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Outline

§ Calculations of 6He β-decay electron spectrum including nuclear structure and recoil 
corrections – published in PLB (2022)

§ Calculations of 16N β-decay electron spectrum including nuclear structure and recoil 
corrections – ongoing, related to calculations of the muon capture on 16O 

§ Ongoing calculations of nuclear structure corrections 𝛿C and 𝛿NS for the extraction of the Vud
matrix element from the 10C→10B superallowed Fermi transition (Michael Gennari on May 1st)

§ Investigation of the β-delayed proton emission from 11Be – published in PRC (2022)

Calculations performed within the no-core shell model (NCSM),
𝛿C and 11Be decay within the NCSM with continuum (NCSMC)
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4Precise measurements of β decays to search for Physics Beyond the Standard Model 

§ Precision measurements of β-decay observables offer the possibility to search for deviations from the Standard Model
§ β-decay observables are sensitive to interference of currents of SM particles and hypothetical BSM physics
§ Such couplings are proportional to v /𝛬 , with v ≈ 174 GeV, the SM vacuum expectation value, and 𝛬 the new 

physics energy scale 
§ a ∼ 10−4 coupling between SM and BSM physics would suggest new physics at a scale that is out of the 

reach of current particle accelerators
§ Discovering such small deviations from the SM predictions demands also high-precision theoretical calculations 

§ ⇒ Nuclear structure calculations with quantified uncertainties

§ Theoretical analysis of β-decay observables of the pure Gamow-Teller (GT) transition 6He(0+ g.s.) → 6Li(1+ g.s.) using ab 
initio nuclear structure calculations in combination with the chiral effective field theory (𝝌EFT)

§ Details published in



5Precise measurements of β decays to search for Physics Beyond the Standard Model 

§ Decay rate proportional to

§ The V-A structure of the weak interaction in the Standard Model 
implies for a Gamow-Teller transition

where a�⌫ is the angular correlation coefficient between the emitted electron
and anti-neutrino, and bFierz is Fierz interference term, that can be extracted
from the electron energy spectrum measurements. The V � A structure of
the weak interaction within the Standard Model entails that, for Gamow-Teller
transitions, a�⌫ = � 1

3 , while bFierz = 0.
In the presence of beyond standard model interaction with tensor sym-

metries, aBSM
�⌫ = � 1
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T /CA) is the relative strength of the tensor (pseudo-tensor) and the
axial-vector interactions [5, 6]. Thus, �-⌫ correlation measurements are sen-
sitive to interactions of exotic, i.e., tensor, symmetries. Previous correlation
measurements from 6He got to reach a relative precision of 1% [7].

As for the Fierz term derived from the �-energy spectrum, which vanishes for
the known V �A differential distribution of Gamow-Teller �-decay transitions,
in the presence of BSM tensor interactions, it entails bBSM

Fierz =
CT+C

0
T

CA
.

Deviations from the textbook formulas, however, are also caused by finite
momentum transfer, EFT corrections, and nuclear structure effects as already
shown in [8]. Pin-pointing these effects demands a detailed calculation of the
nuclear dynamics of the weak decay.

The purpose of this letter is to provide these detailed calculations of the
nuclear dynamics for such 6He beta-decay experiments. The novelty in this
work is, not only do we perform the corrections within the standard Model, but
we also conduct accurate numeric calculations for the matrix elements, which
allows us, together with the formalism, to give a satisfactory precision estimation
of the theoretical calculation.

2 Method

2.1 Physical observables in
6
He beta decay

The 6He beta minus decay transition is a pure Gamow-Teller transition 6He (0+) !
6Li (1+) (the numbers represent the nuclei angular momentum and parity J⇡),
with an endpoints of Q = 3.510MeV. Within the standard model, the 6He beta
minus decay general differential distribution, including shape and recoil leading
corrections will take the form:
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6Precise measurements of β decays to search for Physics Beyond the Standard Model 

§ In the presence of Beyond the Standard Model interactions

§ with tensor and pseudo-tensor contributions

§ However, deviations also within the Standard Model caused by 
the finite momentum transfer, higher-order transition operators, 
and nuclear structure effects

§ Detailed, accurate, and precise calculations required
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erator ÔJ , between the initial and the final wave functions. The superscript A

2

where a�⌫ is the angular correlation coefficient between the emitted electron
and anti-neutrino, and bFierz is Fierz interference term, that can be extracted
from the electron energy spectrum measurements. The V � A structure of
the weak interaction within the Standard Model entails that, for Gamow-Teller
transitions, a�⌫ = � 1

3 , while bFierz = 0.
In the presence of beyond standard model interaction with tensor sym-

metries, aBSM
�⌫ = � 1

3

 
1�

|CT |2+
���C

0
T

���
2

2|CA|2

!
for Gamow-Teller transitions, where

CT /CA (C
0

T /CA) is the relative strength of the tensor (pseudo-tensor) and the
axial-vector interactions [5, 6]. Thus, �-⌫ correlation measurements are sen-
sitive to interactions of exotic, i.e., tensor, symmetries. Previous correlation
measurements from 6He got to reach a relative precision of 1% [7].

As for the Fierz term derived from the �-energy spectrum, which vanishes for
the known V �A differential distribution of Gamow-Teller �-decay transitions,
in the presence of BSM tensor interactions, it entails bBSM

Fierz =
CT+C

0
T

CA
.

Deviations from the textbook formulas, however, are also caused by finite
momentum transfer, EFT corrections, and nuclear structure effects as already
shown in [8]. Pin-pointing these effects demands a detailed calculation of the
nuclear dynamics of the weak decay.

The purpose of this letter is to provide these detailed calculations of the
nuclear dynamics for such 6He beta-decay experiments. The novelty in this
work is, not only do we perform the corrections within the standard Model, but
we also conduct accurate numeric calculations for the matrix elements, which
allows us, together with the formalism, to give a satisfactory precision estimation
of the theoretical calculation.

2 Method

2.1 Physical observables in
6
He beta decay

The 6He beta minus decay transition is a pure Gamow-Teller transition 6He (0+) !
6Li (1+) (the numbers represent the nuclei angular momentum and parity J⇡),
with an endpoints of Q = 3.510MeV. Within the standard model, the 6He beta
minus decay general differential distribution, including shape and recoil leading
corrections will take the form:

d!1+��

d✏d⌦k
4⇡

d⌦⌫
4⇡

=
4

⇡2
(Q� ✏)2 k✏F+

(Zf , ✏)Ccorrections

|CA|2 +
���C

0

A

���
2

2

���F (1)
A

���
2 ·

· 3
⇣
1 + �1

+��

shape

⌘ h
1 + a1

+��

�⌫
~� · ⌫̂ + b1

+��

Fierz
me

✏

i ���
D���L̂A

1

���
E���

2
, (2)

where
D���ÔJ
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7Precise measurements of β decays to search for Physics Beyond the Standard Model 

§ 6He β−-decay differential distribution within the SM—including 
the leading shape and recoil corrections (NLO in GT) 

The multipole operator L̂A
1 / 1 is the Gamow-Teller leading order, while

ĈA
1 and M̂V

1 are its NLO recoil corrections, both dominated by the two small
parameters ✏recoil and ✏qr ·✏NR. While ✏NR ⌘ PFermi

mN
⇡ 0.2, for the Q = 3.510MeV

endpoint of 6He beta decay, ✏recoil ⌘ Q
mN

⇡ 0.004 and ✏qr ⌘ QR ⇡ 0.04. All the
NLO corrections in equation (5) are accurate to the order of ✏2qr . cite recoil

paper
2.2 Nuclear matrix elements

The three nuclear operators L̂A, ĈA and M̂V appearing in equations (2) and
(5) can be expressed in terms of four basic multipole operators ⌃̂
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Here, J is the multipole number with projection MJ , A is the mass number of the
initial- and final-state nucleus, ~rj is the jth nucleon position vector, and ⌧±(j)
is the isospin raising(lowering) operator of nucleon j. The multipole operators
are defined as
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(7)

with ~�(j) being the Pauli spin matrices associated with nucleon j. In (7),
MJMJ (q~rj) = jJ(q~rj)YJMJ (⌦~rj ) and ~MJJMJ (q~rj) = jJ(q~rj)~YJJMJ (⌦~rj ), where
⌦~rj represents azimuthal and polar angles of ~rj . YJMJ and ~YJJMJ are spherical
and vector spherical harmonics, and jJ are spherical Bessel functions. Since the
multipole operators in (7) are one-body operators, the reduced matrix elements
of the many-body nuclear operators (6) can be expressed as products of one-
body transition density matrix and one-body matrix elements, as detailed in the
following section. For a harmonic oscillator (HO) single-particle basis, employed
in this work, the one-body matrix elements of all multipole operators defined in
(7) can be calculated analytically [9].

4

… longitudinal operator of the axial current, Gamow-Teller leading order

F-(Zf, E) … Fermi function, deformation of the electron wave function 
due to the EM interaction with the nucleus

Ccorr … radiative corrections, finite-mass and 
electrostatic finite-size effects, and atomic effects
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§ Higher-order Standard Model recoil and shape corrections

The multipole operator L̂A
1 / 1 is the Gamow-Teller leading order, while
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The three nuclear operators L̂A, ĈA and M̂V appearing in equations (2) and
(5) can be expressed in terms of four basic multipole operators ⌃̂

00, ⌦̂, �̂, and
⌃̂

0 from Standard-Model electroweak theory [9] as

L̂A±
JMJ

=

AX

j=1

iF (1)
A ⌃̂

00
JMJ

(q~rj) ⌧
±
(j),
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ĈA
1 and M̂V

1 are its NLO recoil corrections, both dominated by the two small
parameters ✏recoil and ✏qr ·✏NR. While ✏NR ⌘ PFermi

mN
⇡ 0.2, for the Q = 3.510MeV

endpoint of 6He beta decay, ✏recoil ⌘ Q
mN

⇡ 0.004 and ✏qr ⌘ QR ⇡ 0.04. All the
NLO corrections in equation (5) are accurate to the order of ✏2qr . cite recoil

paper
2.2 Nuclear matrix elements
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6He(0+ 1) → 6Li(1+ 0) matrix elements 

of these “one-body” operators  

gV= 1       gA= -1.2756(13)

Hadronic vector, axial vector and pseudo-scalar charges
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§ Basis expansion method
§ Harmonic oscillator (HO) basis truncated in a particular way (Nmax)
§ Why HO basis? 

§ Lowest filled HO shells match magic numbers of light nuclei 
(2, 8, 20 – 4He, 16O, 40Ca)

§ Equivalent description in relative(Jacobi)-coordinate and 
Slater determinant (SD) basis

§ Short- and medium range correlations
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12Apply ab initio No-Core Shell Model (NCSM) to calculate the 6Li and 6He 
wave functions and the operator matrix elements

§ Basis expansion method
§ Harmonic oscillator (HO) basis truncated in a particular way (Nmax)
§ Why HO basis? 

§ Lowest filled HO shells match magic numbers of light nuclei 
(2, 8, 20 – 4He, 16O, 40Ca)

§ Equivalent description in relative(Jacobi)-coordinate and 
Slater determinant (SD) basis

§ Short- and medium range correlations
§ Bound-states, narrow resonances
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Motivated by limitations of the Bloch–Horowitz–Brandow perturbative approach to
nuclear structure we have developed the non-perturbative ab initio no core shell model
(NCSM) capable of solving the properties of nuclei exactly for arbitrary nucleon–nucleon
(NN) and NN + three-nucleon (NNN) interactions with exact preservation of all
symmetries. We present the complete ab initio NCSM formalism and review highlights
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For 6Li, 6He and heavier nuclei we use the SD basis



13

§ Approach taking advantage of the separation of scales

§ Based on the symmetries of QCD
§ Chiral symmetry of QCD (mu»md»0), spontaneously broken 

with pion as the Goldstone boson
§ Degrees of freedom: nucleons + pions

§ Systematic low-momentum expansion to a given order 
(Q/Λχ)

§ Hierarchy

§ Consistency

§ Low energy constants (LEC)
§ Fitted to data
§ Can be calculated by lattice QCD

Lawrence Livermore National Laboratory 4 LLNL#PRES#XXXXXX 

To develop such an ab initio nuclear theory we: 
 1) Start with accurate nuclear forces (and currents) 

+ ... + ... + ... 

NN force NNN force NNNN force 

Q0 

LO 

Q2 

NLO 

Q3 

N2LO 

Q4 

N3LO 

Worked out by Van Kolck, Keiser, 
Meissner, Epelbaum, Machleidt, ... 

"  Two- plus three-nucleon (NN+3N) 
forces from chiral effective field 
theory (EFT) 

 

Λχ~1 GeV : 
Chiral symmetry breaking scale

Input for NCSM calculations: Nuclear forces from chiral Effective Field Theory
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§ Interactions used in this study

§ NNLOopt
§ NN only
§ Reproduces reasonably well binding energies & 

radii of A = 3,4 and 6 nuclei 

§ NNLOsat
§ NN+3N
§ More accurate for medium mass nuclei 

especially for radii

§ No further renormalization (no SRG or OLS …)
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§ Interactions used in this study

§ NNLOopt
§ NN only
§ Reproduces reasonably well binding energies & 
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17Apply ab initio No-Core Shell Model to calculate the 6Li and 6He wave 
functions and the operator matrix elements

§ Straightforward to calculate matrix elements of one-body operators

§ In our case          ,

NCSM
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A = cSDNjΦSDNj

HO (!r 1,
!r 2 , ... ,

!r A )
j
∑

N=0

Nmax

∑ =ΨA ϕ000 (
!
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with the intrinsic Hamiltonian

Ĥ =
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(~pi � ~pj)2

2mN
+

AX

i<j=1

V̂ NN
ij +

AX

i<j<k=1

V̂ 3N
ijk , (9)

Here, mN is the nucleon mass, ~p nucleon momenta, V̂ NN nucleon-nucleon
(NN) and V̂ 3N three-nucleon (3N) interaction. The � in (8) label eigenstates
with identical I⇡TTz, where I⇡T are the total angular momentum, parity, and
isospin, and Tz=(Z�N)/2.

The present calculations are performed using the Slater determinant (SD)
HO basis in the so-called M -scheme where the basis is characterized by A,
the projection Iz of the total angular moment I, parity ⇡ and Tz. Only the
eigenstates (8) obtained by diagonalization using the Lanczos algorithm have
good I and (approximately) good T .

The standard procedure to compute matrix elements of one-body operators
(e.g., operators (7) of interest here) between the initial- and final-state NCSM
wave functions obtained from Eq. (8) is to introduce one-body transition density
and evaluate

h fk
AX

j=1

ÔJ(~rj)k ii =
�1p
2J + 1

X

|↵|,|�|

h|↵|kÔJ(~r)k|�|i

⇥ h fk(a†|↵|ã|�|)Jk ii,

(10)

where ã|�|,mj
= (�1)

j��m�a|�|,�mj
, with a†↵ and a� the creation and annihila-

tion operators for the single-particle HO states |↵i and |�i, respectively, cou-
pled to the angular momentum J . Since the second quantization is applied in
the calculation of Hamiltonian matrix elements, it is straightforward to evaluate
the one-body density matrix elements �1/

p
2J + 1h fk(a†|↵|ã|�|)Jk ii once the

eigenstates are obtained. We note that in the present case | ii= |6He gs 0
+
1i,

| f i= |6Li gs 1+0i, and J=1. The operator matrix elements h|↵|kÔJ(~r)k|�|i,
reduced in the angular momentum, are evaluated between HO states which
depend on the coordinate ~r and are labeled by their nonmagnetic quantum
numbers |↵(�)|. It is to be noted that in Eq. (10) the single-particle coordi-
nates ~rj and ~r are measured with respect to the center of the HO potential
well. Thus, the matrix elements clearly contain contributions from the spurious
center-of-mass motion.

An important property of the NCSM wave functions is that they factorize
exactly as products of physical intrinsic eigenstates and a center-of-mass state
in the 0~⌦ excitation. Because of this factorization, it is possible to remove
the effect of the center-of-mass completely and introduce translational-invariant
one-body density depending on coordinates and momenta measured from the
center of mass of the nucleus, e.g., ~⇠ = �

p
A/(A� 1)(~r � ~RCM). This density

is obtained as a direct generalization of the radial translational-invariant den-
sity [13] by considering dependence on nucleon spins. In particular, we replace
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reduced in the angular momentum, are evaluated between HO states which
depend on the coordinate ~r and are labeled by their nonmagnetic quantum
numbers |↵(�)|. It is to be noted that in Eq. (10) the single-particle coordi-
nates ~rj and ~r are measured with respect to the center of the HO potential
well. Thus, the matrix elements clearly contain contributions from the spurious
center-of-mass motion.

An important property of the NCSM wave functions is that they factorize
exactly as products of physical intrinsic eigenstates and a center-of-mass state
in the 0~⌦ excitation. Because of this factorization, it is possible to remove
the effect of the center-of-mass completely and introduce translational-invariant
one-body density depending on coordinates and momenta measured from the
center of mass of the nucleus, e.g., ~⇠ = �

p
A/(A� 1)(~r � ~RCM). This density

is obtained as a direct generalization of the radial translational-invariant den-
sity [13] by considering dependence on nucleon spins. In particular, we replace

6

with the intrinsic Hamiltonian
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with identical I⇡TTz, where I⇡T are the total angular momentum, parity, and
isospin, and Tz=(Z�N)/2.

The present calculations are performed using the Slater determinant (SD)
HO basis in the so-called M -scheme where the basis is characterized by A,
the projection Iz of the total angular moment I, parity ⇡ and Tz. Only the
eigenstates (8) obtained by diagonalization using the Lanczos algorithm have
good I and (approximately) good T .

The standard procedure to compute matrix elements of one-body operators
(e.g., operators (7) of interest here) between the initial- and final-state NCSM
wave functions obtained from Eq. (8) is to introduce one-body transition density
and evaluate

h fk
AX

j=1

ÔJ(~rj)k ii =
�1p
2J + 1

X

|↵|,|�|

h|↵|kÔJ(~r)k|�|i

⇥ h fk(a†|↵|ã|�|)Jk ii,

(10)

where ã|�|,mj
= (�1)

j��m�a|�|,�mj
, with a†↵ and a� the creation and annihila-

tion operators for the single-particle HO states |↵i and |�i, respectively, cou-
pled to the angular momentum J . Since the second quantization is applied in
the calculation of Hamiltonian matrix elements, it is straightforward to evaluate
the one-body density matrix elements �1/

p
2J + 1h fk(a†|↵|ã|�|)Jk ii once the

eigenstates are obtained. We note that in the present case | ii= |6He gs 0+1i,
| f i= |6Li gs 1+0i, and J=1. The operator matrix elements h|↵|kÔJ(~r)k|�|i,
reduced in the angular momentum, are evaluated between HO states which
depend on the coordinate ~r and are labeled by their nonmagnetic quantum
numbers |↵(�)|. It is to be noted that in Eq. (10) the single-particle coordi-
nates ~rj and ~r are measured with respect to the center of the HO potential
well. Thus, the matrix elements clearly contain contributions from the spurious
center-of-mass motion.

An important property of the NCSM wave functions is that they factorize
exactly as products of physical intrinsic eigenstates and a center-of-mass state
in the 0~⌦ excitation. Because of this factorization, it is possible to remove
the effect of the center-of-mass completely and introduce translational-invariant
one-body density depending on coordinates and momenta measured from the
center of mass of the nucleus, e.g., ~⇠ = �

p
A/(A� 1)(~r � ~RCM). This density

is obtained as a direct generalization of the radial translational-invariant den-
sity [13] by considering dependence on nucleon spins. In particular, we replace

6

One-body operator matrix element

One-body density

However, NCSM wave function include spurious center of mass component 
and the “one-body” operator depends on coordinates measured from the center of mass 
of the nucleus:  
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18Apply ab initio No-Core Shell Model to calculate the 6Li and 6He wave 
functions and the operator matrix elements NCSM
§ How to do this right?

§ Introduce Jacobi coordinates, use transformations of HO wave functions
§ Done successfully in the past for radial density

!!0 =!1
A

"r!1 + r!2 + . . . + r!A# , $1a%

!!1 =!1
2

"r!1 − r!2# , $1b%

!!2 =!2
3&12 $r!1 + r!2% − r!3' , $1c%

¯

!!A−2 =!A − 2
A − 1& 1

A − 2
$r!1 + r!2 + . . . + r!A−2% − r!A−1' ,

$1d%

!!A−1 =!A − 1
A & 1

A − 1
$r!1 + r!2 + . . . + r!A−1% − r!A' . $1e%

Here, !!0 is proportional to the c.m. of the A-nucleon system:
R! =!1/A!!0. On the other hand, !!" is proportional to the rela-
tive position of the "+1st nucleon and the c.m. of the "
nucleons. Let us rewrite the last and the first equation from
(1) as

!!A−1 =!1
A
R! c.m.
A−1 −!A − 1

A
r!A, $2a%

!!0 =!A − 1
A

R! c.m.
A−1 +!1

A
r!A, $2b%

where R! c.m.
A−1=!1/A−1"r!1+r!2+ . . . +r!A−1#. Following, e.g.,

Ref. [14], the HO wave functions depending on the coordi-
nates (2) transform as

(
M1m1

$L1M1l1m1)Qq%#N1L1M1
$R! c.m.

A−1%#n1l1m1
$r!A%

= (
nlmNLM

*nlNLQ)N1L1n1l1Q+1/A−1$lmLM)Qq%

$#nlm$!!A−1%#NLM$!!0% , $3%

where *nlNLQ )N1L1n1l1Q+1/$A−1% is the general HO bracket
for two particles with the mass ratio 1/ $A−1%.

B. Nuclear density

The nuclear density operator is defined as [15]

"op$r!% =(
i=1

A

%$r! − r!i% =(
i=1

A
%$r − ri%
rri

(
lm
Ylm$r̂i%Ylm

* $r̂% . $4%

Its matrix element between an initial and a final state that
were obtained in the Cartesian-coordinate single-particle SD
basis can be written in the form

SD*A& fJfMf)"op$r!%)A&iJiMi+SD

=
1

Ĵf
( $JiMiKk)JfMf%YKk

* $r̂%Rn1l1$r%Rn2l2$r%

$*l1 12 j1,YK,l2
1
2 j2+

− 1

K̂

$SD*A& fJf,$an1l1j1
† ãn2l2j2%

$K%,A&iJi+SD. $5%

Here, )A&JM+SD is an A-nucleon eigenstate with the angular
momentum J and its third component M, K̂=!2K+1, and
ãjm= $−1% j−maj,−m. The & stands for remaining quantum num-
bers. The subscript SD refers to the fact that this state was
obtained in the Slater determinant basis, i.e., by using a
shell-model code, and, consequently, contains the spurious
c.m. component. The Rnl$r% in Eq. (5) is the radial HO wave
function with the oscillator length parameter b=b0
=!' /m(, where m is the nucleon mass. Due to our use of
the coordinate transformations (1) the oscillator length pa-
rameter is the same for all coordinates, i.e., b0. The term
$−1/ K̂%SD*A& fJf,$an1l1j1

† ãn2l2j2%
$K%,A&iJi+SD represents the

standard one-body density matrix elements (OBDME) com-
puted in shell-model codes. The coordinate r! in (5) is mea-
sured from the center of the HO potential well. Clearly, the
density given in (5) contains a contribution from the spurious
c.m. motion.
The physical density should depend on the coordinate

measured from the c.m. of the nucleus, r!−R! . The corre-
sponding matrix element is obtained by employing the eigen-
states depending on the Jacobi coordinates. By modifying the
last relation in (4) we get

*A& fJfMf)"op$r! − R! %)A&iJiMi+

= A- A
A − 1.3/2*A& fJfMf)%$!! − !!A−1%)A&iJiMi+ , $6%

where !!=−!A / $A−1%$r!−R! %, and !!A−1 given by Eq. (1e) is
reexpressed as !!A−1=−!A / $A−1%$r!A−R! %. We used the anti-
symmetry of the eigenstates and the properties of the Dirac
delta function. The relationship between the Jacobi coordi-
nate and SD eigenstates is

*r!1 . . . r!A)1 . . . )A*1 . . . *A)A&JM+SD

= *!!1 . . . !!A−1)1 . . . )A*1 . . . *A)A&JM+#000$!!0% , $7%

with ) and * the spin and isospin coordinates, respectively.
Similarly as in (5), the physical density (6) can be related

to “one-body” density matrix elements derived from the
Jacobi-coordinate eigenstates (discussed, e.g., in Appendix B
of Ref. [13]). In particular, we obtain
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Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering
and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the
target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important
role in the description of the scattering process.
Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio
translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM)
approach utilizing two- and three-nucleon chiral interactions as the only input.
Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic
multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from
the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by
exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates.
Results: The ground-state local and nonlocal densities of 4,6,8He, 12C, and 16O are calculated and applied to optical
potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering
off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality
and the COM removal is discussed.
Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves
agreement with experiment in comparison to results generated with the local densities especially for light nuclei.
For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the
data although a more sophisticated model for the optical potential is required to properly describe the analyzing
powers.

DOI: 10.1103/PhysRevC.97.034619

I. INTRODUCTION

The nuclear optical potential [1] is a successful tool for
the investigation of nucleon-nucleus (NA) elastic scattering,
allowing us to compute the differential cross section and the
spin polarizations in several regions of the nuclear chart and
for a wide range of energies. Its use has also been extended to
inelastic scattering calculations and to generate the distorted
waves that are used to compute the differential cross section in
other nuclear reactions.

Optical potentials can be obtained phenomenologically or
microscopically and they are both characterized by a real part
describing the nuclear attraction, and an imaginary part, which
takes into account the loss of the reaction flux from the elastic
channel into the other channels.

*mgennari5216@gmail.com
†mvorabbi@triumf.ca
‡navratil@triumf.ca

Phenomenological potentials assume a certain shape of
the nuclear density distribution, which depends on several
adjustable parameters that are functions of the energy and the
nuclear mass number [2–4]. These potentials are properly set
up in order to optimize the fit to the experimental data of the NA
elastic scattering. Of course, due to the fit, these potentials work
very well in situations where experimental data are available,
but they lack predictive power.

On the contrary, microscopic optical potentials do not
depend on any adjustable parameters making them more
appealing for the investigation of new unstable nuclei where
experimental data are not yet available. The computation of
such potentials requires, in principle, the solution of the full
nuclear many-body problem that has to be solved using two-
and three-nucleon forces as the only input. Unfortunately, such
a goal is beyond our actual capabilities and thus some approx-
imations are needed in order to derive a suitable expression of
the optical potential. Several different approaches are currently
under development and a complete list can be found in Ref. [5].

In this paper we adopt the approach based on the nucleon-
nucleon (NN) t matrix, that was first theoretically justified

2469-9985/2018/97(3)/034619(16) 034619-1 ©2018 American Physical Society
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Elastic scattering of antiprotons off 4He, 12C, and 16;18O is described for the first time with a consistent
microscopic approach based on the calculation of an optical potential (OP) describing the antiproton-
target interaction. The OP is derived using the recent antiproton-nucleon (p̄N) chiral interaction to
calculate the p̄N t matrix, while the target densities are computed with the ab initio no-core shell model
using chiral interactions as well. Our results are in good agreement with the existing experimental
data and the results computed at different chiral orders of the p̄N interaction display a well-defined
convergence pattern.

DOI: 10.1103/PhysRevLett.124.162501

With the Facility for Antiproton and Ion Research
(FAIR) construction under way [1] and the recent
antiProton Unstable Matter Annihilation (PUMA) proposal
[2,3], scientific interest in new experiments on antiproton
scattering off nuclear targets (nucleons and nuclei) will
experience a renaissance.
In the past, there has been a lot of activity in the

antiproton physics at the Low Energy Antiproton Ring
(LEAR) at CERN as well as at KEK in Japan and
Brookhaven National Laboratory (BNL) in the USA. At
LEAR, in particular, several measurements of cross sec-
tions have been made for antiproton elastic and charge-
exchange scattering reactions at antiproton momenta in the
range 100 MeV=c ≤ p ≤ 2 GeV=c [4–7].
The dominant feature of antiproton-proton scattering at

low energies, i.e., the energy region on which our Letter is
focused, is the annihilation process that, due to its large
cross section, greatly reduces the probability of rescattering
processes. Antiproton-nucleus (p̄A) scattering is thus likely
to be described by simple reaction mechanisms without the
complication of multiple scattering processes, which makes
it a very clean method to study nuclear properties. In fact,
the pronounced diffraction structure of the differential cross
sections (in contrast with elastic proton scattering) is
commonly interpreted as a consequence of the role played
by the strong absorptive potential driven by the annihilation
of nucleons and antinucleons. Antiproton absorption is
surface-dominated [7–9] and is strongly sensitive to nuclear
radii. The exchange mechanism and the antisymmetrization
between the projectile and the target constituents are not
relevant in the p̄A interaction, while the role played by the

three-body forces involving an antiproton and two nucleons
(p̄NN) still remains an open question.
From the theoretical point of view, the description of

antiproton-nucleon (p̄N) processes was mainly based on
long-range meson exchanges, with the addition of phe-
nomenological models for annihilation contributions.
Several approaches have been proposed over the last forty
years. One of the most successful potentials is the model
proposed by Dover and Richard [10,11] who were inspired
by the Paris potential. Other antinucleon-nucleon (N̄N)
interactions, based on the meson theory, were also derived
[12,13], where the N̄N potential of Ref. [13] was used to
study p̄A quasibound states [14]. A more general approach
[15] was also employed to provide a partial-wave analysis
of antiproton-proton data. A similar situation is found for
p̄A scattering processes. In the 80s, several nonrelativistic
and relativistic calculations were performed with different
approaches which made use of an optical potential (OP)
[16] but required some phenomenological input. A sum-
mary of all these calculations can be found in Ref. [17].
Even in recent years new phenomenological models have
been presented [18–21].
Because of the tremendous advances in computational

techniques achieved in the past decades, it is now possible
to compute the OP for p̄A scattering in a fully microscopic
and consistent way. The purpose of this Letter is to
construct the first fully microscopic OP for elastic p̄A
scattering using the most recent techniques in nuclear
physics, in particular, the application of chiral p̄N poten-
tials combined with nuclear densities obtained from ab ini-
tio calculations with chiral two- (NN) and three-nucleon
(3N) interactions. The results for the elastic differential
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Background: The nuclear kinetic density is one of many fundamental, nonobservable quantities in density
functional theory (DFT) dependent on the nonlocal nuclear density. Often, approximations may be made when
computing the density that may result in spurious contributions in other DFT quantities. With the ability to
compute the nonlocal nuclear density from ab initio wave functions, it is now possible to estimate effects of such
spurious contributions.
Purpose: We derive the kinetic density using ab initio nonlocal scalar one-body nuclear densities computed
within the no-core shell model (NCSM) approach, utilizing two- and three-nucleon chiral interactions as the sole
input. The ability to compute translationally invariant nonlocal densities allows us to gauge the impact of the
spurious center-of-mass (c.m.) contributions in DFT quantities, such as the kinetic density, and provide ab initio
insight into refining energy density functionals.
Methods: The nonlocal nuclear densities are derived from the NCSM one-body densities calculated in second
quantization. We present a review of c.m. contaminated and translationally invariant nuclear densities. We then
derive an analytic expression for the kinetic density using these nonlocal densities, producing an ab initio kinetic
density.
Results: The ground-state nonlocal densities of 4,6,8He, 12C, and 16O are used to compute the kinetic densities
of the aforementioned nuclei. The impact of c.m. removal techniques in the density are discussed and compared
to a procedure applied in DFT. The results of this work can be extended to other fundamental quantities in DFT.
Conclusions: The use of a general nonlocal density allows for the calculation of fundamental quantities taken
as input in theories such as DFT. This allows benchmarking c.m. removal procedures and provides a bridge for
comparison between ab initio and DFT many-body techniques.

DOI: 10.1103/PhysRevC.99.024305

I. INTRODUCTION

In this paper, we derive an analytic expression for the
kinetic density of a nuclear system from the nonlocal scalar
one-body nuclear densities calculated in the no-core shell
model (NCSM) [1] approach. In particular, we use the method
introduced in Ref. [2] to construct the microscopic nonlocal
one-body density. The ab initio NCSM is a rigorous many-
body technique which treats all A nucleons as active degrees
of freedom and takes realistic two- and three-nucleon forces
as the sole input. The model is suited for the description of
light nuclei (A ! 16) as it is able to account for many-nucleon
correlations producing high-quality wave functions.

With the NCSM nuclear densities, it is possible to compute
quantities fundamental to density functional theory (DFT),
such as the kinetic density, using ab initio wave functions.
In systems such as 16O, this can allow for direct comparison
between center of mass (c.m.) removal procedures in different

*mgennari5216@gmail.com
†navratil@triumf.ca

many-body techniques, such as DFT. DFT is a many-body
method for calculating nuclear properties across the nuclear
chart, which has been practiced in nuclear physics for ap-
proximately 40 years [3–9]. It involves the minimization of
an energy functional with respect to several system densities
(kinetic, spin, isospin, etc.).

DFT has had great success and has made significant
progress in the description of medium- to heavy-mass nuclei
[10–14]. In these types of systems, contributions from the
center of mass (c.m.) and the nonlocality in the density are
reduced in effect. However, if DFT is to extend its reach to
more systems, the size of these two effects must be reviewed
to ensure they are under control.

Recently, there has been a significant effort to construct
a bridge between DFT and ab initio approaches to the nu-
clear many-body problem [15–18], with the ultimate goal of
reducing the phenomenological nature of DFT and creating
direct connections to the underlying quantum chromodyan-
imcs (QCD). Motivated by this effort, we attempt to con-
tribute to the construction of such a bridge by computing a
fundamental input of energy density functionals, the nuclear
kinetic density, from ab initio many-body wave functions with

2469-9985/2019/99(2)/024305(12) 024305-1 ©2019 American Physical Society
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Translationally invariant nuclear density is derived from the shell model one-body densities by removing
their spurious 0!" center-of-mass (c.m.) motion component. This paves the way to utilizing the ab initio
no-core shell-model (NCSM) nuclear structure in folding approaches to optical potentials. As an illustration,
the 6He diagonal and transitional densities are calculated from the NCSM wave functions obtained using the
CD-Bonn nucleon-nucleon potential in the 10!" basis space. A particularly significant impact of the exact
removal of the spurious c.m. motion is found for the spin-orbit part of the optical potential proportional to the
derivative of the nuclear density.
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I. INTRODUCTION

There has been significant progress in the ab initio ap-
proaches to the structure of light nuclei. Starting from the
realistic two- and three-nucleon interactions, methods like
the Green’s function Monte Carlo (GFMC) [1] or the ab
initio no-core shell model (NCSM) [2] can predict the low-
lying levels in p-shell nuclei.
The principal foundation of the ab initio NCSM approach

is the use of effective interactions appropriate for the large
but finite basis spaces employed in the calculations. These
effective interactions are derived from the underlying realis-
tic internucleon potentials through a unitary transformation
in a way that guarantees convergence to the exact solution as
the basis size increases. For the basis, one uses antisymme-
trized A-nucleon harmonic-oscillator (HO) states that span
the complete Nmax !" space. A disadvantage of the HO basis
is its unphysical asymptotic behavior. On the other hand, the
nuclear system is translationally invariant and, particularly in
the case of light nuclei, it is important to preserve this sym-
metry. The HO basis is the only basis that allows a switch
from Jacobi coordinates to single-particle Cartesian coordi-
nates without violating the translational invariance. Conse-
quently, one may choose the coordinates according to what-
ever is more efficient for the problem at hand. In practice, it
turns out that the A=3 system is the easiest solved in the
Jacobi basis, the A=4 system can be solved either way with
the same efficiency when only the two-body interaction is
utilized, but the Jacobi basis is more efficient when the three-
body interaction is included. For systems with A$4, it is by
far more advantageous to use the Cartesian coordinates and
the Slater determinant (SD) basis, and employ the powerful
shell model codes like Antoine [3] that rely on the second
quantization techniques.
While the NCSM eigenenergies are independent on the

choice of coordinates, the eigenfunctions obtained in the
Cartesian-coordinate SD basis include a 0!" spurious
center-of-mass (c.m.) component. The ways to remove these
components and obtain physical matrix elements of different
operators were investigated in the past [4–10]. Typically, in
earlier investigations the basis space was limited to a single
major HO shell. In the NCSM, the basis space spans several
major shells. Unlike in some phenomenological shell-model

studies that used a multimajor shell basis, the c.m. motion is
completely separated from the internal motion due to the
translational invariance of the interactions and the choice of
the complete Nmax !" HO basis, as already discussed. In
general, it is necessary to revisit and adapt the techniques of
the spurious c.m.. motion removal to make them applicable
for the NCSM. This paper, in particular, focuses on the con-
struction of the translationally invariant density starting from
the Cartesian-coordinate SD wave functions. This case is
much less trivial than, e.g., the removal of spurious compo-
nents from spectroscopic amplitudes.
The motivation for this work is the desire to apply the ab

initio NCSM nuclear structure to describe nuclear reactions
on light nuclei. In general, it is a challenging task to extend
the ab initio methods to describe nuclear reactions. Concern-
ing direct reactions, particularly the nucleon-nucleus elastic
and inelastic scattering, a first and straightforward answer for
the NCSM is the application of semimicroscopic approaches,
e.g., the Jeukenne-Lejeune-Mahaux (JLM) [11], to construct
optical potentials from the nuclear densities obtained in the
NCSM. Eventually, these optical potentials are used in
coupled-channel calculations by employing the standard
codes, e.g., Fresco [12]. To fully utilize the NCSM nuclear
structure for this purpose, the spurious c.m. contribution
must be removed from the density. In Sec. II, the transla-
tional invariant density is derived from both the Jacobi-
coordinate HO wave functions, as well as from the
Cartesian-coordinate wave functions. In Sec. III, numerical
tests for A=3,4, and 5 systems are described and an appli-
cation to 6He is presented. A spin-orbit part of the p+ 6He
optical potential is constructed to demonstrate the impor-
tance of the spurious c.m. removal. Conclusions are given in
Sec. IV.

II. DERIVATION OF THE TRANSLATIONALLY
INVARIANT DENSITY

A. Coordinate and HO wave-function transformations

We follow the notation of Ref. [13]. We consider nucleons
with the mass m neglecting the difference between the proton
and the neutron mass. For the purpose of the present paper
we use the following set of Jacobi coordinates:
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Eq. (10), i.e., the standard density, by
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p

A� 1/A~⇠)k|b|i

⇥ (MJ
)
�1
|a||b|,|↵||�|h fk(a†|↵|ã|�|)Jk ii; ,
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with the MJ matrix that is a generalization of the matrix given in Eq. (13)
of Ref. [13]. The details will be given elsewhere. The "one-body" HO states
|a(b)i depend on the Jacobi coordinate ~⇠ as opposed to the single-particle HO
states |↵(�)i that depend on single-particle coordinates ~r. We note that the
translational-invariant one-body density (11) and the standard one-body den-
sity (10) give the same many-body matrix elements for the ⌃̂0 and ⌃̂00 operators
while the many-body matrix elements of the ⌦̂0 and �̂ differ, i.e., the center-of-
mass component of the wave functions contaminates the matrix elements when
gradients are applied on the wave function.

We utilized two chiral interactions in this work, namely the N2LOopt [14] and
the N2LOsat [15]. No renormalization was applied to either of the interaction.

The N2LOopt interaction was derived from �EFT at the N2LO order with
only the NN part kept, i.e., the 3N interaction was omitted. For the optimization
of the low-energy constants (LECs), Practical Optimization Using No Deriva-
tives algorithm (POUNDERs) was used. The optimisation was performed for
the pion-nucleon (⇡N) couplings (c1, c3, c4) and 11 partial wave contact param-
eters C and C̃ [14]. It reproduces reasonably well experimental binding energies
and radii of A=3, 4 nuclei.

The N2LOsat interaction is also derived at the N2LO order of �EFT. How-
ever, the 3N part of the interaction is included. A novel fitting procedure of
the LECs was applied, namely, a simultaneous fit of both NN and 3N LECs has
been performed using not just the two-nucleon and A=3,4 data but also bind-
ing energies of 14C and 16,22,24,25O as well as charge radii of 14C and 16O [15].
The N2LOsat successfully describes the saturation of infinite nuclear matter, the
proton radius of 48Ca [16], ground-state parity inversion of 11Be [17], nuclear
radii of neutron-rich carbon isotopes [18] as well as radii of medium mass nuclei.

3 Results
Besides the small parameters mentioned in section 2.1, the theory is constrained
by the accuracy level of the multipole operators, which are calculated only from
one-body currents.The lack of the 2-body currents in the multipole operators
leads to an absence in the theory, dominated by a small parameter ✏EFT. While
the M̂V

1 2b-current part is characterized by ✏EFT, the L̂A
1 and ĈA

1 2b-currents
terms are associated with the next order, ✏2EFT. To estimate this EFT uncer-
tainties, we used the 6

Li magnetic moment and M1 transition, and the 6
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half-life. According to [19], the 2b-current has a zero contribution to the 6
Li
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ĈA
1 and M̂V

1 are its NLO recoil corrections, both dominated by the two small
parameters ✏recoil and ✏qr ·✏NR. While ✏NR ⌘ PFermi

mN
⇡ 0.2, for the Q = 3.510MeV

endpoint of 6He beta decay, ✏recoil ⌘ Q
mN

⇡ 0.004 and ✏qr ⌘ QR ⇡ 0.04. All the
NLO corrections in equation (5) are accurate to the order of ✏2qr . cite recoil

paper
2.2 Nuclear matrix elements

The three nuclear operators L̂A, ĈA and M̂V appearing in equations (2) and
(5) can be expressed in terms of four basic multipole operators ⌃̂

00, ⌦̂, �̂, and
⌃̂

0 from Standard-Model electroweak theory [9] as
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ĈA±
JMJ

=

AX

j=1

iq

mN


F (1)
A ⌦̂

0
JMJ

(q~rj) +
1

2
!F (1)

P ⌃̂
00
JMJ

(q~rj)

�
⌧±(j)

M̂V±
JMJ

=

AX

j=1

� iq

mN


F (1)
A �̂JMJ (q~rj)�

1

2
µ(1)

⌃̂
0
JMJ

(q~rj)

�
⌧±(j).

(6)

Here, J is the multipole number with projection MJ , A is the mass number of the
initial- and final-state nucleus, ~rj is the jth nucleon position vector, and ⌧±(j)
is the isospin raising(lowering) operator of nucleon j. The multipole operators
are defined as
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(7)

with ~�(j) being the Pauli spin matrices associated with nucleon j. In (7),
MJMJ (q~rj) = jJ(q~rj)YJMJ (⌦~rj ) and ~MJJMJ (q~rj) = jJ(q~rj)~YJJMJ (⌦~rj ), where
⌦~rj represents azimuthal and polar angles of ~rj . YJMJ and ~YJJMJ are spherical
and vector spherical harmonics, and jJ are spherical Bessel functions. Since the
multipole operators in (7) are one-body operators, the reduced matrix elements
of the many-body nuclear operators (6) can be expressed as products of one-
body transition density matrix and one-body matrix elements, as detailed in the
following section. For a harmonic oscillator (HO) single-particle basis, employed
in this work, the one-body matrix elements of all multipole operators defined in
(7) can be calculated analytically [9].

4

§ Convergence investigation 
§ Variation of HO frequency

§ h𝝮 = 16 - 24 MeV 
§ Variation of basis size 

§ Nmax= 0 - 14 for NNLOopt
§ Nmax= 0 - 12 for NNLOsat
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Here, J is the multipole number with projection MJ , A is the mass number of the
initial- and final-state nucleus, ~rj is the jth nucleon position vector, and ⌧±(j)
is the isospin raising(lowering) operator of nucleon j. The multipole operators
are defined as
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with ~�(j) being the Pauli spin matrices associated with nucleon j. In (7),
MJMJ (q~rj) = jJ(q~rj)YJMJ (⌦~rj ) and ~MJJMJ (q~rj) = jJ(q~rj)~YJJMJ (⌦~rj ), where
⌦~rj represents azimuthal and polar angles of ~rj . YJMJ and ~YJJMJ are spherical
and vector spherical harmonics, and jJ are spherical Bessel functions. Since the
multipole operators in (7) are one-body operators, the reduced matrix elements
of the many-body nuclear operators (6) can be expressed as products of one-
body transition density matrix and one-body matrix elements, as detailed in the
following section. For a harmonic oscillator (HO) single-particle basis, employed
in this work, the one-body matrix elements of all multipole operators defined in
(7) can be calculated analytically [9].
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with the intrinsic Hamiltonian
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Here, mN is the nucleon mass, ~p nucleon momenta, V̂ NN nucleon-nucleon
(NN) and V̂ 3N three-nucleon (3N) interaction. The � in (8) label eigenstates
with identical I⇡TTz, where I⇡T are the total angular momentum, parity, and
isospin, and Tz=(Z�N)/2.

The present calculations are performed using the Slater determinant (SD)
HO basis in the so-called M -scheme where the basis is characterized by A,
the projection Iz of the total angular moment I, parity ⇡ and Tz. Only the
eigenstates (8) obtained by diagonalization using the Lanczos algorithm have
good I and (approximately) good T .

The standard procedure to compute matrix elements of one-body operators
(e.g., operators (7) of interest here) between the initial- and final-state NCSM
wave functions obtained from Eq. (8) is to introduce one-body transition density
and evaluate
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where ã|�|,mj
= (�1)

j��m�a|�|,�mj
, with a†↵ and a� the creation and annihila-

tion operators for the single-particle HO states |↵i and |�i, respectively, cou-
pled to the angular momentum J . Since the second quantization is applied in
the calculation of Hamiltonian matrix elements, it is straightforward to evaluate
the one-body density matrix elements �1/

p
2J + 1h fk(a†|↵|ã|�|)Jk ii once the

eigenstates are obtained. We note that in the present case | ii= |6He gs 0
+
1i,

| f i= |6Li gs 1+0i, and J=1. The operator matrix elements h|↵|kÔJ(~r)k|�|i,
reduced in the angular momentum, are evaluated between HO states which
depend on the coordinate ~r and are labeled by their nonmagnetic quantum
numbers |↵(�)|. It is to be noted that in Eq. (10) the single-particle coordi-
nates ~rj and ~r are measured with respect to the center of the HO potential
well. Thus, the matrix elements clearly contain contributions from the spurious
center-of-mass motion.

An important property of the NCSM wave functions is that they factorize
exactly as products of physical intrinsic eigenstates and a center-of-mass state
in the 0~⌦ excitation. Because of this factorization, it is possible to remove
the effect of the center-of-mass completely and introduce translational-invariant
one-body density depending on coordinates and momenta measured from the
center of mass of the nucleus, e.g., ~⇠ = �

p
A/(A� 1)(~r � ~RCM). This density

is obtained as a direct generalization of the radial translational-invariant den-
sity [13] by considering dependence on nucleon spins. In particular, we replace
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Eq. (10), i.e., the standard density, by
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with the MJ matrix that is a generalization of the matrix given in Eq. (13)
of Ref. [13]. The details will be given elsewhere. The "one-body" HO states
|a(b)i depend on the Jacobi coordinate ~⇠ as opposed to the single-particle HO
states |↵(�)i that depend on single-particle coordinates ~r. We note that the
translational-invariant one-body density (11) and the standard one-body den-
sity (10) give the same many-body matrix elements for the ⌃̂0 and ⌃̂00 operators
while the many-body matrix elements of the ⌦̂0 and �̂ differ, i.e., the center-of-
mass component of the wave functions contaminates the matrix elements when
gradients are applied on the wave function.

We utilized two chiral interactions in this work, namely the N2LOopt [14] and
the N2LOsat [15]. No renormalization was applied to either of the interaction.

The N2LOopt interaction was derived from �EFT at the N2LO order with
only the NN part kept, i.e., the 3N interaction was omitted. For the optimization
of the low-energy constants (LECs), Practical Optimization Using No Deriva-
tives algorithm (POUNDERs) was used. The optimisation was performed for
the pion-nucleon (⇡N) couplings (c1, c3, c4) and 11 partial wave contact param-
eters C and C̃ [14]. It reproduces reasonably well experimental binding energies
and radii of A=3, 4 nuclei.

The N2LOsat interaction is also derived at the N2LO order of �EFT. How-
ever, the 3N part of the interaction is included. A novel fitting procedure of
the LECs was applied, namely, a simultaneous fit of both NN and 3N LECs has
been performed using not just the two-nucleon and A=3,4 data but also bind-
ing energies of 14C and 16,22,24,25O as well as charge radii of 14C and 16O [15].
The N2LOsat successfully describes the saturation of infinite nuclear matter, the
proton radius of 48Ca [16], ground-state parity inversion of 11Be [17], nuclear
radii of neutron-rich carbon isotopes [18] as well as radii of medium mass nuclei.

3 Results
Besides the small parameters mentioned in section 2.1, the theory is constrained
by the accuracy level of the multipole operators, which are calculated only from
one-body currents.The lack of the 2-body currents in the multipole operators
leads to an absence in the theory, dominated by a small parameter ✏EFT. While
the M̂V

1 2b-current part is characterized by ✏EFT, the L̂A
1 and ĈA

1 2b-currents
terms are associated with the next order, ✏2EFT. To estimate this EFT uncer-
tainties, we used the 6

Li magnetic moment and M1 transition, and the 6
He

half-life. According to [19], the 2b-current has a zero contribution to the 6
Li
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2.2 Nuclear matrix elements

The three nuclear operators L̂A, ĈA and M̂V appearing in equations (2) and
(5) can be expressed in terms of four basic multipole operators ⌃̂

00, ⌦̂, �̂, and
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Here, J is the multipole number with projection MJ , A is the mass number of the
initial- and final-state nucleus, ~rj is the jth nucleon position vector, and ⌧±(j)
is the isospin raising(lowering) operator of nucleon j. The multipole operators
are defined as
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with ~�(j) being the Pauli spin matrices associated with nucleon j. In (7),
MJMJ (q~rj) = jJ(q~rj)YJMJ (⌦~rj ) and ~MJJMJ (q~rj) = jJ(q~rj)~YJJMJ (⌦~rj ), where
⌦~rj represents azimuthal and polar angles of ~rj . YJMJ and ~YJJMJ are spherical
and vector spherical harmonics, and jJ are spherical Bessel functions. Since the
multipole operators in (7) are one-body operators, the reduced matrix elements
of the many-body nuclear operators (6) can be expressed as products of one-
body transition density matrix and one-body matrix elements, as detailed in the
following section. For a harmonic oscillator (HO) single-particle basis, employed
in this work, the one-body matrix elements of all multipole operators defined in
(7) can be calculated analytically [9].
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Here, J is the multipole number with projection MJ , A is the mass number of the
initial- and final-state nucleus, ~rj is the jth nucleon position vector, and ⌧±(j)
is the isospin raising(lowering) operator of nucleon j. The multipole operators
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with ~�(j) being the Pauli spin matrices associated with nucleon j. In (7),
MJMJ (q~rj) = jJ(q~rj)YJMJ (⌦~rj ) and ~MJJMJ (q~rj) = jJ(q~rj)~YJJMJ (⌦~rj ), where
⌦~rj represents azimuthal and polar angles of ~rj . YJMJ and ~YJJMJ are spherical
and vector spherical harmonics, and jJ are spherical Bessel functions. Since the
multipole operators in (7) are one-body operators, the reduced matrix elements
of the many-body nuclear operators (6) can be expressed as products of one-
body transition density matrix and one-body matrix elements, as detailed in the
following section. For a harmonic oscillator (HO) single-particle basis, employed
in this work, the one-body matrix elements of all multipole operators defined in
(7) can be calculated analytically [9].
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Here, J is the multipole number with projection MJ , A is the mass number of the
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with ~�(j) being the Pauli spin matrices associated with nucleon j. In (7),
MJMJ (q~rj) = jJ(q~rj)YJMJ (⌦~rj ) and ~MJJMJ (q~rj) = jJ(q~rj)~YJJMJ (⌦~rj ), where
⌦~rj represents azimuthal and polar angles of ~rj . YJMJ and ~YJJMJ are spherical
and vector spherical harmonics, and jJ are spherical Bessel functions. Since the
multipole operators in (7) are one-body operators, the reduced matrix elements
of the many-body nuclear operators (6) can be expressed as products of one-
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following section. For a harmonic oscillator (HO) single-particle basis, employed
in this work, the one-body matrix elements of all multipole operators defined in
(7) can be calculated analytically [9].
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functions and the operator matrix elements

§ Matrix elements of the relevant operators 

with the intrinsic Hamiltonian

Ĥ =
1

A

AX

i<j=1

(~pi � ~pj)2

2mN
+

AX

i<j=1

V̂ NN
ij +

AX

i<j<k=1

V̂ 3N
ijk , (9)

Here, mN is the nucleon mass, ~p nucleon momenta, V̂ NN nucleon-nucleon
(NN) and V̂ 3N three-nucleon (3N) interaction. The � in (8) label eigenstates
with identical I⇡TTz, where I⇡T are the total angular momentum, parity, and
isospin, and Tz=(Z�N)/2.

The present calculations are performed using the Slater determinant (SD)
HO basis in the so-called M -scheme where the basis is characterized by A,
the projection Iz of the total angular moment I, parity ⇡ and Tz. Only the
eigenstates (8) obtained by diagonalization using the Lanczos algorithm have
good I and (approximately) good T .

The standard procedure to compute matrix elements of one-body operators
(e.g., operators (7) of interest here) between the initial- and final-state NCSM
wave functions obtained from Eq. (8) is to introduce one-body transition density
and evaluate

h fk
AX

j=1

ÔJ(~rj)k ii =
�1p
2J + 1

X

|↵|,|�|

h|↵|kÔJ(~r)k|�|i

⇥ h fk(a†|↵|ã|�|)Jk ii,

(10)

where ã|�|,mj
= (�1)

j��m�a|�|,�mj
, with a†↵ and a� the creation and annihila-

tion operators for the single-particle HO states |↵i and |�i, respectively, cou-
pled to the angular momentum J . Since the second quantization is applied in
the calculation of Hamiltonian matrix elements, it is straightforward to evaluate
the one-body density matrix elements �1/

p
2J + 1h fk(a†|↵|ã|�|)Jk ii once the

eigenstates are obtained. We note that in the present case | ii= |6He gs 0
+
1i,

| f i= |6Li gs 1+0i, and J=1. The operator matrix elements h|↵|kÔJ(~r)k|�|i,
reduced in the angular momentum, are evaluated between HO states which
depend on the coordinate ~r and are labeled by their nonmagnetic quantum
numbers |↵(�)|. It is to be noted that in Eq. (10) the single-particle coordi-
nates ~rj and ~r are measured with respect to the center of the HO potential
well. Thus, the matrix elements clearly contain contributions from the spurious
center-of-mass motion.

An important property of the NCSM wave functions is that they factorize
exactly as products of physical intrinsic eigenstates and a center-of-mass state
in the 0~⌦ excitation. Because of this factorization, it is possible to remove
the effect of the center-of-mass completely and introduce translational-invariant
one-body density depending on coordinates and momenta measured from the
center of mass of the nucleus, e.g., ~⇠ = �

p
A/(A� 1)(~r � ~RCM). This density

is obtained as a direct generalization of the radial translational-invariant den-
sity [13] by considering dependence on nucleon spins. In particular, we replace
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Eq. (10), i.e., the standard density, by
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(11)

with the MJ matrix that is a generalization of the matrix given in Eq. (13)
of Ref. [13]. The details will be given elsewhere. The "one-body" HO states
|a(b)i depend on the Jacobi coordinate ~⇠ as opposed to the single-particle HO
states |↵(�)i that depend on single-particle coordinates ~r. We note that the
translational-invariant one-body density (11) and the standard one-body den-
sity (10) give the same many-body matrix elements for the ⌃̂0 and ⌃̂00 operators
while the many-body matrix elements of the ⌦̂0 and �̂ differ, i.e., the center-of-
mass component of the wave functions contaminates the matrix elements when
gradients are applied on the wave function.

We utilized two chiral interactions in this work, namely the N2LOopt [14] and
the N2LOsat [15]. No renormalization was applied to either of the interaction.

The N2LOopt interaction was derived from �EFT at the N2LO order with
only the NN part kept, i.e., the 3N interaction was omitted. For the optimization
of the low-energy constants (LECs), Practical Optimization Using No Deriva-
tives algorithm (POUNDERs) was used. The optimisation was performed for
the pion-nucleon (⇡N) couplings (c1, c3, c4) and 11 partial wave contact param-
eters C and C̃ [14]. It reproduces reasonably well experimental binding energies
and radii of A=3, 4 nuclei.

The N2LOsat interaction is also derived at the N2LO order of �EFT. How-
ever, the 3N part of the interaction is included. A novel fitting procedure of
the LECs was applied, namely, a simultaneous fit of both NN and 3N LECs has
been performed using not just the two-nucleon and A=3,4 data but also bind-
ing energies of 14C and 16,22,24,25O as well as charge radii of 14C and 16O [15].
The N2LOsat successfully describes the saturation of infinite nuclear matter, the
proton radius of 48Ca [16], ground-state parity inversion of 11Be [17], nuclear
radii of neutron-rich carbon isotopes [18] as well as radii of medium mass nuclei.

3 Results
Besides the small parameters mentioned in section 2.1, the theory is constrained
by the accuracy level of the multipole operators, which are calculated only from
one-body currents.The lack of the 2-body currents in the multipole operators
leads to an absence in the theory, dominated by a small parameter ✏EFT. While
the M̂V

1 2b-current part is characterized by ✏EFT, the L̂A
1 and ĈA

1 2b-currents
terms are associated with the next order, ✏2EFT. To estimate this EFT uncer-
tainties, we used the 6

Li magnetic moment and M1 transition, and the 6
He

half-life. According to [19], the 2b-current has a zero contribution to the 6
Li
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Here, J is the multipole number with projection MJ , A is the mass number of the
initial- and final-state nucleus, ~rj is the jth nucleon position vector, and ⌧±(j)
is the isospin raising(lowering) operator of nucleon j. The multipole operators
are defined as
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with ~�(j) being the Pauli spin matrices associated with nucleon j. In (7),
MJMJ (q~rj) = jJ(q~rj)YJMJ (⌦~rj ) and ~MJJMJ (q~rj) = jJ(q~rj)~YJJMJ (⌦~rj ), where
⌦~rj represents azimuthal and polar angles of ~rj . YJMJ and ~YJJMJ are spherical
and vector spherical harmonics, and jJ are spherical Bessel functions. Since the
multipole operators in (7) are one-body operators, the reduced matrix elements
of the many-body nuclear operators (6) can be expressed as products of one-
body transition density matrix and one-body matrix elements, as detailed in the
following section. For a harmonic oscillator (HO) single-particle basis, employed
in this work, the one-body matrix elements of all multipole operators defined in
(7) can be calculated analytically [9].
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ĈA±
JMJ

=

AX

j=1

iq

mN


F (1)
A ⌦̂

0
JMJ

(q~rj) +
1

2
!F (1)

P ⌃̂
00
JMJ

(q~rj)

�
⌧±(j)

M̂V±
JMJ

=

AX

j=1

� iq

mN


F (1)
A �̂JMJ (q~rj)�

1

2
µ(1)

⌃̂
0
JMJ

(q~rj)

�
⌧±(j).

(6)

Here, J is the multipole number with projection MJ , A is the mass number of the
initial- and final-state nucleus, ~rj is the jth nucleon position vector, and ⌧±(j)
is the isospin raising(lowering) operator of nucleon j. The multipole operators
are defined as

⌃̂
00
JMJ

(q~rj) =


1

q
~r~rjMJMJ (q~rj)

�
· ~�(j),

⌦̂
0
JMJ

(q~rj) = MJMJ (q~rj)~�(j) · ~r~rj +
1

2
⌃̂

00
JMJ

(q~rj),

�̂JMJ (q~rj) = ~MJJMJ (q~rj) ·
1

q
~r~rj ,

⌃̂
0
JMJ

(q~rj) = �i


1

q
~r~rj ⇥ ~MJJMJ (q~rj)

�
· ~�(j),

(7)
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Overall results for 6He(0+ 1) → 6Li(1+ 0) + e- + '𝜈
§ Calculations performed in the impulse approximations

§ Weak magnetism M1
V receives two-body current correction of the order the 𝝌EFT expansion parameter

§ L1
A and C1

A  two-body current terms are associated with the next order, 

§ The effect of two-body currents on the Gamow-Teller matrix element (q=0) quite small, ~2%

§ Two-body contribution to the magnetic moment of 6Li negligible, correction to the B(M1; 1+->0+) ~ 10%

Figure 3: Dependence of the Gamow-Teller operator on the electron kinetic
energy. The red line (band) is the experiment value (error). The width of
the heavy filled bands shows the variation with HO frequency ~⌦ = 16, 20, 24
MeV, Nmax = 8, 10, 12 for the NNLOsat interaction including 3NF, and Nmax =

10, 12, 14 for the NNLOopt interaction with only 2NF. The width of the light
filled band shows the estimated error variance of the theoretical model. The
estimated theory error covers the empirical Gamow-Teller operator, as required.
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The dominant decay mode of atomic nuclei is beta decay 
(β-decay), a process that changes a neutron into a proton (and 
vice versa). This decay offers a window to physics beyond the 
standard model, and is at the heart of microphysical processes 
in stellar explosions and element synthesis in the Universe1–3. 
However, observed β-decay rates in nuclei have been found to 
be systematically smaller than for free neutrons: this 50-year-
old puzzle about the apparent quenching of the fundamental 
coupling constant by a factor of about 0.75 (ref. 4) is without a 
first-principles theoretical explanation. Here, we demonstrate 
that this quenching arises to a large extent from the coupling 
of the weak force to two nucleons as well as from strong corre-
lations in the nucleus. We present state-of-the-art computa-
tions of β-decays from light- and medium-mass nuclei to 100Sn 
by combining effective field theories of the strong and weak 
forces5 with powerful quantum many-body techniques6–8. Our 
results are consistent with experimental data and have impli-
cations for heavy element synthesis in neutron star mergers9–11 
and predictions for the neutrino-less double-β-decay3, where 
an analogous quenching puzzle is a source of uncertainty in 
extracting the neutrino mass scale12.

Gamow–Teller transitions are a form of β-decay in which the 
spins of the β-neutrino pair emitted during the nuclear decay are 
aligned. Remarkably, calculated Gamow–Teller strengths appear 
to reproduce most of the experimental data if the fundamental 
constant gA ≈ 1.27 characterizing the coupling of the weak inter-
action to a nucleon is quenched by a factor of q ≈ 0.75 (refs. 13–16). 
Missing nuclear correlations (that is, a lack of complexity in nuclear 
wavefunctions due to the limitations of nuclear models) as well as 
neglected contributions from meson-exchange currents (that is, 
coupling of the weak force to two nucleons) have been proposed as 
possible causes of the quenching phenomenon4. However, a solution 
has so far remained elusive. To address the quenching puzzle, we 
carry out a comprehensive study of Gamow–Teller decays through 
many-body computations of nuclei based on effective field theo-
ries (EFTs) of quantum chromodynamics5,17, including an unprec-
edented amount of correlations in the nuclear wavefunctions. The 
EFT approach offers the prospect of accuracy, by encoding the 
excluded high-energy physics through coefficients adjusted to the 

data, and precision, from the systematically improvable EFT expan-
sion. Moreover, EFT enables a consistent description of the cou-
pling of weak interactions to two nucleons via two-body currents 
(2BCs). In the EFT approach, 2BCs enter as subleading corrections 
to the one-body standard Gamow–Teller operator στ+ (with Pauli 
spin and isospin matrices σ and τ, respectively); they are smaller but 
significant corrections to weak transitions as three-nucleon forces 
are smaller but significant corrections to the nuclear interaction5,17.

In this work we focus on strong Gamow–Teller transitions, 
where the effects of quenching should dominate over cancellations 
due to fine details (as occur in the famous case of the 14C decay 
used for radiocarbon dating18,19). An excellent example is the super-
allowed β-decay of the doubly magic 100Sn nucleus (Fig. 1), which 
exhibits the strongest Gamow–Teller strength so far measured in all 
atomic nuclei20. A first-principles description of this exotic decay, 
in such a heavy nucleus, presents a significant computational chal-
lenge. However, its equal ‘magic’ numbers (Z = N = 50) of protons 
and neutrons arranged into complete shells makes 100Sn an ideal 
candidate for large-scale coupled-cluster calculations21, while the 
daughter nucleus 100In can be reached via novel extensions of the 
high-order charge-exchange coupled-cluster methods developed 
in this work (see Methods and Supplementary Figs. 4, 12 and 15 
for details). This method includes correlations via a vast number of 
particle–hole excitations of a reference state and also employs 2BCs 
in the transition operator.

Figure 1 shows our results for the strength (that is, the abso-
lute square of the transition matrix element, MGT) of the Gamow–
Teller transition to the dominant Jπ = 1+ state in the 100In daughter 
nucleus (see Supplementary Table 1 and Supplementary Fig. 12 for 
more details). To investigate systematic trends and sensitivities to 
the nuclear Hamiltonian, we employed a family of established EFT 
interactions and corresponding currents22–24. For increased preci-
sion, we also developed a new interaction labelled NN-N4LO + 3Nlnl 
which is constrained to reproduce the triton half-life (see Methods 
for details on the Hamiltonians considered). The open symbols in 
Fig. 1 depict the decay with the standard, leading-order coupling of 
the weak force to a single nucleon in the non-relativistic limit (that 
is, via the standard Gamow–Teller operator στ+). The differences 
with respect to the extreme single-particle model (ESPM), which 

Discrepancy between experimental and 
theoretical β-decay rates resolved from  
first principles
P. Gysbers1,2, G. Hagen" "3,4*, J. D. Holt" "1, G. R. Jansen" "3,5, T. D. Morris3,4,6, P. Navrátil" "1, T. Papenbrock" "3,4,  
S. Quaglioni" "7, A. Schwenk8,9,10, S. R. Stroberg1,11,12 and K. A. Wendt7

NATURE PHYSICS | VOL 15 | MAY 2019 | 428–431 | www.nature.com/naturephysics428

Conservative estimate
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§ We find up to 1% correction for the β spectrum and up to 
2% correction for the angular correlation

§ Propagating nuclear structure and 𝝌EFT uncertainties 
results in an overall uncertainty of 10-4

§ Comparable to the precision of current experiments 

to the LHC frontier) implies bBSM
Fierz =

CT+C
0
T

CA
⇠ 10

�3.
The angular correlation, as well as the Fierz term, show a distinguished

deviation from the GT known values, and since the experiments are aiming to
reach an accuracy of per-mill, those corrections will be crucial for analyzing the
measurements data.
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Note that new physics at TeV scale implies

A. Glick-Magid, C. Forssén, D. Gazda et al. Physics Letters B 832 (2022) 137259

in L̂ A
1 , consistent with the fact that these corrections are of higher 

order in EFT counting than M̂ V
1 . This consistency allows us to con-

servatively estimate that εEFT ! 0.15.
As shown in Fig. 3b(d), we find up to 1% (2%) corrections to the 

β spectrum (angular correlation), consistent with the a priori es-
timates based on the small parameters of the problem. However, 
these corrections depend on the electron kinetic energy, thus ex-
tracting aβν requires an energy-weighted average, adhering to the 
particular experimental setup. Here, we exemplify the important 
effect of this procedure, by using an average of aβν weighted by 
the spectrum dω1+β−

dE . In this example, the total correction to aβν

due to nuclear structure is
〈
δ̃

1+β−
a

〉
= −2.54 (68) · 10−3, (8)

i.e., a 7 per-mil correction to the SM aGT
βν = − 1

3 . This, however, is 
a naive value, as one should keep in mind the (often neglected) 
dependence of the measured aβν value on the bF-analogous term 
detailed below.

Such a term with a similar spectral behavior as the Fierz in-
terference can be extracted from the corrected spectrum, and our 
calculations indicate that it is non-zero

b1+β−
F = δ

1+β−
b = −1.52 (18) · 10−3. (9)

This result, with an uncertainty of ∼ 10−4, is vital for ongoing ex-
periments, aiming for a per-mil level of precision.

In order to extract the β −ν correlation coefficient aβν , one no-
tices that the spectral shape suggests that ameasured

βν = aβν

1+bF
〈 me

E

〉 [22], 
resulting in the following relation:

aβν = ameasured
βν − aGT

βν

(〈
δ̃

1+β−
a

〉
− b1+β−

F

〈me

E

〉)

= ameasured
βν − 0.70 (24) · 10−3,

(10)

where 
〈me

E

〉
= 0.28536 (10).

However, a realistic measurement cannot probe directly the 
correlation between the neutrino and the β particle. For example, 
in the 1963 experiment [16], the recoil ion energy spectrum was 
studied, resulting in a different effect. The effect for 6He is given 
by ameasured

βν = aβν +0.127 bF [22], so the measured value (including 
radiative corrections [17], influence of the updated shake-off prob-
ability [18] and Q-value [19,20]) ameasured

βν + δrad,so,Q = −0.3324(30)

should be modified to

aβν = ameasured
βν + δrad,so,Q −

(
aGT
βν

〈
δ̃

1+β−
a

〉
+ 0.127b1+β−

F

)

= −0.3331 (32) .
(11)

Thus, the extracted aβν depends on corrections that imitate 
the spectral dependence of the Fierz term (suppressed by a nu-
merical factor of about 0.1). Importantly, this indirectly induces 
a linear dependence of this observable upon BSM corrections, be-
yond the naive quadratic dependence of aβν . Consequently, ∼ 10−4

experimental precision on this observable would entail tighter BSM 
constraints [52].

Summarizing, we have used a χEFT framework combined with 
the ab initio NCSM to analyze the nuclear-structure related correc-
tions to 6He β-decay observables. In particular, we have studied 
the angular correlation coefficient and a nuclear structure term 
with an inverse energy spectral dependence, imitating a Fierz in-
terference term. Our analysis uses the existence of small param-
eters, originating mainly in the low-energy regime characterizing 
β-decays, to quantify the relevant theoretical uncertainties. We 
find that the induced me/E behavior, that can be wrongly inter-
preted as a result of Fierz interference between SM and BSM cur-
rents, is significantly different than the naive SM value of zero. Our 

theoretical prediction comes with less than 15% uncertainty. Fur-
thermore, 0.2 per-mil bounds were found for SM nuclear structure 
effects correcting the angular correlation coefficient. Albeit these 
are smaller than the current experimental uncertainty, future an-
gular correlations measurements of 6He decay, aimed at reducing 
the current error by one order of magnitude, should use these 
bounds to check for BSM signatures, due to the indirect depen-
dence of the angular correlations on the Fierz term. These results 
increase significantly the potential to correctly check the SM, as 
well as pin-pointing possible deviations from it.
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Appendix A. Nuclear multipole operators

The four basic operators from SM electroweak theory that ap-
pear in Eq. (5) in the main text are defined as [30]

'̂′′
J M J

(q$r j) =
[

1
q

$∇$r j
M J M J (q$r j)

]
· $σ j,

)̂′
J M J

(q$r j) = M J M J (q$r j) $σ j · $∇$r j
+ 1

2
'̂′′

J M J
(q$r j),

*̂ J M J (q$r j) = $M J J M J (q$r j) · 1
q

$∇$r j
,

'̂′
J M J

(q$r j) = −i
[

1
q

$∇$r j
× $M J J M J (q$r j)

]
· $σ j,

(A.1)

with $σ j being the Pauli spin matrices associated with nucleon 
j. Furthermore, M J M J (q$r j) = j J (qr j)Y J M J (r̂ j) and $M J LM J (q$r j) =

5

Overall results for 6He(0+ 1) → 6Li(1+ 0) + e- + '𝜈

Non-zero Fierz interference term due to nuclear 
structure corrections 
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Unique first-forbidden beta decay 
16N(2-) → 16O(0+)



26Unique first-forbidden beta decay 16N(2-) → 16O(0+)

§ The unique first-forbidden transition, JΔπ =2−, is of 
great interest for BSM searches 
§ Energy spectrum of emitted electrons sensitive to 

the symmetries of the weak interaction, gives 
constraints both in the case of right and left 
couplings of the new beyond standard model 
currents 

§ Ayala Glick-Magid et al., PLB 767 (2017) 285 

§ Ongoing experiment at SARAF, Israel



27Ordinary muon capture on 16O within the NCSM

§ Investigated using three sets of chiral EFT NN+3N interactions:
§ NN(N4LO)+3N(N2LO,lnl)

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN) 

Gysbers et al., Nature Phys. 15, 428 (2019) (3N) 
§ NN(N4LO)+3N(N2LO,lnl,E7) 

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E7)  
§ NN(N3LO)+3N(N2LO,lnl) 

Entem, Machleidt, Phys. Rev. C 68, 041001 (2003) (NN) 
Soma, Navratil et al., Phys. Rev. C 101, 014318 (2020) (3N)

§ Results quite encouraging
§ NCSM describes well the complex systems 16O and 16N 
§ → Feasible to apply NCSM to the 16N beta decay 
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Preliminary



2816N and 16O energies

§ Chiral NN N4LO+3Nlnl interaction:
§ Binding energies underestimated by ~2 MeV
§ Excitation energies overestimated by ~1 MeV

Preliminary
Preliminary



2916N(2-) Gamow-Teller transitions to the negative parity excited states of 16O

§ Tests of NCSM wave functions
§ B(GT)s overestimated – operator SRG, 2BC need to be included
§ Correct hierarchy of transitions

Preliminary
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§ Basic operator matrix elements
§ NN-N3LO+3Nlnl - Nmax dependence, COM effect Preliminary
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§ Basic operator matrix elements
§ Interaction dependence, COM effect Preliminary
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Electroweak radiative 
correction δ!"
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V#$ element of CKM matrix

§ Precise V)* from superallowed Fermi transitions

ℒ!! = −
𝑔
2
0𝑢" , ̅𝑐" , ̅𝑡" 𝛾#𝑊#$𝑉!%&

𝑑"
𝑠"
𝑏"

+ ℎ. 𝑐.

‒ hadronic matrix elements modified by nuclear environment
‒ Fermi matrix element renormalized by isospin non–conserving forces

𝐺' ≡ Fermi coupling constant
determined from muon 𝛽 decay
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Δ%& and 𝛿'(

§ Tree level beta decay amplitude

§ Hadronic correction in forward scattering limit

Leptonic current
NME of charged 

weak current

[6] Seng et al. (2023)
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Δ%& and 𝛿'(

§ Tree level beta decay amplitude

§ Hadronic correction in forward scattering limit

[6] Seng et al. (2023)

Leptonic current
NME of charged 

weak current
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Nonrelativistic Compton amplitude

§ Goal: Non-relativistic currents in momentum space
§ Rewrite currents with 𝐴-body propagators
§ Fourier transform currents into momentum space
§ General multipole expansion of currents
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Nonrelativistic Compton amplitude

§ Goal: Non-relativistic currents in momentum space
§ Rewrite currents with 𝐴-body propagators
§ Fourier transform currents into momentum space
§ General multipole expansion of currents
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§ Goal: Non-relativistic currents in momentum space
§ Rewrite currents with 𝐴-body propagators
§ Fourier transform currents into momentum space
§ General multipole expansion of currents

Nonrelativistic Compton amplitude

Lanczos continued fraction 
method to compute nuclear 

Green’s functions
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The 𝜈 ≡ 𝑞0 integration performed using Wick rotation 

Residues for 10C → 10B in NCSM

§ Ground state 3" and low-lying 1" incur 
residues after Wick rotation

§ Remaining pole in residue terms must also be 
treated

Table 1: Pole locations along 𝜈 axis corresponding to 𝑛–th
excited state in 𝑇( for 10C → 10B transition at 𝑁)*+ = 5.

Second 1" below 0" sensitive 
to interaction and 𝑁#$%
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Preliminary 𝛿NS result at Nmax=3 and  Nmax=5 still being double checked

Feasible to reach Nmax=11

Towner & Hardy used 𝛿NS = -0.4 
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Isospin symmetry breaking 
correction δ)
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The pathway to δ)

§ δI in ab initio NCSM over 20 
years ago

HO expansion incompatible with reaction theory
i. imprecise asymptotics
ii. missing correlations in excited states
iii. description of scattering not feasible



43Ab Initio Calculations of Structure, Scattering, Reactions 
Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

A− a( )
a( )

r

S. Baroni, P. Navratil, and S. Quaglioni, 
PRL 110, 022505 (2013); PRC 87, 034326 (2013).

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν

ν

∑ ,ν(A)



44Ab Initio Calculations of Structure, Scattering, Reactions 
Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

A− a( )
a( )

r

S. Baroni, P. Navratil, and S. Quaglioni, 
PRL 110, 022505 (2013); PRC 87, 034326 (2013).

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν

ν

∑ ,ν(A)

1max += NN
<latexit sha1_base64="nFBDs0FU5EzUfdHPvWKEssg3kK4=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF29GMCawu4TZyWwyZB7LzKwQQj7DiwdFvPo13vwbJ8keNLGgoajqprsryTgz1ve/vdLK6tr6RnmzsrW9s7tX3T94NCrXhLaI4kp3EmwoZ5K2LLOcdjJNsUg4bSfDm6nffqLaMCUf7CijscB9yVJGsHVSGA0SrKM7Qfu4W635dX8GtEyCgtSgQLNb/Yp6iuSCSks4NiYM/MzGY6wtI5xOKlFuaIbJEPdp6KjEgpp4PDt5gk6c0kOp0q6kRTP198QYC2NGInGdAtuBWfSm4n9emNv0Kh4zmeWWSjJflOYcWYWm/6Me05RYPnIEE83crYgMsMbEupQqLoRg8eVl8nhWDy7q/v15rXFdxFGGIziGUwjgEhpwC01oAQEFz/AKb571Xrx372PeWvKKmUP4A+/zBybUkSs=</latexit>

~⌦
<latexit sha1_base64="lnzHP5PL/8Sva3op6NjbN05tD5o=">AAACCnicbVDLSgNBEJz1GeMr6tHLaBA8hV0R9SKID/CkEYwJZJeld9JJBmd2l5lZMSw5e/FXvHhQxKtf4M2/cRJz8FXQUFR1090VpYJr47ofztj4xOTUdGGmODs3v7BYWlq+0kmmGNZYIhLViECj4DHWDDcCG6lCkJHAenR9NPDrN6g0T+JL00sxkNCJeZszMFYKS2v+MQoD9ITu07Mw95WkEm77fjcC5Z9L7EBYKrsVdwj6l3gjUiYjVMPSu99KWCYxNkyA1k3PTU2QgzKcCewX/UxjCuwaOti0NAaJOsiHr/TphlVatJ0oW7GhQ/X7RA5S656MbKcE09W/vYH4n9fMTHsvyHmcZgZj9rWonQlqEjrIhba4QmZEzxJgittbKeuCAmZsekUbgvf75b/kaqvi7VTci+3yweEojgJZJetkk3hklxyQU1IlNcLIHXkgT+TZuXcenRfn9at1zBnNrJAfcN4+Aa7umaY=</latexit>

�E = Nmax~⌦

<latexit sha1_base64="ejC8vLV7AiUb4fY7goF/Z7pVFWg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OJJKpi20Iay2U7bpZtN2N0IJfQ3ePGgiFd/kDf/jds2B219MPB4b4aZeWEiuDau++0UVlbX1jeKm6Wt7Z3dvfL+QUPHqWLos1jEqhVSjYJL9A03AluJQhqFApvh6HbqN59QaR7LRzNOMIjoQPI+Z9RYyb8n18Ttlitu1Z2BLBMvJxXIUe+Wvzq9mKURSsME1brtuYkJMqoMZwInpU6qMaFsRAfYtlTSCHWQzY6dkBOr9Eg/VrakITP190RGI63HUWg7I2qGetGbiv957dT0r4KMyyQ1KNl8UT8VxMRk+jnpcYXMiLEllClubyVsSBVlxuZTsiF4iy8vk8ZZ1buoug/nldpNHkcRjuAYTsGDS6jBHdTBBwYcnuEV3hzpvDjvzse8teDkM4fwB87nD0RXjaw=</latexit>

N = 0
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N = 1

Static solutions for aggregate system,
describe all nucleons close together
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No-Core Shell Model with Continuum (NCSMC)
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N = 1

Static solutions for aggregate system,
describe all nucleons close together

Continuous microscopic cluster states,
describe long-range projectile-target



46Ab Initio Calculations of Structure, Scattering, Reactions
Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

A− a( )
a( )

r

S. Baroni, P. Navratil, and S. Quaglioni, 
PRL 110, 022505 (2013); PRC 87, 034326 (2013).

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν
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N = 1

Static solutions for aggregate system,
describe all nucleons close together

Continuous microscopic cluster states,
describe long-range projectile-target
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Coupled NCSMC equations

Lawrence Livermore National Laboratory 9 LLNL#PRES#650082 

… to be simultaneously determined  
by solving the coupled NCSMC equations 
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Abstract
The description of nuclei starting from the constituent nucleons and the realistic interactions
among them has been a long-standing goal in nuclear physics. In addition to the complex nature
of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces
the quantum-mechanical many-nucleon problem governed by an interplay between bound and
continuum states. In recent years, significant progress has been made in ab initio nuclear
structure and reaction calculations based on input from QCD-employing Hamiltonians
constructed within chiral effective field theory. After a brief overview of the field, we focus on
ab initio many-body approaches—built upon the no-core shell model—that are capable of
simultaneously describing both bound and scattering nuclear states, and present results for
resonances in light nuclei, reactions important for astrophysics and fusion research. In particular,
we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon
scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of
9Be. Further, we discuss applications to the 7Be gp, B8( ) radiative capture. Finally, we highlight
our efforts to describe transfer reactions including the 3H d, n 4( ) He fusion.

Keywords: ab initio methods, many-body nuclear reaction theory, nuclear reactions involving
few-nucleon systems, three-nucleon forces, radiative capture

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the structure and the dynamics of nuclei as
many-body systems of protons and neutrons interacting
through the strong (as well as electromagnetic and weak)
forces is one of the central goals of nuclear physics. One of
the major reasons why this goal has yet to be accomplished
lies in the complex nature of the strong nuclear force, emer-
ging form the underlying theory of quantum chromodynamics
(QCD). At the low energies relevant to the structure and
dynamics of nuclei, QCD is non-perturbative and very diffi-
cult to solve. The relevant degrees of freedom for nuclei are

nucleons, i.e., protons and neutrons, that are not fundamental
particles but rather complex objects made of quarks, anti-
quarks and gluons. Consequently, the strong interactions
among nucleons is only an ‘effective’ interaction emerging
non-perturbatively from QCD. Our knowledge of the
nucleon–nucleon (NN) interactions is limited at present to
models. The most advanced and most fundamental of these
models rely on a low-energy effective field theory (EFT) of
the QCD, chiral EFT [1]. This theory is built on the sym-
metries of QCD, most notably the approximate chiral sym-
metry. However, it is not renormalizable and has an infinite
number of terms. Chiral EFT involves unknown parameters,

| Royal Swedish Academy of Sciences Physica Scripta

Phys. Scr. 91 (2016) 053002 (38pp) doi:10.1088/0031-8949/91/5/053002

0031-8949/16/053002+38$33.00 © 2016 The Royal Swedish Academy of Sciences Printed in the UK1
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δ) in NCSMC

§ Compute Fermi matrix element in NCSMC 

§ Total isospin operator 𝑇J = 𝑇J
K + 𝑇J

L for partitioned system

NCSM matrix element
NCSM-Cluster matrix elements

Continuum (cluster) matrix element
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10C structure from chiral EFT NN(N4LO)+3N(N2LO,lnl) interaction (𝑁MNO = 9)

§ Treat as mass partition of proton plus 9B
§ Use 3/2P and 5/2P states of 9B
§ Known bound states captured by NCSMC

State ENCSM (MeV) E (MeV) Eexp (MeV)
0$ −3.09 −3.46 −4.006
2$ +0.40 −0.03 −0.652
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𝜋 = +1

Eigenphase shifts

10C structure from chiral EFT NN(N4LO)+3N(N2LO,lnl) interaction (𝑁MNO = 9)
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§ Use 3/2P and 5/2P states of 9B and 9Be
§ Eight of twelve bound states predicted

State E (MeV) Eexp (MeV)
3$ −5.75 −6.5859
1$ −5.33 −5.8676
0$ −4.30 −4.8458
1$ −4.26 −4.4316
2$ −2.69 −2.9988
2$ −0.93 −1.4220
2$ −0.70 −0.6664
4$ −0.19 −0.5609

δ, calculations ongoing …

10B structure from chiral EFT NN(N4LO)+3N(N2LO,lnl) interaction (𝑁MNO = 9)
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β-delayed proton emission 
in 11Be
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β-delayed proton emission in 11Be 
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β-delayed proton emission in 11Be 

§ New Accelerator Mass Spectrometry experiment that supersedes the 2014 measurement
§ Branching ratio bp ~ 2.2 x 10-6

§ Upper limit, possible contamination by BeH molecular ions
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β-delayed proton emission in 11Be 
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NCSMC extended to describe exotic 11Be 𝛽p emission

11Be or 11B

n for 11Be or p for 11B

Including 0+
gs  and 2+

1 states of 10Be

Input chiral interaction

NN N4LO(500) + 3N(lnl)

Entem-Machleidt-Nosyk 2017

3N N2LO w local/non-local regulator



5711Be and 11B nuclear structure results

§ Bound states wrt 10Be+N thresholds
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NCSMC phenomenology

EλNCSM energies treated as 
adjustable parameters 

Lawrence Livermore National Laboratory 9 LLNL#PRES#650082 

… to be simultaneously determined  
by solving the coupled NCSMC equations 
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5911Be and 11B nuclear structure results

§ Bound states wrt 10Be+N thresholds



6011Be and 11B nuclear structure results

§ 11B resonances above 10Be+p threshold
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NCSMC extended to describe exotic 11Be 𝛽p emission,
supports large branching ratio due to narrow ½+ resonance

11Be → (10Be+p) + 𝛽&+ �̅�' GT transition p+10Be Scattering Phase Shifts
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NCSMC extended to describe exotic 11Be 𝛽p emission,
supports large branching ratio due to narrow ½+ resonance

11Be → (10Be+p) + 𝛽&+ �̅�' GT transition p+10Be Scattering Phase Shifts

bp = (1.3 ± 0.5) × 10−6
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NCSMC extended to describe exotic 11Be 𝛽p emission,
supports large branching ratio due to narrow ½+ resonance

11Be → (10Be+p) + 𝛽&+ �̅�' GT transition p+10Be Scattering Phase Shifts

Now observed!bp = (1.3 ± 0.5) × 10−6
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β-delayed proton emission in 11Be 

§ New FRIB experiment measuring proton emission led by Jason Surbrook reports branching 
ratio bp ~ 8(4) x 10-6

§ Lower but still consistent with Ayyad TRIUMF experiment

§ More experiments planned!

§ NCSMC calculations will be extended by including the 7Li+𝛼 mass partition
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Conclusions

§ We used ab initio nuclear theory and the 𝜒EFT framework to analyze the nuclear-structure corrections to 6He β-decay 
observables

§ The angular correlation coefficient
§ Nuclear structure term with an inverse energy spectral dependence, imitating a Fierz interference term

§ We find a non-zero Fierz term comparable to an effect of interference between SM and a TeV-scale BSM currents
§ The achieved uncertainty of ~15% is dominated by the neglect of the weak magnetism two-body currents                    

→ the next thing to focus on

§ Ab initio investigation of the fist forbidden unique 16N → 16O beta decay ongoing
§ Electron spectrum sensitive to BSM physics

§ Ab initio calculations of the structure corrections for the extraction of the Vud matrix element from the 10C → 10B Fermi transition 
under way

§ Preliminary result for 𝛿NS 

§ The same approach will be applied to 14O → 14N Fermi transition and possibly also to 18Ne → 18F and 22Mg → 22Na

§ Applications of NCSMC to 11Be 𝛽 decay with the proton emission
§ Supports large branching ratio due to a narrow ½+ resonance
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67Applications to β decays in p-shell nuclei and beyond 

§ Problem of quenching of the axial-vector coupling constant gA in shell model calculations of GT transitions

=0.744!2"#, and the pf shell $illustrated in Fig. 28,
Martínez-Pinedo, Poves, Caurier, and Zuker, 1996, Q
=0.744!15"#.

These numbers square well with the existing informa-
tion on spectroscopic factors from the data on d, p !Vold
et al., 1978, Q%0.7" and e, e!p !Cavedon et al., 1982, Q
=0.7; see also Pandharipande et al., 1997". This consis-
tency is significant in that it backs assumption !a" above,
which is trivially satisfied for spectroscopic factors. It of-
fers the prospect of accepting the Gamow-Teller data as
a measure of a very fundamental quantity that does not
depend on particular processes. The proposed “solu-
tion” to the quenching problem amounts to reading
data.

Experimentally, the challenge is to locate all the
strength, constrained by the Ikeda sum rule, which re-
lates the direct and inverse processes. The careful analy-
sis of Anderson et al. !1985" suggests, but does not
prove, that the experimental tail in Fig. 27 contains
enough strength to satisfy approximately the sum rule.
A similar result is obtained for 54Fe!p ,n". !Anderson et
al., 1990". More recent experiments by the Tokyo group
establish that the strength located at accessible energies
exhausts 90!5"% of the sum rule in the 90Zr!n ,p" and
84!5"% in 27Al!p ,n" !Wakasa et al., 1997, 1998".

The theoretical problem is to calculate Q. It has been
compounded by a sociological one: The full Gamow-
Teller operator is !gA /gV"!", where gA /gV%−1.27 is the
ratio of weak axial-vector and vector coupling constants.
The hotly debated question is whether Q is due to non-
nucleonic renormalization of gA or nuclear renormaliza-
tion of !" !Osterfeld, 1992; Arima, 2001". We have
sketched above the nuclear case, along the lines pro-
posed by Caurier, Poves, and Zuker !1995", but under a
new guise that makes it easier to understand. The calcu-
lations of Bertsch and Hamamoto !1982", DroSdS et al.
!1986", and Dang et al. !1997" manage to place significant
amounts of strength beyond the resonance region, but
they are based on 2p-2h doorways that fall somewhat
short of giving a satisfactory view of the strength func-

tions. No-core calculations are under way that should be
able to clarify the issue.

The purely nuclear origin of quenching is borne out
by !p ,p!", !# ,#!", and !e ,e!" experiments that determine
the spin and convection currents in M1 transitions, in
which gA /gV play no role !see Richter, 1995, for a com-
plete review". An analysis of the data available for the
N=28 isotones in terms of full pf-shell calculations con-
cluded that agreement with experiment was achieved by
quenching the !" operator by a factor 0.75!2", fully con-
sistent with the value that explains the Gamow-Teller
data !von Neumann-Cosel et al., 1998; see Fig. 29".
These results rule out the hypothesis of a renormaliza-
tion of the axial-vector constant gA; it is the !" operator
that is quenched.

VI. SPHERICAL SHELL-MODEL DESCRIPTION OF
NUCLEAR ROTATIONS

Progress in the theory of the pf shell came in stages.
The first theoretical study, by McCullen, Bayman, and
Zamick !1964", restricted to the f7/2 space, was a success,
but had some drawbacks: The spectra were not always
symmetric by interchange of particles and holes, and the
quadrupole moments had systematically the wrong sign.
The first diagonalizations in the full shell !Pasquini,
1976; Pasquini and Zuker, 1978" solved these problems
to a large extent, but the very severe truncations neces-
sary at the time made it impossible to treat the pairing
and quadrupole forces on the same footing. The situa-
tion improved markedly when the pure two-body f7/2
part of the Hamiltonian H2, was addressed perturbating
with a three-body term HR1, mostly due to the quadru-
pole force !Poves and Zuker, 1981b". The paper of Poves
and Zuker ended with these words.

“It may well happen, that in some cases, not in the
pf shell but elsewhere, HR1 will overwhelm H2.
Then, and we are only speculating, we shall speak,
perhaps, of the rotational coupling scheme.”
Indeed, some nuclei were indicating a willingness to

FIG. 28. Comparison of experimental and theoretical values of
the quantity T!GT" in the pf shell !Martínez-Pinedo, Poves,
Caurier, and Zuker, 1996". The x and y coordinates correspond
to theoretical and experimental values, respectively. The
dashed line shows the best fit for Q=0.744. The solid line
shows the result obtained in the sd-shell nuclei !Wildenthal et
al., 1983".

FIG. 29. Effective spin g factor of the M1 operator deduced
from the comparison of shell-model calculations and data for
the total B!M1" strengths in the stable even mass N=28 iso-
tones. From von Neumann-Cosel et al., 1998.
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The last decade has witnessed both quantitative and qualitative progress in shell-model studies, which
have resulted in remarkable gains in our understanding of the structure of the nucleus. Indeed, it is
now possible to diagonalize matrices in determinantal spaces of dimensionality up to 109 using the
Lanczos tridiagonal construction, whose formal and numerical aspects are analyzed in this review. In
addition, many new approximation methods have been developed in order to overcome the
dimensionality limitations. New effective nucleon-nucleon interactions have been constructed that
contain both two- and three-body contributions. The former are derived from realistic potentials "i.e.,
potentials consistent with two-nucleon data#. The latter incorporate the pure monopole terms
necessary to correct the bad saturation and shell-formation properties of the realistic two-body forces.
This combination appears to solve a number of hitherto puzzling problems. The present review
concentrates on those results which illustrate the global features of the approach: the universality of
the effective interaction and the capacity of the shell model to describe simultaneously all the
manifestations of the nuclear dynamics, either single-particle or collective in nature. The review also
treats in some detail the problems associated with rotational motion, the origin of quenching of the
Gamow-Teller transitions, double-! decays, the effect of isospin nonconserving nuclear forces, and
the specificities of neutron-rich nuclei. Many other calculations—which appear to have “merely”
spectroscopic interest—are touched upon briefly, although the authors are fully aware that much of
the credibility of the shell model rests on them.
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Applications to β decays in p-shell nuclei and beyond 

§ Does inclusion of the MEC explain gA quenching?
§ In light nuclei correlations present in ab initio (NCSM) 

wave functions explain almost all of the quenching 
compared to the standard shell model
§ MEC inclusion overall improves agreement with 

experiment
§ The effect of the MEC inclusion is greater in heavier 

nuclei
§ SRG evolved matrix elements used in coupled-cluster 

and IM-SRG calculations (up to 100Sn) 

Application to Heavier Nuclei

Does inclusion of the MEC explain gA quenching?
The e↵ect of the inclusion is greater in heavier nuclei
SRG evolved matrix elements used in coupled-cluster and IM-SRG methods (up to Sn100)

Peter Gysbers (UBC/TRIUMF) Ab Initio 2018 Feb 28, 2018 9 / 11

MEC 3N (NCSM)

Hollow symbols – GT
Filled symbols – GT+MEC
Both Hamiltonian and operators SRG evolved
Hamiltonian and current consistent parameters

NN N4LO + 3Nlnl
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The dominant decay mode of atomic nuclei is beta decay 
(β-decay), a process that changes a neutron into a proton (and 
vice versa). This decay offers a window to physics beyond the 
standard model, and is at the heart of microphysical processes 
in stellar explosions and element synthesis in the Universe1–3. 
However, observed β-decay rates in nuclei have been found to 
be systematically smaller than for free neutrons: this 50-year-
old puzzle about the apparent quenching of the fundamental 
coupling constant by a factor of about 0.75 (ref. 4) is without a 
first-principles theoretical explanation. Here, we demonstrate 
that this quenching arises to a large extent from the coupling 
of the weak force to two nucleons as well as from strong corre-
lations in the nucleus. We present state-of-the-art computa-
tions of β-decays from light- and medium-mass nuclei to 100Sn 
by combining effective field theories of the strong and weak 
forces5 with powerful quantum many-body techniques6–8. Our 
results are consistent with experimental data and have impli-
cations for heavy element synthesis in neutron star mergers9–11 
and predictions for the neutrino-less double-β-decay3, where 
an analogous quenching puzzle is a source of uncertainty in 
extracting the neutrino mass scale12.

Gamow–Teller transitions are a form of β-decay in which the 
spins of the β-neutrino pair emitted during the nuclear decay are 
aligned. Remarkably, calculated Gamow–Teller strengths appear 
to reproduce most of the experimental data if the fundamental 
constant gA ≈ 1.27 characterizing the coupling of the weak inter-
action to a nucleon is quenched by a factor of q ≈ 0.75 (refs. 13–16). 
Missing nuclear correlations (that is, a lack of complexity in nuclear 
wavefunctions due to the limitations of nuclear models) as well as 
neglected contributions from meson-exchange currents (that is, 
coupling of the weak force to two nucleons) have been proposed as 
possible causes of the quenching phenomenon4. However, a solution 
has so far remained elusive. To address the quenching puzzle, we 
carry out a comprehensive study of Gamow–Teller decays through 
many-body computations of nuclei based on effective field theo-
ries (EFTs) of quantum chromodynamics5,17, including an unprec-
edented amount of correlations in the nuclear wavefunctions. The 
EFT approach offers the prospect of accuracy, by encoding the 
excluded high-energy physics through coefficients adjusted to the 

data, and precision, from the systematically improvable EFT expan-
sion. Moreover, EFT enables a consistent description of the cou-
pling of weak interactions to two nucleons via two-body currents 
(2BCs). In the EFT approach, 2BCs enter as subleading corrections 
to the one-body standard Gamow–Teller operator στ+ (with Pauli 
spin and isospin matrices σ and τ, respectively); they are smaller but 
significant corrections to weak transitions as three-nucleon forces 
are smaller but significant corrections to the nuclear interaction5,17.

In this work we focus on strong Gamow–Teller transitions, 
where the effects of quenching should dominate over cancellations 
due to fine details (as occur in the famous case of the 14C decay 
used for radiocarbon dating18,19). An excellent example is the super-
allowed β-decay of the doubly magic 100Sn nucleus (Fig. 1), which 
exhibits the strongest Gamow–Teller strength so far measured in all 
atomic nuclei20. A first-principles description of this exotic decay, 
in such a heavy nucleus, presents a significant computational chal-
lenge. However, its equal ‘magic’ numbers (Z = N = 50) of protons 
and neutrons arranged into complete shells makes 100Sn an ideal 
candidate for large-scale coupled-cluster calculations21, while the 
daughter nucleus 100In can be reached via novel extensions of the 
high-order charge-exchange coupled-cluster methods developed 
in this work (see Methods and Supplementary Figs. 4, 12 and 15 
for details). This method includes correlations via a vast number of 
particle–hole excitations of a reference state and also employs 2BCs 
in the transition operator.

Figure 1 shows our results for the strength (that is, the abso-
lute square of the transition matrix element, MGT) of the Gamow–
Teller transition to the dominant Jπ = 1+ state in the 100In daughter 
nucleus (see Supplementary Table 1 and Supplementary Fig. 12 for 
more details). To investigate systematic trends and sensitivities to 
the nuclear Hamiltonian, we employed a family of established EFT 
interactions and corresponding currents22–24. For increased preci-
sion, we also developed a new interaction labelled NN-N4LO + 3Nlnl 
which is constrained to reproduce the triton half-life (see Methods 
for details on the Hamiltonians considered). The open symbols in 
Fig. 1 depict the decay with the standard, leading-order coupling of 
the weak force to a single nucleon in the non-relativistic limit (that 
is, via the standard Gamow–Teller operator στ+). The differences 
with respect to the extreme single-particle model (ESPM), which 
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50 year old puzzle of quenched beta decays resolved from first principles
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The dominant decay mode of atomic nuclei is beta decay 
(β-decay), a process that changes a neutron into a proton (and 
vice versa). This decay offers a window to physics beyond the 
standard model, and is at the heart of microphysical processes 
in stellar explosions and element synthesis in the Universe1–3. 
However, observed β-decay rates in nuclei have been found to 
be systematically smaller than for free neutrons: this 50-year-
old puzzle about the apparent quenching of the fundamental 
coupling constant by a factor of about 0.75 (ref. 4) is without a 
first-principles theoretical explanation. Here, we demonstrate 
that this quenching arises to a large extent from the coupling 
of the weak force to two nucleons as well as from strong corre-
lations in the nucleus. We present state-of-the-art computa-
tions of β-decays from light- and medium-mass nuclei to 100Sn 
by combining effective field theories of the strong and weak 
forces5 with powerful quantum many-body techniques6–8. Our 
results are consistent with experimental data and have impli-
cations for heavy element synthesis in neutron star mergers9–11 
and predictions for the neutrino-less double-β-decay3, where 
an analogous quenching puzzle is a source of uncertainty in 
extracting the neutrino mass scale12.

Gamow–Teller transitions are a form of β-decay in which the 
spins of the β-neutrino pair emitted during the nuclear decay are 
aligned. Remarkably, calculated Gamow–Teller strengths appear 
to reproduce most of the experimental data if the fundamental 
constant gA ≈ 1.27 characterizing the coupling of the weak inter-
action to a nucleon is quenched by a factor of q ≈ 0.75 (refs. 13–16). 
Missing nuclear correlations (that is, a lack of complexity in nuclear 
wavefunctions due to the limitations of nuclear models) as well as 
neglected contributions from meson-exchange currents (that is, 
coupling of the weak force to two nucleons) have been proposed as 
possible causes of the quenching phenomenon4. However, a solution 
has so far remained elusive. To address the quenching puzzle, we 
carry out a comprehensive study of Gamow–Teller decays through 
many-body computations of nuclei based on effective field theo-
ries (EFTs) of quantum chromodynamics5,17, including an unprec-
edented amount of correlations in the nuclear wavefunctions. The 
EFT approach offers the prospect of accuracy, by encoding the 
excluded high-energy physics through coefficients adjusted to the 

data, and precision, from the systematically improvable EFT expan-
sion. Moreover, EFT enables a consistent description of the cou-
pling of weak interactions to two nucleons via two-body currents 
(2BCs). In the EFT approach, 2BCs enter as subleading corrections 
to the one-body standard Gamow–Teller operator στ+ (with Pauli 
spin and isospin matrices σ and τ, respectively); they are smaller but 
significant corrections to weak transitions as three-nucleon forces 
are smaller but significant corrections to the nuclear interaction5,17.

In this work we focus on strong Gamow–Teller transitions, 
where the effects of quenching should dominate over cancellations 
due to fine details (as occur in the famous case of the 14C decay 
used for radiocarbon dating18,19). An excellent example is the super-
allowed β-decay of the doubly magic 100Sn nucleus (Fig. 1), which 
exhibits the strongest Gamow–Teller strength so far measured in all 
atomic nuclei20. A first-principles description of this exotic decay, 
in such a heavy nucleus, presents a significant computational chal-
lenge. However, its equal ‘magic’ numbers (Z = N = 50) of protons 
and neutrons arranged into complete shells makes 100Sn an ideal 
candidate for large-scale coupled-cluster calculations21, while the 
daughter nucleus 100In can be reached via novel extensions of the 
high-order charge-exchange coupled-cluster methods developed 
in this work (see Methods and Supplementary Figs. 4, 12 and 15 
for details). This method includes correlations via a vast number of 
particle–hole excitations of a reference state and also employs 2BCs 
in the transition operator.

Figure 1 shows our results for the strength (that is, the abso-
lute square of the transition matrix element, MGT) of the Gamow–
Teller transition to the dominant Jπ = 1+ state in the 100In daughter 
nucleus (see Supplementary Table 1 and Supplementary Fig. 12 for 
more details). To investigate systematic trends and sensitivities to 
the nuclear Hamiltonian, we employed a family of established EFT 
interactions and corresponding currents22–24. For increased preci-
sion, we also developed a new interaction labelled NN-N4LO + 3Nlnl 
which is constrained to reproduce the triton half-life (see Methods 
for details on the Hamiltonians considered). The open symbols in 
Fig. 1 depict the decay with the standard, leading-order coupling of 
the weak force to a single nucleon in the non-relativistic limit (that 
is, via the standard Gamow–Teller operator στ+). The differences 
with respect to the extreme single-particle model (ESPM), which 
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Ab initio calculations of the 48Ca → 48Ti 
neutrinoless double beta decay matrix elements

§ Benchmarks for light nuclei: NCSM & Coupled-Cluster
§ Both two-neutrino and neutrinoless double beta decay 

§ Coupled-Cluster 48Ca → 48Ti results 

 

Coupled-Cluster Calculations of Neutrinoless Double-β Decay in 48Ca
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We use coupled-cluster theory and nuclear interactions from chiral effective field theory to compute the
nuclear matrix element for the neutrinoless double-β decay of 48Ca. Benchmarks with the no-core shell
model in several light nuclei inform us about the accuracy of our approach. For 48Ca we find a relatively
small matrix element. We also compute the nuclear matrix element for the two-neutrino double-β decay of
48Ca with a quenching factor deduced from two-body currents in recent ab initio calculation of the Ikeda
sum rule in 48Ca [Gysbers et al., Nat. Phys. 15, 428 (2019)].

DOI: 10.1103/PhysRevLett.126.182502

Introduction and main result.—Neutrinoless double-β
(0νββ) decay is a hypothesized electroweak process in
which a nucleus undergoes two simultaneous β decays but
emits no neutrinos [1]. The observation of this lepton-
number violating process would identify the neutrino as a
Majorana particle (i.e., as its own antiparticle) [2] and
provide insights into both the origin of neutrino mass [3,4]
and the matter-antimatter asymmetry in the Universe [5].
Experimentalists are working intently to observe the decay
all over the world; current lower limits on the lifetime are
about 1026 y [6–8], and sensitivity will be improved by 2
orders of magnitude in the coming years.
Essential for planning and interpreting these experiments

are nuclear matrix elements (NMEs) that relate the decay
lifetime to the Majorana neutrino mass scale and other
measures of lepton-number violation. Unfortunately, these
matrix elements are not well known and cannot be
measured. Computations based on different models and
techniques lead to numbers that differ by factors of 3 to 5
(see Ref. [9] for a recent review). Compounding these
theoretical challenges is the recent discovery that, within
chiral effective field theory (EFT) [10–13], the standard
long-range 0νββ decay operator must be supplemented by
an equally important zero-range (contact) operator of
unknown strength [14]. Efforts to compute the strengths
of this contact term from quantum chromodynamics (QCD)
[15] and attempts to better understand its impact are
underway [16].
The task theorists face at present is to provide more

accurate computations of 0νββ NMEs, including those
associated with contact operators, and quantify their

uncertainties. In this Letter, we employ the coupled-cluster
method to perform first-principle computations of the
matrix element that links the 0νββ lifetime of 48Ca with
the Majorana neutrino mass scale. Among the dozen or so
candidate nuclei for 0νββ decay experiments [17], 48Ca
stands out for its fairly simple structure, making it ame-
nable for an accurate description based on chiral EFT and
state-of-the-art many-body methods [18]. By varying the
details of our calculations, we will estimate the uncertainty
of our prediction. To gauge the quality of our approach we
also compute the two-neutrino double-β decay of 48Ca and
compare with data. Our results will directly inform 0νββ
decay experiments that use 48Ca [19] and serve as an
important stepping stone towards the accurate prediction of
NMEs in 76Ge, 130Te, and 136Xe, which are candidate
isotopes of the next-generation 0νββ decay experiments.
Calculations in those nuclei presumably require larger
model spaces, inclusion of triaxial deformation, and sym-
metry projection.
Figure 1 shows several recent results for the NME

governing the 0νββ decay 48Ca → 48Ti and compares them
with those of this work. The coupled cluster results
obtained here, with both the CCSD and CCSDT-1 approx-
imations (explained below), display uncertainties from
details of the computational approach. They are compared
to the very recent ab initio results from the in-medium
similarity group renormalization method with the generator
coordinator method (IMSRGþ GCM) [20], a realistic
shell-model (RSM) [21], the quasiparticle random phase
approximation (QRPA) [22], the interacting boson model
(IBM) [23], various energy-density functionals (EDF)
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correlations that would be many-particle–many-hole exci-
tations in the spherical scheme [53]. It comes at the expense
of breaking rotational invariance, which eventually could
be restored with symmetry restoration techniques [54–56].
In chiral EFT, the 0νββ operator is organized into a

systematically improvable expansion similarly to the
nuclear forces [57]. The lowest-order contributions to the
0νββ operator are a long-range Majorana neutrino potential
that can be divided into three components, Gamow-Teller
(GT), Fermi (F), and tensor (T), that contain different
combinations of spin operators, with Ô0ν ¼ ÔGT

0ν þ
ÔF

0ν þ ÔT
0ν. The corresponding two-body matrix elements,

as is conventional, are taken from Ref. [58], which adds
form factors to the leading and next-to-leading operators.
We use the closure approximation (which is sufficiently
accurate [26]), with closure energies Ecl ¼ 5 MeV for all
benchmarks in light nuclei and 7.72 MeV for the
decay 48Ca → 48Ti.
The NME for the 2νββ is similar to the 0νββ case except

the two-body operator is replaced by a double application
of the one-body Gamow-Teller operator, στ− [59], with an
explicit summation over the intermediate 1þ states between
them,

jM2νj2 ¼
!!!!
X

μ

h0þF jστ−j1þμ ih1þμ jστ−j0þI i
ΔEμ þ ðEI − EFÞ=2

!!!!
2

: ð4Þ

The denominator consists of the excitation energy of the
intermediate states with respect to the initial ground state,
ΔEμ ¼ Eμ − EI, and the energy difference between the
initial and final states, EI − EF (see Supplemental Material
[60] and Refs. [73,74] for more details). The direct
computation of the matrix element (4) would require
several tens of states in the intermediate nucleus and
several hundred Lanczos iterations, making it unfeasible
in our large model space.
We note that the Green’s function at the center of this

matrix element can be computed efficiently using the
Lanczos (continued fraction) method starting from a 1þ

pivot state [75–79]. We generate Lanczos coefficients
(ai, bi and a%i ; b

%
i ) from a nonsymmetric Lanczos algorithm

using the 1þ subspace of H̄N and rewrite Eq. (4) as a
continued fraction [75]. This computation typically
requires about 10–20 Lanczos iterations. With the sim-
ilarity-transformed operator, O ¼ στ−, and the pivot states
hνFj ¼ hΦ0jLO, jνIi ¼ OjΦ0i, hνIj ¼ hΦ0jð1þ Λ̂ÞO†, and
jνFi ¼ O†RjΦ0i, the NME becomes

jM2νj2 ¼ hνFjνIi

a0 þ EI−EF
2 − b20

a1þ&&&

hνIjνFi

a%0 þ
EI−EF

2 − ðb%0Þ
2

a%1þ&&&

: ð5Þ

Benchmarks.—To gauge the quality of our coupled-
cluster computations we benchmark with the more exact
no-core shell model (NCSM) [80–82] by computing 0νββ

matrix elements in light nuclei. Although the 0νββ decay of
these isotopes are energetically forbidden or would be
swamped by successive single-β decays in an experiment,
the benchmarks still have theoretical value. Figure 2 shows
the 0νββ matrix elements of the GT, F, and T operators for
the transitions 6He → 6Be, 8He → 8Be, 10He → 10Be,
14C → 14O, and 22O → 22Ne. The coupled-cluster results
are shown in pairs, with both the initial and final state as the

FIG. 2. Comparison of the 0νββ NME in several light nuclei
computed with the coupled cluster method and the no-core shell
model. The first two columns correspond to different choices for
the coupled-cluster reference state, and results from the CCSD
and CCSDT-1 approximations are shown in each. The error bars
indicate the uncertainties coming from variations with model-
space size. Each case utilizes the 1.8=2.0 (EM) interaction except
for 22O → 22Ne which disregards the three-nucleon forces to more
rapidly converge the NCSM results.
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[24,25], and several more phenomenological shell model
(SM) calculations. The latter either limit themselves to the
pf shell [26,27], include perturbative corrections from
outside of the pf shell [28], or are set in the sdpf shell-
model space [29]. We see that the ab initio results of this
work and of Ref. [20] are consistent with each other and
with the most recent work [30]. Our result in the CCSDT-1
approximation is 0.25 ≤ M0ν ≤ 0.75.
Method.—We employ the intrinsic Hamiltonian

H ¼
X

i<j

!ðp⃗i − p⃗jÞ2

2mA
þ Vði;jÞ

NN

"
þ

X

i<j<k

Vði;j;kÞ
NNN : ð1Þ

Herem is the nucleon mass, p⃗ is the momentum operator, A
is the mass number of the nucleus, and Vði;jÞ

NN and Vði;j;kÞ
NNN are

the nucleon-nucleon (NN) and three-nucleon (NNN) poten-
tials, respectively. We employ the chiral potential 1.8=2.0
(EM) of Ref. [31]. Three-nucleon force contributions are
limited to those from matrix elements in the oscillator basis
with N1 þ N2 þ N3 ≤ 16, where Ni ¼ 2ni þ li are single-
particle energies. The oscillator basis has a frequency ℏΩ ¼
16 MeV and we find that working within a model space
with Ni ¼ 10 is sufficient to produce converged results.
Following Refs. [32,33], we transform the Hamiltonian

from the spherical oscillator basis to a natural-orbital basis
by diagonalizing the one-body density matrix. We denote
the resulting reference state, i.e., the product state con-
structed from the A single-particle states with largest
occupation numbers, by jΦ0i and the Hamiltonian that is
normal-ordered with respect to this nontrivial vacuum by
HN . We retainNNN forces at the normal-ordered two-body
level [34,35].
Coupled-cluster theory [36–42] is based on the similarity-

transformed Hamiltonian, H̄N ¼ e−T̂HNeT̂ . The cluster

operator T̂ is a sum of particle-hole (ph) excitations from
the reference jΦ0i and commonly truncated at the two-
particle two-hole (2p-2h) or 3p-3h level. The amplitudes in
T̂ are chosen so that the reference state jΦ0i becomes the
right ground state of H̄N . Because H̄N is non-Hermitian, the
left ground state is hΦ0jð1þ Λ̂Þ, where Λ̂ is a deexcitation
operator with respect to the reference [41,42]. In this
Letter, we work at the leading-order approximation to
coupled cluster with singles-doubles-and-triples excitations
(CCSDT), known as CCSDT-1 [43,44]. To make the
computation feasible, we truncate the 3p − 3h amplitudes
by imposing a cut on the product of occupation probabi-
lities na for three particles above the Fermi surface,
nanbnc ≥ E3, and for three holes below the Fermi surface,
ð1 − niÞð1 − njÞð1 − nkÞ ≥ E3. This truncation favors orbi-
tals near the Fermi surface. The limits are large enough so
that all CCSDT-1 results presented below are stable against
changes in them.
We are interested in computing jM0νj2 ¼

hΨIjÔ†
0νjΨFihΨFjÔ0νjΨIi, where Ô0ν is the 0νββ operator

and ΨI and ΨF denote the ground states of the initial and
final nuclei, respectively. Within coupled-cluster theory, we
can structure the calculation in two ways. In a first
approach, we can use the right and left ground states of
48Ca (jΦ0i and hΦ0jð1þ Λ̂Þ, respectively) to compute

jM0νj2 ¼ hΦ0jð1þ Λ̂ÞO†
0νR̂jΦ0ihΦ0jL̂O0νjΦ0i: ð2Þ

In this case, we use equation-of-motion coupled-cluster
(EOM-CC) techniques [41,45–50] to represent the right
and left 48Ti ground states (denoted by R̂jΦ0i and hΦ0jL̂,
respectively) by generalized excited states of 48Ca with two
more protons and two less neutrons [51,52]. Here, we also
work in the CCSDT-1 approximation. In Eq. (2) O0ν ≡
e−T̂ Ô0νeT̂ is the similarity-transformed 0νββ operator.
In an alternative approach, we can decouple the ground

state of the final nucleus, i.e., take jΦ0i as a reference right
ground state for 48Ti [with hΦ0jð1þ Λ̂Þ its left ground
state], and target the initial nucleus 48Ca with EOM-CC.
This procedure leads to the expression

jM0νj2 ¼ hΦ0jL̂O†
0νjΦ0ihΦ0jð1þ Λ̂ÞO0νR̂jΦ0i; ð3Þ

where the 48Ca right and left ground states (R̂jΦ0i and
hΦ0jL̂, respectively) are represented by generalized excited
states of 48Ti. Because the two approaches are identical
only when the cluster operators are not truncated, the
difference between them is a measure of the truncation
effects. As the ground state of 48Ca is spherical, the first
procedure allows us to exploit rotational symmetry. By
contrast, starting from 48Ti introduces a deformed (though
axially symmetric) reference state, which accurately
reflects the nontrivial vacuum properties and captures static

FIG. 1. Comparison of the NME for the 0νββ decay of 48Ca,
calculated within various approaches (see text for details). The
coupled-cluster results use both the CCSD and CCSDT-1
approximations with both the spherical and deformed reference
states. For IMSRGþ GCM, the double bars show the effects of
uncertainty in model-space size; otherwise they show those of
uncertainty in short-range correlation functions.
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