calculated in Ref. [8]
for a number of heavy atoms. This work also proposed pos-
sible schemes to observe nuclear anapole-moment effects in
atomic and molecular experiments. Studies of the nuclear
anapole-moment effects can provide information about parity-
violating nuclear forces [7,8] and may be considered as a
test of nuclear theory and low-energy quantum chromody-
namics. The nuclear anapole moment rapidly increases with
the nucleon number A (as A2/3) and dominates the nuclear
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moment e↵ect. One such e↵ect is the exchange of the
Standard Model Z0 boson (or potential yet-undiscovered
Z

0 bosons) between an electron and individual nucle-
ons [9], which remains poorly characterized despite the
great strides recently in electron-scattering experiments
[10, 11]. Therefore, NSD-PV measurements in light nu-
clei are sensitive tests of the Standard Model and may
be used to search for new particles such as Z

0 bosons
and particles contributing to electroweak radiative cor-
rections.

Compared with atoms, the NSD-PV e↵ects are
strongly enhanced in molecules due to the close-lying
states of opposite parity [12–14]. The Stark interfer-
ence technique, which uses external fields to bring the
rotational or hyperfine levels with opposite parity into
near-degeneracy, has been widely employed in the search
for these e↵ects (see e.g. Refs. [15–19]). A recent pro-
posal identified linear triatomic molecules as promising
systems to measure NSD-PV e↵ects [20]. A general fea-
ture of such molecules is that they have closely-spaced `-
doublets with opposite parity, allowing parity-violation-
sensitive pairs of levels to be brought to degeneracy in
magnetic fields typically two orders of magnitude smaller
than needed for the diatomic molecules. Moreover, it is in
principle possible to measure NSD-PV e↵ects in all three
nuclei of these molecules, which would allow the various
underlying parity-violating e↵ects to be disentangled.

Light triatomic molecules are especially attractive can-
didates for precision measurements of the NSD-PV ef-
fects. A proper interpretation of an NSD-PV measure-
ment relies on accurate molecular and nuclear structure
parameters. High-accuracy theoretical determination of
the molecular properties becomes more computationally
tractable for lighter systems, and, even more importantly,
nuclear calculations are significantly more accurate and
more reliable than in heavy elements. Here, we perform
rigorous, high-accuracy calculations of the molecular and
nuclear parameters required to interpret NSD-PV mea-
surements in molecules composed of the light elements
Be, C, N, and Mg. We find that the parameters charac-
terizing the molecule-specific sensitivity are in line with
those of isoelectronic diatomic molecules [21, 22], as well
as prior semi-empirical estimates [20, 23]. However, our
ab-initio nuclear calculations find the nuclear anapole-
moment interactions to be much stronger (typically 2 to 4
times larger) than predicted by a standard single-particle
model [7, 8, 24, 25], while the NSD-PV e↵ects attributed
to Z

0-boson exchange are typically reduced. This high-
lights the necessity of including many-body e↵ects for
correctly interpreting NSD-PV measurements, even in
light nuclear systems. Moreover, the Be and Mg cyanide
and isocyanide molecules considered here have favorable
laser-cooling and trapping properties, which are essential
to enabling high-sensitivity measurements through long
interaction times. We conclude by considering the ex-
perimental sensitivity to NSD-PV e↵ects of laser-cooled
molecules in free flight. Using realistic parameters, the
sensitivity of this method can exceed that of molecules

in an optical trap [20].

II. THEORY

The NSD-PV interaction with the atomic or molecular
electrons can be defined by the e↵ective Hamiltonian [8,
26]

H
e↵
NSD-PV =

GFp
2

⇣↵ · I
I

⌘
⇢(r), (1)

where GF is the Fermi weak interaction coupling con-
stant, the Dirac matrices ↵ are defined in the usual way,
I is the nuclear spin, and ⇢(r) is the nuclear density dis-
tribution function normalized to 1.
In a given nucleus, various underlying electroweak

interactions contribute to the total NSD-PV e↵ect:
 = A + ax + hfs. In this section, we proceed by con-
sidering each of these three terms in turn, then explore
how to evaluate Eq. (1) in a molecular system.
The e↵ective coupling constant A describes the

strength of the nuclear anapole-moment interaction. In
a simple valence nucleon model, A takes the form [8, 26]

A =
9

10

↵µi

mpr0
giA

2/3 K

I + 1

' 1.15⇥ 10�3
giµiA

2/3 K

I + 1
,

(2)

where ↵ ' 1/137 is the fine-structure constant, mp is
the proton mass, r0 ' 1.2 fm is the scale of the nu-
clear radius, µi (µp ' 2.793 [27, 28] for proton, µn '
�1.913 [27, 28] for neutron) is the nucleon magnetic mo-
ment in nuclear magnetons, A is the mass number, and
K = (I + 1/2)(�1)I�`i+1/2, with li being the orbital
angular momentum (quantum number) of the external
unpaired nucleon. The anapole contribution also de-
pends on the poorly-known dimensionless constants gi

(i = p, n), which characterize the nucleon-nucleus weak
potential. In Refs. [8, 29] these constants were expressed
in terms of a meson-exchange model, and in Ref. [30] the
results based on di↵erent calculations of meson-nucleon
interactions are presented. Using the most recent ex-
perimental data [31], the authors of Ref. [30] obtained
gp = 3.4 ± 0.8 and gn = 0.9 ± 0.6. In the following, we
will use central points gp = 3.4 and gn = 0.9 for the
single-particle model estimates of the magnitude of the
anapole moment. We note that this updated estimate
of gn has opposite sign compared to the one used in ear-
lier molecule NSD-PV considerations [17, 20]. One of the
aims of the measurements of NSD-PV e↵ects is to extract
reliable values of these constants.
The nuclear anapole moment of 133Cs was confirmed

at a 7� significance level by Wood et al., with the value
of A ' 0.392 ± 0.056 [5]. A more accurate theoreti-
cal treatment performed after the experiment obtained a
similar value [29]. Further NSD-PV measurements in Cs
with improved precision have been proposed [32, 33], and
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great strides recently in electron-scattering experiments
[10, 11]. Therefore, NSD-PV measurements in light nu-
clei are sensitive tests of the Standard Model and may
be used to search for new particles such as Z

0 bosons
and particles contributing to electroweak radiative cor-
rections.

Compared with atoms, the NSD-PV e↵ects are
strongly enhanced in molecules due to the close-lying
states of opposite parity [12–14]. The Stark interfer-
ence technique, which uses external fields to bring the
rotational or hyperfine levels with opposite parity into
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than needed for the diatomic molecules. Moreover, it is in
principle possible to measure NSD-PV e↵ects in all three
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didates for precision measurements of the NSD-PV ef-
fects. A proper interpretation of an NSD-PV measure-
ment relies on accurate molecular and nuclear structure
parameters. High-accuracy theoretical determination of
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tractable for lighter systems, and, even more importantly,
nuclear calculations are significantly more accurate and
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rigorous, high-accuracy calculations of the molecular and
nuclear parameters required to interpret NSD-PV mea-
surements in molecules composed of the light elements
Be, C, N, and Mg. We find that the parameters charac-
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those of isoelectronic diatomic molecules [21, 22], as well
as prior semi-empirical estimates [20, 23]. However, our
ab-initio nuclear calculations find the nuclear anapole-
moment interactions to be much stronger (typically 2 to 4
times larger) than predicted by a standard single-particle
model [7, 8, 24, 25], while the NSD-PV e↵ects attributed
to Z

0-boson exchange are typically reduced. This high-
lights the necessity of including many-body e↵ects for
correctly interpreting NSD-PV measurements, even in
light nuclear systems. Moreover, the Be and Mg cyanide
and isocyanide molecules considered here have favorable
laser-cooling and trapping properties, which are essential
to enabling high-sensitivity measurements through long
interaction times. We conclude by considering the ex-
perimental sensitivity to NSD-PV e↵ects of laser-cooled
molecules in free flight. Using realistic parameters, the
sensitivity of this method can exceed that of molecules

in an optical trap [20].

II. THEORY

The NSD-PV interaction with the atomic or molecular
electrons can be defined by the e↵ective Hamiltonian [8,
26]

H
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NSD-PV =

GFp
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⇣↵ · I
I

⌘
⇢(r), (1)

where GF is the Fermi weak interaction coupling con-
stant, the Dirac matrices ↵ are defined in the usual way,
I is the nuclear spin, and ⇢(r) is the nuclear density dis-
tribution function normalized to 1.
In a given nucleus, various underlying electroweak

interactions contribute to the total NSD-PV e↵ect:
 = A + ax + hfs. In this section, we proceed by con-
sidering each of these three terms in turn, then explore
how to evaluate Eq. (1) in a molecular system.
The e↵ective coupling constant A describes the

strength of the nuclear anapole-moment interaction. In
a simple valence nucleon model, A takes the form [8, 26]
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where ↵ ' 1/137 is the fine-structure constant, mp is
the proton mass, r0 ' 1.2 fm is the scale of the nu-
clear radius, µi (µp ' 2.793 [27, 28] for proton, µn '
�1.913 [27, 28] for neutron) is the nucleon magnetic mo-
ment in nuclear magnetons, A is the mass number, and
K = (I + 1/2)(�1)I�`i+1/2, with li being the orbital
angular momentum (quantum number) of the external
unpaired nucleon. The anapole contribution also de-
pends on the poorly-known dimensionless constants gi

(i = p, n), which characterize the nucleon-nucleus weak
potential. In Refs. [8, 29] these constants were expressed
in terms of a meson-exchange model, and in Ref. [30] the
results based on di↵erent calculations of meson-nucleon
interactions are presented. Using the most recent ex-
perimental data [31], the authors of Ref. [30] obtained
gp = 3.4 ± 0.8 and gn = 0.9 ± 0.6. In the following, we
will use central points gp = 3.4 and gn = 0.9 for the
single-particle model estimates of the magnitude of the
anapole moment. We note that this updated estimate
of gn has opposite sign compared to the one used in ear-
lier molecule NSD-PV considerations [17, 20]. One of the
aims of the measurements of NSD-PV e↵ects is to extract
reliable values of these constants.
The nuclear anapole moment of 133Cs was confirmed

at a 7� significance level by Wood et al., with the value
of A ' 0.392 ± 0.056 [5]. A more accurate theoreti-
cal treatment performed after the experiment obtained a
similar value [29]. Further NSD-PV measurements in Cs
with improved precision have been proposed [32, 33], and
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0.1hsp,zi+0.1hsn,zi. The spin operator matrix elements
are defined as

hs⌫,zi⌘h gs I
⇡
Iz=I|ŝ⌫,z| gs I

⇡
Iz=Ii, (15)

with ⌫=p, n.
Our results for the anapole moment coupling constants

A and ax in 9Be, 13C, 14,15N and 25Mg are summarised
in Table I. Overall, the basis size convergence of the re-
sults is quite reasonable, as shown in Fig. 2 presenting
dependence of A of 9Be on the NCSM basis size charac-
terised by Nmax. We can thus evaluate the uncertainties
due to the basis size convergence at about 10% (25% for
25Mg). The other sources of uncertainty are renormaliza-
tion and incompleteness of the transition operators and
uncertainties due to the description of nuclear and the
parity non-conserving forces.

In Table I, we also present NCSM results for magnetic
moments, where we can compare our results with exper-
imental values. Overall, we find a qualitative agreement
with experiment with some underestimation of absolute
values. This is not surprising, as the present calculations
included only the one-body M1 operator. It is well estab-
lished that two-body currents contribute non-negligibly
to M1 matrix elements in light nuclei [57]. While the
dominant sources of uncertainty are di↵erent for the cal-
culated dipole moments and the NSD-PV parameters, we
can still use the deviation of the former from experiment
as a rough estimate of the accuracy of the calculations of
the latter.

Table I also contains the single particle model esti-
mates of the di↵erent contributions to NSD parity violat-
ing constant  = A+ax+hfs obtained using equations
(2-5) for nuclei in molecules considered in the present
work. Note that the 14N nucleus contains a valence pro-
ton and a valence neutron, both in the p1/2 orbital with
K = 1. The nuclear magnetic moment µN =0.404 is
given, to a good accuracy, by the sum of the magnetic mo-
ments of 13C (with valence p1/2 neutron) and 15N (with
valence p1/2 proton). Therefore, we took the sum of the
valence proton and neutron contributions for the other
constants.

The NCSM A results are higher in absolute values
than the single particle model ones by a factor of 2–3,
except for 14N. The largest di↵erences are found in the
mid-shell nuclei 9Be, 13C and 25Mg, for which the single-
particle model has limited applicability. The 14N anapole
moment is proportional to the sum of the 15N and 13C
anapole moments that have opposite signs and conse-
quently it is particularly sensitive to the V PNC

NN parametri-
sation and the other computational details.

The NCSM ax results are close to the single-particle
model for 13C and 15N while they di↵er more substan-
tially for the mid-shell 9Be and 25Mg. For 14N, the ax'0
as hsp,zi'hsn,zi.

The results obtained within the single particle model
predict that the Z boson exchange constant ax domi-
nates for the light nuclei containing a valence neutron,
that is 25Mg, 13C, and 9Be are significantly more sensi-

9Be 13C 14N 15N 25Mg
I⇡ 3/2� 1/2� 1+ 1/2� 5/2+

µexpt -1.177 0.702 0.404 -0.283 -0.855
NCSM calculations

µ -1.05 0.44 0.37 -0.25 -0.50
A 0.016 -0.028 0.036 0.088 0.035
hsp,zi 0.009 -0.049 -0.183 -0.148 0.06
hsn,zi 0.360 -0.141 -0.1815 0.004 0.30
ax 0.035 -0.019 0.0002 0.015 0.024
 0.050 -0.046 0.037 0.103 0.057

Single particle model calculations
V. p. n n n, p p n
V. o. p3/2 p1/2 p1/2 p1/2 d5/2
K -2 1 1 1 -3
A 0.007 -0.007 0.035 0.044 0.014
ax 0.050 -0.017 0.0 0.017 0.050
hfs -0.001 0.001 0.0006 -0.0004 -0.002
 0.056 -0.023 0.036 0.060 0.062

TABLE I: Magnetic moments (in µN), anapole
moment coupling constants, spin operator matrix
elements, and ax coupling constants for 9Be, 13C,

14,15N and 25Mg obtained within NCSM. The results
obtained using the single particle model are also shown,
along with the valence particle (V.p.) and the valence

orbital (V.o) for each nucleus.
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FIG. 2: Dependence of the anapole moment coupling
constant A for 9Be on the size of the NCSM basis

characterized by Nmax. The dashed line represents A
obtained in the single-particle model.

tive to ax, while in the 14N and 15N nuclei the anapole
moment e↵ect dominates. However, a di↵erent picture
emerges from the NCSM calculations: ax still domi-
nates in 9Be, while 14N and 15N are more sensitive to
the anapole moments, and 25Mg and 13C have roughly
the same sensitivities to the two e↵ects. Furthermore,
within the single particle model, the total NSD-PV ef-
fect is roughly equivalent in 9Be, 15N, 25Mg, while the
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possible to measure NSD-PV e↵ects in all three nuclei of
these molecules, which would allow the various underly-
ing parity violating e↵ects to be deconvolved.

Light triatomic molecules are especially attractive can-
didates for precision measurements of NSD-PV. Proper
interpretation of an NSD-PV measurement relies on
accurate molecular and nuclear structure parameters.
High-accuracy theoretical determination of the molecu-
lar properties becomes more computationally tractable
for lighter systems, and, even more importantly, nuclear
calculations are significantly more accurate and more re-
liable than in heavy elements. Here, we perform rig-
orous, high accuracy calculations of the molecular and
nuclear parameters required to interpret NSD-PV mea-
surements in molecules composed of light elements Be,
C, N, and Mg. We find that the parameters characteriz-
ing the molecule-specific sensitivity are in line with those
of isoelectronic diatomic molecules [19, 20], as well as
prior semiemprical estimates [18, 21]. However, our ab
initio nuclear calculations find the nuclear anapole mo-
ment interactions to be much stronger (typically 2 to 3
times larger) than predicted by a standard single-particle
model [7, 8, 22, 23], while NSD-PV e↵ects attributed
to Z boson exchange are typically reduced. This high-
lights the necessity of including many-body e↵ects for
correctly interpreting NSD-PV measurements, even in
light nuclear systems. Moreover, the Be and Mg cyanide
and isocyanide molecules considered here have favorable
laser cooling and trapping properties which are essential
to enabling high-sensitivity measurements through long
interaction time.

II. THEORY

The NSD-PV interaction with the atomic or molecular
electrons can be defined by the following e↵ective Hamil-
tonian [8, 24],

H
e↵
NSD-PV =

GFp
2

⇣↵ · I
I

⌘
⇢(r), (1)

where GF is the Fermi weak interaction coupling con-
stant. The Dirac matrices ↵ are defined in the usual
way, I is the nuclear spin, and ⇢(r) is the nuclear den-
sity distribution function normalized to 1.

In a given nucleus, various underlying electroweak in-
teractions contribute to the total NSD-PV e↵ect:  =
A + ax + hfs. In this section, we proceed by consider-
ing each of these three terms in turn, then explore how
to evaluate Eq. (1) in a molecular system.

The e↵ective coupling constant A describes the
strength of the nuclear anapole moment interaction. In
a simple valence nucleon model, A takes the following
form [8, 24],

A =
9

10

↵µ⌫

mPr0
g⌫A

2/3 K

I + 1

' 1.15⇥ 10�3
g⌫µ⌫A

2/3 K

I + 1
,

(2)

where ↵ ' 1/137 is the fine structure constant, mP is
the proton mass, r0 ' 1.2 fm is the scale of the nuclear
radius, µ⌫ (µp=2.8 for proton, µp=-1.9 for neutron) is
the nucleon magnetic moment in nuclear magnetons, A
is the mass number, and K = (I + 1/2)(�1)I�`⌫+1/2,
with l⌫ being the orbital angular momentum of the ex-
ternal unpaired nucleon. The anapole contribution also
depends on the poorly-known dimensionless constants g⌫
(⌫ = p, n), which characterize the nucleon-nucleus weak
potential. In Refs. [8, 25] these constants were expressed
in terms of the meson exchange model, and in Ref. [26]
the results based on di↵erent calculations of the meson-
nucleon interactions are presented. Using the most recent
experimental data [27], the authors of Ref. [26] obtained
gp = 3.4 ± 0.8 and gn = 0.9 ± 0.6. In the following, we
will use central points gp = 3.4 and gn = 0.9 for the nu-
merical estimates. We note that this updated estimate
of gn has opposite sign compared to the one used in ear-
lier molecule NSD-PV considerations [18, 28]. One of the
aims of the measurements of NSD-PV e↵ects is to extract
the accurate values of these constants.
The nuclear anapole moment of 133Cs was confirmed

at a 7� significance level by Wood et al., with the value
of A ' 0.392 ± 0.056 [5]. A more accurate theorecti-
cal treatment performed after the experiment obtained
a similar value [25]. Further NSD-PV measurements in
Cs with improved accuracy have been proposed [29, 30],
and additional experiments have been designed to mea-
sure the anapole moment in other atoms with unpaired
nucleons, such as 137Ba (using the BaF molecule) [15],
163Dy [31], 171Yb [32], and 212Fr [33].

The second contribution, ax, is associated with the Z
exchange interaction between the electron vector and the
nucleon axial-vector currents (VeAN ) [9]; the magnitude
of ax within the nuclear shell model is defined as [7]

ax = C2
1/2�K

I + 1
, (3)

where C2 represents the VeAN coupling and takes the
value C2 ⌘ �C2p for proton and C2 ⌘ �C2n for neutron
[34]. Here, C2p and C2n are given by

C2p = �C2n = gA(1� 4 sin2 ✓W )/2 ' 0.05, (4)

with gA ' 1.26 being a scale factor accounting for the
partially conserved axial vector current, and sin2✓W =
0.23126(5) [35].
The PVDIS experiment [10] combined with the Cs

PV measurement [5] provides the best determination
to date of the linear combination 2C2u � C2d (u and
d standing for the up and the down quarks, respec-
tively) with a 50% uncertainty, with substantial improve-
ment expected from the upcoming SoLID experiment
[11]; the orthogonal quadrature is currently known with
several times less precision. Measurements of NSD-PV
in light molecule systems are highly complimentary to
the on-going scattering-based measurements. Because
9Be and 25Mg possess an unpaired neutron, measure-
ments of NSD-PV in these nuclei are primarily sensi-
tive to C2n ' �0.4C2u + 0.8C2d [36]. Combined with

ax ' �2C2phsp,zi � 2C2nhsn,zi ' �0.1hsp,zi+ 0.1hsn,zi
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FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. N and e

� label nucleons and
atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

HPV =
GFp
2

X

q

⇣
C

(1)

q
ē�µ�5e q̄�

µ
q + C

(2)

q
ē�µe q̄�

µ
�5q

⌘
,

(32)
where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
(1)

q ; the constants C
(2)

q describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,

C
(1)

p
= 2C(1)

u
+ C

(1)

d
,

C
(1)

n
= C

(1)

u
+ 2C(1)

d
,

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle ✓W:

C
(1)

p
=

1

2

�
1� 4 sin2✓W

�
,

C
(1)

n
= �1

2
,

C
(2)

p
= �C

(2)

n
= gAC

(1)

p
,

where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di↵erence between proton and
neutron distributions, we reduce the corresponding part
of HPV to an e↵ective weak Hamiltonian in the electron
sector

HW = QW

GFp
8
�5 ⇢ (r) , (33)

where ⇢ (r) is the nuclear density and QW is a nuclear
weak charge. The non-relativistic limit of the operator
�5 ⇢ (r) is

1

2c
[2⇢(r)(� · p)� i(� ·r⇢)] ,

where p is the linear momentum operator and � are elec-
tron Pauli matrices.
The nuclear weak charge QW entering the e↵ective

weak Hamiltonian is

QW ⌘ 2Z C
(1)

p
+ 2N C

(1)

n
,

where Z and N are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and QW ⇡ �N . This is a “tree-level” [or
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Measurements of nuclear spin-dependent parity-violating (NSD-PV) effects provide an excellent opportunity
to test nuclear models and to search for physics beyond the Standard Model. Molecules possess closely
spaced states with opposite parity which may be easily tuned to degeneracy to greatly enhance the observed
parity-violating effects. A high-sensitivity measurement of NSD-PV effects using light triatomic molecules is in
preparation [E. B. Norrgard et al., Commun. Phys. 2, 77 (2019)]. Importantly, by comparing these measurements
in light nuclei with prior and ongoing measurements in heavier systems, the contribution to NSD-PV from
Z0-boson exchange between the electrons and the nuclei may be separated from the contribution of the nuclear
anapole moment. Furthermore, light triatomic molecules offer the possibility to search for new particles, such
as the postulated Z ′ boson. In this work, we detail a sensitive measurement scheme and present high-accuracy
molecular and nuclear calculations needed for interpretation of NSD-PV experiments on triatomic molecules
composed of light elements, Be, Mg, N, and C. The ab initio nuclear structure calculations, performed within
the no-core shell model provide a reliable prediction of the magnitude of different contributions to the NSD-PV
effects in the four nuclei. These results differ significantly from the predictions of the standard single-particle
model and highlight the importance of including many-body effects in such calculations. In order to extract
the NSD-PV contributions from measurements, a parity-violating interaction parameter WPV, which depends
on the molecular structure, needs to be known with a high accuracy. We have calculated these parameters
for the triatomic molecules of interest using the relativistic coupled-cluster approach. In order to facilitate
the interpretation of future experiments we provide uncertainties on the calculated parameters. A scheme for
measurement using laser-cooled polyatomic molecules in a molecular fountain is presented, along with an
estimate of the expected sensitivity of such an experiment. This experimental scheme, combined with the
presented state-of-the-art calculations, opens exciting prospects for a measurement of the anapole moment and
the PV effects due to the electron-nucleon interactions with unprecedented accuracy and for a new path towards
detection of signatures of physics beyond the Standard Model.
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I. INTRODUCTION

Measurements and calculations of parity-violating effects
in atoms and molecules are important both for the verifica-
tion of the Standard Model (SM) and for the investigation
of phenomena that cannot be explained within this model,
such as the nature of dark matter and matter-antimatter asym-
metry. One of the candidates for the dark-matter particles is
a low-mass Z ′ boson [1–3]. The best limits on the parity-
violating interaction of this Z ′ boson with electrons, protons,
and neutrons were obtained from the data on atomic par-
ity violation [4]; in particular, information on its interaction
with nucleons was extracted from the measurements of the
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nuclear anapole moment of the 133Cs nucleus in Ref. [5].
The possibility to study the nuclear anapole moments in
additional systems, and thus to set further constraints on
this interaction, provides a major motivation for the current
work.

The notion of the anapole moment was introduced by
Zel’dovich in 1958 [6]. The nuclear anapole moment was
originally considered in Ref. [7] and calculated in Ref. [8]
for a number of heavy atoms. This work also proposed pos-
sible schemes to observe nuclear anapole-moment effects in
atomic and molecular experiments. Studies of the nuclear
anapole-moment effects can provide information about parity-
violating nuclear forces [7,8] and may be considered as a
test of nuclear theory and low-energy quantum chromody-
namics. The nuclear anapole moment rapidly increases with
the nucleon number A (as A2/3) and dominates the nuclear
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were able to reach was Nmax = 9, while for the other p-shell
nuclei we calculated up to Nmax = 7 using the importance
truncation [49,50] for Nmax=7. The 25Mg is on the borderline
of NCSM applicability. Only calculations up to Nmax=3 were
performed using importance truncation for Nmax=3. The m-
scheme dimensions of the largest basis spaces were of the
order of 108. The HO frequency of h̄!=20 MeV, optimized
in Ref. [45] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces; the unnatural parity eigen-
states, in the odd Nmax spaces. The parity-nonconserving
(PNC) NN interaction admixes the unnatural parity states in
the ground state,

|ψgs I⟩ = |ψgs Iπ ⟩ +
∑

j

|ψ j I−π ⟩

× 1
Egs − Ej

⟨ψ j I−π |V PNC
NN |ψgs Iπ ⟩, (9)

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue, and Holstein (DDH) PNC NN
interaction from Ref. [51] with their recommended param-
eter values except for the fπ ≡ h1

π=2.6 × 10−7, taken from
Ref. [30]. In the NCSM, when the |ψgs Iπ ⟩ is calculated in
Nmax space, the corresponding unnatural parity states appear-
ing in Eq. (9) are obtained in Nmax+1 space. It is not necessary
to compute many excited unnatural parity states as Eq. (9)
suggests. Rather, first, we solve the standard Schrödinger
equation using the Hamiltonian H consisting of the kinetic
term and the NN N3LO+3N(lnl) interaction and obtain the
|ψgsIπ ⟩ wave function, and second, we invert the generalized
Schrödinger equation with an inhomogeneous term,

(Egs − H )|ψgs I⟩ = V PNC
NN |ψgs Iπ ⟩, (10)

to obtain the unnatural parity admixture in the ground state.
The inversion is performed by the Lanczos continued fraction
method [52–54].

In the presented calculations, we use the spin part of the
anapole operator

as = πe
m

A∑

i=1

µi(ri × σ i ) , (11)

which gives the dominant contribution to the anapole mo-
ment [28]. In Eq. (11), m is the nucleon mass and µi is
the nucleon magnetic moment in units of nuclear magnetons,
i.e., µi=µp(1/2+tz,i ) + µn(1/2−tz,i ) with tz,i=1/2 (−1/2)
for proton (neutron). The relationship between κA and as is
given by

κA =
√

2e
GF

as, (12)

with

as = ⟨ψgs I Iz=I|a(1)
s,0|ψgs I Iz=I⟩. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [55] and find for the dimen-

TABLE I. Magnetic moments (in units of nuclear magneton)
[27,57–61], anapole-moment coupling constants, spin operator ma-
trix elements, and κax coupling constants for 9Be, 13C, 14,15N, and
25Mg obtained within the NCSM. The results obtained using the
single-particle model are also shown, along with the valence particle
(V.p.) and the valence orbital (V.o.) for each nucleus.

9Be 13C 14N 15N 25Mg

Iπ 3/2− 1/2− 1+ 1/2− 5/2+

µexp. −1.177a 0.702b 0.404c −0.283d −0.855e

NCSM calculations
µ −1.05 0.44 0.37 −0.25 −0.50
κA 0.016 −0.028 0.036 0.088 0.035
⟨sp,z⟩ 0.009 −0.049 −0.183 −0.148 0.06
⟨sn,z⟩ 0.360 −0.141 −0.1815 0.004 0.30
κax 0.035 −0.009 0.0002 0.015 0.024
κ 0.050 −0.037 0.037 0.103 0.057

Single-particle model calculations
V.p. n n n, p p n
V.o. p3/2 p1/2 p1/2 p1/2 d5/2

K −2 1 1 1 −3
κA 0.007 −0.007 0.035 0.044 0.014
κax 0.050 −0.017 0.0 0.017 0.050
κhfs −0.001 0.001 0.0006 −0.0004 −0.002
κ 0.056 −0.023 0.036 0.060 0.062

aReferences [27] and [57].
bReferences [27] and [58].
cReferences [27] and [59].
dReferences [27] and [60].
eReferences [27] and [61].

sionless coupling constant κA

κA = −i4π
e2

GF

h̄
mc

(II10|II )√
2I + 1

×
∑

j

⟨ψgs Iπ ||
√

4π/3
A∑

i=1

µiri[Y1(r̂i )σi](1)||ψ j I−π ⟩

× 1
Egs − Ej

⟨ψ j I−π |V PNC
NN |ψgs Iπ ⟩, (14)

where (II10|II )=I/
√

I (I + 1).
We have also performed NCSM calculations for the ma-

trix elements of the spin operators that serve as input for
the calculation of the coupling constant κax= − 2C2p⟨sp,z⟩ −
2C2n⟨sn,z⟩≃ − 0.1⟨sp,z⟩+0.1⟨sn,z⟩. The spin operator matrix
elements are defined as

⟨sν,z⟩≡⟨ψgs Iπ Iz=I|sν,z|ψgs Iπ Iz=I⟩, (15)

with ν=p, n.
Our results for the anapole-moment coupling constants κA

and κax in 9Be, 13C, 14,15N, and 25Mg are summarized in
Table I. Overall, the basis size convergence of the results is
quite reasonable, as shown in Fig. 1, presenting the depen-
dence of the κA of 9Be on the NCSM basis size characterized
by Nmax. We can thus evaluate the uncertainties due to the
basis size convergence at about 10% (25% for 25Mg). The
other sources of uncertainty are renormalization and incom-
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§ Contributions from nucleon axial-vector and the anapole moment
26

e e

Z 0

Ae

VN

e e

Z 0

AN

Ve
e e e e

Z 0

Ae

VN

(a) (c)(b) (d)

(( ( ( ( ( ( (

FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. N and e

� label nucleons and
atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

HPV =
GFp
2

X

q

⇣
C

(1)

q
ē�µ�5e q̄�

µ
q + C

(2)

q
ē�µe q̄�

µ
�5q

⌘
,

(32)
where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
(1)

q ; the constants C
(2)

q describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,

C
(1)

p
= 2C(1)

u
+ C

(1)

d
,

C
(1)

n
= C

(1)

u
+ 2C(1)

d
,

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle ✓W:

C
(1)

p
=

1

2

�
1� 4 sin2✓W

�
,

C
(1)

n
= �1

2
,

C
(2)

p
= �C

(2)

n
= gAC

(1)

p
,

where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di↵erence between proton and
neutron distributions, we reduce the corresponding part
of HPV to an e↵ective weak Hamiltonian in the electron
sector

HW = QW

GFp
8
�5 ⇢ (r) , (33)

where ⇢ (r) is the nuclear density and QW is a nuclear
weak charge. The non-relativistic limit of the operator
�5 ⇢ (r) is

1

2c
[2⇢(r)(� · p)� i(� ·r⇢)] ,

where p is the linear momentum operator and � are elec-
tron Pauli matrices.
The nuclear weak charge QW entering the e↵ective

weak Hamiltonian is

QW ⌘ 2Z C
(1)

p
+ 2N C

(1)

n
,

where Z and N are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and QW ⇡ �N . This is a “tree-level” [or

ax
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Measurements of nuclear spin-dependent parity-violating (NSD-PV) effects provide an excellent opportunity
to test nuclear models and to search for physics beyond the Standard Model. Molecules possess closely
spaced states with opposite parity which may be easily tuned to degeneracy to greatly enhance the observed
parity-violating effects. A high-sensitivity measurement of NSD-PV effects using light triatomic molecules is in
preparation [E. B. Norrgard et al., Commun. Phys. 2, 77 (2019)]. Importantly, by comparing these measurements
in light nuclei with prior and ongoing measurements in heavier systems, the contribution to NSD-PV from
Z0-boson exchange between the electrons and the nuclei may be separated from the contribution of the nuclear
anapole moment. Furthermore, light triatomic molecules offer the possibility to search for new particles, such
as the postulated Z ′ boson. In this work, we detail a sensitive measurement scheme and present high-accuracy
molecular and nuclear calculations needed for interpretation of NSD-PV experiments on triatomic molecules
composed of light elements, Be, Mg, N, and C. The ab initio nuclear structure calculations, performed within
the no-core shell model provide a reliable prediction of the magnitude of different contributions to the NSD-PV
effects in the four nuclei. These results differ significantly from the predictions of the standard single-particle
model and highlight the importance of including many-body effects in such calculations. In order to extract
the NSD-PV contributions from measurements, a parity-violating interaction parameter WPV, which depends
on the molecular structure, needs to be known with a high accuracy. We have calculated these parameters
for the triatomic molecules of interest using the relativistic coupled-cluster approach. In order to facilitate
the interpretation of future experiments we provide uncertainties on the calculated parameters. A scheme for
measurement using laser-cooled polyatomic molecules in a molecular fountain is presented, along with an
estimate of the expected sensitivity of such an experiment. This experimental scheme, combined with the
presented state-of-the-art calculations, opens exciting prospects for a measurement of the anapole moment and
the PV effects due to the electron-nucleon interactions with unprecedented accuracy and for a new path towards
detection of signatures of physics beyond the Standard Model.
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I. INTRODUCTION

Measurements and calculations of parity-violating effects
in atoms and molecules are important both for the verifica-
tion of the Standard Model (SM) and for the investigation
of phenomena that cannot be explained within this model,
such as the nature of dark matter and matter-antimatter asym-
metry. One of the candidates for the dark-matter particles is
a low-mass Z ′ boson [1–3]. The best limits on the parity-
violating interaction of this Z ′ boson with electrons, protons,
and neutrons were obtained from the data on atomic par-
ity violation [4]; in particular, information on its interaction
with nucleons was extracted from the measurements of the
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nuclear anapole moment of the 133Cs nucleus in Ref. [5].
The possibility to study the nuclear anapole moments in
additional systems, and thus to set further constraints on
this interaction, provides a major motivation for the current
work.

The notion of the anapole moment was introduced by
Zel’dovich in 1958 [6]. The nuclear anapole moment was
originally considered in Ref. [7] and calculated in Ref. [8]
for a number of heavy atoms. This work also proposed pos-
sible schemes to observe nuclear anapole-moment effects in
atomic and molecular experiments. Studies of the nuclear
anapole-moment effects can provide information about parity-
violating nuclear forces [7,8] and may be considered as a
test of nuclear theory and low-energy quantum chromody-
namics. The nuclear anapole moment rapidly increases with
the nucleon number A (as A2/3) and dominates the nuclear
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were able to reach was Nmax = 9, while for the other p-shell
nuclei we calculated up to Nmax = 7 using the importance
truncation [49,50] for Nmax=7. The 25Mg is on the borderline
of NCSM applicability. Only calculations up to Nmax=3 were
performed using importance truncation for Nmax=3. The m-
scheme dimensions of the largest basis spaces were of the
order of 108. The HO frequency of h̄!=20 MeV, optimized
in Ref. [45] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces; the unnatural parity eigen-
states, in the odd Nmax spaces. The parity-nonconserving
(PNC) NN interaction admixes the unnatural parity states in
the ground state,

|ψgs I⟩ = |ψgs Iπ ⟩ +
∑

j

|ψ j I−π ⟩

× 1
Egs − Ej

⟨ψ j I−π |V PNC
NN |ψgs Iπ ⟩, (9)

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue, and Holstein (DDH) PNC NN
interaction from Ref. [51] with their recommended param-
eter values except for the fπ ≡ h1

π=2.6 × 10−7, taken from
Ref. [30]. In the NCSM, when the |ψgs Iπ ⟩ is calculated in
Nmax space, the corresponding unnatural parity states appear-
ing in Eq. (9) are obtained in Nmax+1 space. It is not necessary
to compute many excited unnatural parity states as Eq. (9)
suggests. Rather, first, we solve the standard Schrödinger
equation using the Hamiltonian H consisting of the kinetic
term and the NN N3LO+3N(lnl) interaction and obtain the
|ψgsIπ ⟩ wave function, and second, we invert the generalized
Schrödinger equation with an inhomogeneous term,

(Egs − H )|ψgs I⟩ = V PNC
NN |ψgs Iπ ⟩, (10)

to obtain the unnatural parity admixture in the ground state.
The inversion is performed by the Lanczos continued fraction
method [52–54].

In the presented calculations, we use the spin part of the
anapole operator

as = πe
m

A∑

i=1

µi(ri × σ i ) , (11)

which gives the dominant contribution to the anapole mo-
ment [28]. In Eq. (11), m is the nucleon mass and µi is
the nucleon magnetic moment in units of nuclear magnetons,
i.e., µi=µp(1/2+tz,i ) + µn(1/2−tz,i ) with tz,i=1/2 (−1/2)
for proton (neutron). The relationship between κA and as is
given by

κA =
√

2e
GF

as, (12)

with

as = ⟨ψgs I Iz=I|a(1)
s,0|ψgs I Iz=I⟩. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [55] and find for the dimen-

TABLE I. Magnetic moments (in units of nuclear magneton)
[27,57–61], anapole-moment coupling constants, spin operator ma-
trix elements, and κax coupling constants for 9Be, 13C, 14,15N, and
25Mg obtained within the NCSM. The results obtained using the
single-particle model are also shown, along with the valence particle
(V.p.) and the valence orbital (V.o.) for each nucleus.

9Be 13C 14N 15N 25Mg

Iπ 3/2− 1/2− 1+ 1/2− 5/2+

µexp. −1.177a 0.702b 0.404c −0.283d −0.855e

NCSM calculations
µ −1.05 0.44 0.37 −0.25 −0.50
κA 0.016 −0.028 0.036 0.088 0.035
⟨sp,z⟩ 0.009 −0.049 −0.183 −0.148 0.06
⟨sn,z⟩ 0.360 −0.141 −0.1815 0.004 0.30
κax 0.035 −0.009 0.0002 0.015 0.024
κ 0.050 −0.037 0.037 0.103 0.057

Single-particle model calculations
V.p. n n n, p p n
V.o. p3/2 p1/2 p1/2 p1/2 d5/2

K −2 1 1 1 −3
κA 0.007 −0.007 0.035 0.044 0.014
κax 0.050 −0.017 0.0 0.017 0.050
κhfs −0.001 0.001 0.0006 −0.0004 −0.002
κ 0.056 −0.023 0.036 0.060 0.062

aReferences [27] and [57].
bReferences [27] and [58].
cReferences [27] and [59].
dReferences [27] and [60].
eReferences [27] and [61].

sionless coupling constant κA

κA = −i4π
e2

GF

h̄
mc

(II10|II )√
2I + 1

×
∑

j

⟨ψgs Iπ ||
√

4π/3
A∑

i=1

µiri[Y1(r̂i )σi](1)||ψ j I−π ⟩

× 1
Egs − Ej

⟨ψ j I−π |V PNC
NN |ψgs Iπ ⟩, (14)

where (II10|II )=I/
√

I (I + 1).
We have also performed NCSM calculations for the ma-

trix elements of the spin operators that serve as input for
the calculation of the coupling constant κax= − 2C2p⟨sp,z⟩ −
2C2n⟨sn,z⟩≃ − 0.1⟨sp,z⟩+0.1⟨sn,z⟩. The spin operator matrix
elements are defined as

⟨sν,z⟩≡⟨ψgs Iπ Iz=I|sν,z|ψgs Iπ Iz=I⟩, (15)

with ν=p, n.
Our results for the anapole-moment coupling constants κA

and κax in 9Be, 13C, 14,15N, and 25Mg are summarized in
Table I. Overall, the basis size convergence of the results is
quite reasonable, as shown in Fig. 1, presenting the depen-
dence of the κA of 9Be on the NCSM basis size characterized
by Nmax. We can thus evaluate the uncertainties due to the
basis size convergence at about 10% (25% for 25Mg). The
other sources of uncertainty are renormalization and incom-

052828-4

Expecting a significant enhancement of the anapole moment for 11Be

11Be anapole moment calculations in progress –   
NCSM with continuum (NCSMC) applied
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Examples of Nmax convergence 3
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Figure 1. The polarization contribution to 3He EDM (in e fm)
due to the ⇡-exchange PTV NN interaction (5). Dependence
on the NCSM basis size characterized by Nmax for two HO
frequencies is shown. Chiral N3LO PTC NN interaction from
Ref. [35] was used.

with the electric dipole moment operator projected in the
z-direction.

To compute matrix elements of the V
PTV
NN interaction

(5) and solve the equation (6), we adapted codes used for
calculations of anapole moments of light nuclei reported
in Ref. [48]. To benchmark our codes, we calculated the
EDM of 3He using PTC chiral N3LO NN interaction [35]
without any renormalization as 3He EDM results for this
interaction together with the PTV interaction (5) were
published in Ref. [17]. The NCSM basis convergence for
the polarization contribution to 3He EDM is shown in
Fig. 1 and our D

(1) and D
(pol) results are summarized

in Table I. The D
(pol)

Nmax convergence is quite satis-
factory while that of D(1) is still faster. In Fig. 1, the
odd Nmax values correspond to the unnatural states in
Eq. (4), i.e., the largest space for the ground-state was
Nmax=16. While our D

(1) results agree with those re-
ported in Ref. [17] (Table 1, the EFT NN column in
that paper), the present D

(pol) results are smaller by a
factor of 1/2 compared to Ref. [17] (Table 2, the EFT
NN columns in that paper). It should be noted that the
same 1/2 discrepancy was reported in Ref. [20] for the
isoscalar and isovector terms, while a discrepancy of 1/5
was found for the isotensor terms. Similarly, a factor
of 1/2 di↵erence was found in Ref. [25] although for all
the terms. Our results are then consistent with those of
Ref. [25]. The NCSM was applied in Ref. [17] (and also in

1 3 5 7 9 11
Nmax

0

0.005

0.01

0.015
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6Li
9Be

Figure 2. The polarization contribution to 6Li and 9Be EDM
(in e fm) due to the isovector ⇡-exchange PTV NN interac-
tion (5). Dependence on the NCSM basis size characterized
by Nmax is shown. SRG-evolved chiral NN+3N(lnl) PTC in-
teraction from Ref. [34] was used. The HO frequency ~⌦=20
MeV was used.

Ref. [19]). However, the Jacobi-coordinate HO basis was
employed as opposed to the SD HO basis used here, i.e.,
di↵erent codes were utilized. We plan to reexamine the
codes used in Ref. [17] to investigate the issue further.
Basis-size convergence of the polarization contribu-

tions to the EDM for p-shell nuclei is also quite reasonable
and comparable to that of the anapole moments [48]. In
Fig. 2, we show the Nmax convergence of the isovector
⇡-exchange contribution for 6Li and 9Be as a representa-
tive example. Again, the the oddNmax values correspond
to the unnatural-parity states in Eq. (4). The largest
spaces that we were able to reach for 6,7Li wereNmax=11,
while for 9Be Nmax=9. For 10,11B, our calculations have
been performed up to Nmax=7. For 13C, 14,15N we also
reached Nmax=7 basis space. However, we applied the
importance truncation [50, 51] at Nmax=7 for these iso-
topes. The 19F is on the borderline of NCSM applica-
bility. Only calculations up to Nmax=5 were performed
although without any importance truncation. The M -
scheme dimension was 189 million in this case.

OurD(1) andD
(pol) results for all considered nuclei are

shown in Table I. In Fig. 3, we display all the calculated
polarization contributions to the EDMs of the p-shell sta-
ble nuclei and 19F. We can evaluate the uncertainties of
our results due to the basis size convergence at about
10% (20% for 19F). The other sources of uncertainty are
renormalization and incompleteness of the transition op-
erators and the uncertainties due to the description of the
nuclear PTC and PTV forces. A rough estimate of the
accuracy of our calculations can be obtained by a com-
parison of the calculated and experimental magnetic mo-
ments shown in the last two columns of Table I. For 19F,
we obtain in addition the magnetic moment +3.73 µN

for the 5/2+ excited state that can be compared to the

Examples of Nmax convergence
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4

dp dn Ḡ0
⇡ Ḡ1

⇡ Ḡ2
⇡ Ḡ0

⇢ Ḡ1
⇢ Ḡ2

⇢ Ḡ0
! Ḡ1

! µ µexp.

3He -0.031 0.905 0.0073 0.011 0.019 -0.00062 0.000063 -0.0014 0.00042 -0.00086 -1.79 -2.127
6Li 0.892 0.890 0.00006 0.0171 0.0002 -0.000003 0.00158 -0.00002 -0.000002 -0.0016 +0.84 +0.822
7Li 0.930 0.018 -0.0096 0.0106 -0.0233 0.00131 0.00085 0.0029 -0.00072 -0.0013 +2.99 +3.256
9Be 0.018 0.720 0.0007 0.0116 0.0053 0.00019 0.00005 -0.0002 0.00046 -0.0004 -1.05 -1.177
10B 0.852 0.848 -0.0001 0.0281 -0.0002 0.00001 0.00075 0.00002 -0.00002 -0.0017 +1.83 +1.801
11B 0.444 0.050 -0.0070 0.0127 -0.0219 0.00039 0.00019 0.0019 -0.00016 -0.0010 +2.09 +2.689
13C -0.098 -0.282 -0.0058 -0.0084 -0.0316 0.00016 -0.00052 0.0037 0.00004 0.0010 +0.44 +0.702
14N -0.366 -0.363 0.0003 -0.0172 0.0006 -0.00003 -0.00081 -0.0001 0.00002 0.0014 +0.37 +0.404
15N -0.296 0.008 0.0102 -0.0095 0.0228 -0.00052 -0.00044 -0.0015 0.00039 0.0008 -0.25 -0.283
19F 0.818 -0.052 -0.0175 0.0089 -0.0226 0.00236 0.00125 0.0027 -0.00096 -0.0014 +2.85 +2.629

Table I. The nucleonic and polarization contributions to EDMs of 3He, stable p-shell nuclei, and 19F (in e fm) decomposed as
coe�cients of dp, dn, and ḠT

� , where � stands for ⇡, ⇢, or ! exchanges. In the last two columns, calculated and experimental
(from Ref. [49]) nuclear magnetic dipole moments (in µN) are compared. SRG-evolved chiral NN+3N(lnl) PTC interaction
from Ref. [34] was used except for 3He where the chiral N3LO PTC NN [35] was utilized.

Figure 3. The polarization contribution to EDMs of stable p-shell nuclei and 19F (in e fm) due to the �-exchange PTV NN
interaction (5), where � stands for ⇡, ⇢, or !. SRG-evolved chiral NN+3N(lnl) PTC interaction from Ref. [34] was used.

mental magnetic moments shown in the last two columns
of Table I. For 19F, we obtain in addition the magnetic
moment +3.73 µN for the 5/2+ excited state that can
be compared to the experimental +3.607(8) µN [49]. We
note that we used a one-body M1 operator. The largest
discrepancies occur for 11B and 13C from which we esti-
mate the uncertainty of our results at about 30%.

The present results for 6,7Li, 9Be, 11B, and 13C nuclei
can be compared to the cluster model calculations re-

ported in Refs. [25–30]. For 6Li, cluster model results are
available for dp, dn, and Ḡ

1
� contributions [25, 27, 28] and

they are in a reasonable agreement with our calculations
except for Ḡ

1
!. For 7Li, available cluster model results

for dp and Ḡ
T
⇡ [28, 30] are in a very good agreement with

our ab initio calculations. For 9Be, our results for dn and
Ḡ

1
⇡ are close to those reported in Ref. [28, 29]. However,

our Ḡ
T
! results are smaller than the cluster model ones

from Ref. [25]. Our 11B results are within a factor of two
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§ Ab initio no-core shell model capable to calculate accurately nuclear structure effects needed for analysis of parity-
violation and time-reversal violation experiments in atoms and molecules

§ First results available
§ 10% precision within the reach

§ Different nuclei can be used to probe different terms of the parity & time-reversal violating interaction
§ Theoretical calculations of EDMs allow us to suggest promising candidates for planned experiments in storage rings
§ Improvements include

§ SRG renormalization of the parity- & time-reversal violating interactions and the anapole & E1 operators
§ Higher-order terms of the anapole operator
§ Chiral EFT based parity- & time-reversal violating interaction with sub-leading terms

§ Outlook
§ Calculation of the 11Be EDM and the anapole moment that are expected to be strongly enhanced

§ 11Be has low lying states of opposite parity, but ground state is an extended halo state, NCSM with 
continuum (NCSMC) must be applied

§ NCSM calculations of Schiff moments for light nuclei (also useful for benchmarking with other ab initio methods)
§ PV and PVTV NN interaction matrix elements made available to the SDSU and ORNL groups for applications in 

LSM and CCM, respectively
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Thank you!
Merci!


