% TRIUMF

Ab initio calculations of beta decays of light nuclei

INT Workshop 23-1b New physics searches at the precision frontier May 8, 2023

Petr Navratil

TRIUMF

Collaborators:

Peter Gysbers (TRIUMF/UBC), Michael Gennari (UVic/TRIUMF), Lotta Jokiemi (TRIUMF), Mehdi Drissi (TRIUMF), Ayala Glick-Magid (INT), Doron Gazit (Hebrew U), Christian Forssen (Chalmers UT), Daniel Gazda (NPI Rez), Kostas Kravvaris (LLNL), Mack Atkinson (LLNL), Chien Yeah Seng (INT), Misha Gorshteyn (U Mainz)

2023-05-08

Discovery, accelerated

Outline

- Calculations of ⁶He β-decay electron spectrum including nuclear structure and recoil corrections – published in PLB (2022)
- Calculations of ¹⁶N β-decay electron spectrum including nuclear structure and recoil corrections – ongoing, related to calculations of the muon capture on ¹⁶O
- Ongoing calculations of nuclear structure corrections δ_C and δ_{NS} for the extraction of the V_{ud} matrix element from the ${}^{10}C \rightarrow {}^{10}B$ superallowed Fermi transition (Michael Gennari on May 1st)
- Investigation of the β -delayed proton emission from ¹¹Be published in PRC (2022)

Calculations performed within the no-core shell model (NCSM), δ_C and ¹¹Be decay within the NCSM with continuum (NCSMC)

%TRIUMF

⁶He β-decay

- Precision measurements of β-decay observables offer the possibility to search for deviations from the Standard Model
 - β-decay observables are sensitive to interference of currents of SM particles and hypothetical BSM physics
 - Such couplings are proportional to v / Λ , with $v \approx 174$ GeV, the SM vacuum expectation value, and Λ the new physics energy scale
 - a ~ 10⁻⁴ coupling between SM and BSM physics would suggest new physics at a scale that is out of the reach of current particle accelerators
 - Discovering such small deviations from the SM predictions demands also high-precision theoretical calculations
 - ⇒ Nuclear structure calculations with quantified uncertainties
- Theoretical analysis of β-decay observables of the pure Gamow-Teller (GT) transition ⁶He(0⁺g.s.) → ⁶Li(1⁺g.s.) using ab initio nuclear structure calculations in combination with the chiral effective field theory (χEFT)
 - Details published in

Decay rate proportional to

$$d\omega \propto 1 + a_{\beta\nu}\vec{\beta}\cdot\hat{\nu} + b_{\mathrm{F}}\frac{m_e}{E} \qquad \qquad \vec{\beta} = \frac{\vec{k}}{E} \qquad \vec{\nu} = \nu\hat{\nu}$$

- $a_{\beta\nu}$ angular correlation coefficient between the emitted electron and the antineutrino
- *b*_F Fierz interference term that can be extracted from electron energy spectrum measurements
- The V-A structure of the weak interaction in the Standard Model implies for a Gamow-Teller transition
 - $a_{\beta\nu} = -\frac{1}{3}$

 $b_{\rm F}=0$

In the presence of Beyond the Standard Model interactions

$$a_{\beta\nu}^{\text{BSM}} = -\frac{1}{3} \left(1 - \frac{|C_T|^2 + |C_T'|^2}{2|C_A|^2} \right)$$
$$b_{\text{Fierz}}^{\text{BSM}} = \frac{C_T + C_T'}{C_A}$$

 C_A

- with tensor and pseudo-tensor contributions
- However, deviations also within the Standard Model caused by the finite momentum transfer, higher-order transition operators, and nuclear structure effects
 - Detailed, accurate, and precise calculations required

 ⁶He β⁻-decay differential distribution within the SM—including the leading shape and recoil corrections (NLO in GT)

$$\frac{d\omega^{1^+\beta^-}}{dE\frac{d\Omega_k}{4\pi}\frac{d\Omega_\nu}{4\pi}} = \frac{4}{\pi^2} (E_0 - E)^2 kEF^- (Z_f, E) C_{\text{corr}} \left| \langle \| \hat{L}_1^A \| \rangle \right|^2$$
$$\times 3 \left(1 + \delta_1^{1^+\beta^-} \right) \left[1 + a_{\beta\nu}^{1^+\beta^-} \vec{\beta} \cdot \hat{\nu} + b_F^{1^+\beta^-} \frac{m_e}{E} \right]$$

 $\hat{L}_1^A \propto 1$... longitudinal operator of the axial current, Gamow-Teller leading order

- $F(Z_f, E)$... Fermi function, deformation of the electron wave function due to the EM interaction with the nucleus
- C_{corr} ... radiative corrections, finite-mass and electrostatic finite-size effects, and atomic effects

Higher-order Standard Model recoil and shape corrections

$$\begin{split} a_{\beta\nu}^{1+\beta^{-}} &= -\frac{1}{3} \left(1 + \tilde{\delta}_{a}^{1+\beta^{-}} \right) \\ b_{F}^{1+\beta^{-}} &= \delta_{b}^{1+\beta^{-}} \\ \delta_{1}^{1+\beta^{-}} &\equiv \frac{2}{3} \Re e \left[-E_{0} \frac{\langle \| \hat{C}_{1}^{A} / q \| \rangle}{\langle \| \hat{L}_{1}^{A} \| \rangle} + \sqrt{2} \left(E_{0} - 2E \right) \frac{\langle \| \hat{M}_{1}^{V} / q \| \rangle}{\langle \| \hat{L}_{1}^{A} \| \rangle} \right] \\ &- \frac{4}{7} E R \alpha Z_{f} - \frac{233}{630} \left(\alpha Z_{f} \right)^{2}, \\ \tilde{\delta}_{a}^{1+\beta^{-}} &\equiv \frac{4}{3} \Re e \left[2E_{0} \frac{\langle \| \hat{C}_{1}^{A} / q \| \rangle}{\langle \| \hat{L}_{1}^{A} \| \rangle} + \sqrt{2} \left(E_{0} - 2E \right) \frac{\langle \| \hat{M}_{1}^{V} / q \| \rangle}{\langle \| \hat{L}_{1}^{A} \| \rangle} \right] \\ &+ \frac{4}{7} E R \alpha Z_{f} - \frac{2}{5} E_{0} R \alpha Z_{f}, \\ \delta_{b}^{1+\beta^{-}} &\equiv \frac{2}{3} m_{e} \Re e \left[\frac{\langle \| \hat{C}_{1}^{A} / q \| \rangle}{\langle \| \hat{L}_{1}^{A} \| \rangle} + \sqrt{2} \frac{\langle \| \hat{M}_{1}^{V} / q \| \rangle}{\langle \| \hat{L}_{1}^{A} \| \rangle} \right], \end{split}$$

$$\vec{q} = \vec{k} + \vec{v}$$
 momentum transfer

 \hat{C}_1^A axial charge

 \hat{M}_1^V vector magnetic or weak magnetism

 $\hat{L}_1^A \propto 1$ Gamow-Teller leading order

 $\hat{C}_1^A \quad \hat{M}_1^V$ NLO recoil corrections, order q/m_N

	Southar of Enysics G. Nuclear and Earliche Enysic
J. Phys. G: Nucl. Part. Phys. 49 (2022) 105105 (24pp)	https://doi.org/10.1088/1361-6471/ac7ed
A formaliam to access	the ecources
A formalishi to assess	ine accuracy
of nuclear-structure w	eak interaction
of nuclear-structure w effects in precision β -	eak interaction decay studies

Higher-order Standard Model recoil and shape corrections

$$\frac{\hat{C}_{JM_{J}}^{A}}{q} = \sum_{j=1}^{A} \frac{i}{m_{N}} \left[g_{A} \hat{\Omega}'_{JM_{J}}(q\vec{r}_{j}) - \frac{1}{2} \frac{\tilde{g}_{P}}{2m_{N}} \left(E_{0} + \Delta E_{c} \right) \hat{\Sigma}''_{JM_{J}}(q\vec{r}_{j}) \right] \tau_{j}^{+},$$

$$\hat{L}_{JM_{J}}^{A} = \sum_{j=1}^{A} i \left(g_{A} + \frac{\tilde{g}_{P}}{(2m_{N})^{2}} q^{2} \right) \hat{\Sigma}''_{JM_{J}}(q\vec{r}_{j}) \tau_{j}^{+},$$

$$\frac{\hat{M}_{JM_{J}}^{V}}{q} = \sum_{j=1}^{A} \frac{-i}{m_{N}} \left[g_{V} \hat{\Delta}_{JM_{J}}(q\vec{r}_{j}) - \frac{1}{2} \mu \hat{\Sigma}'_{JM_{J}}(q\vec{r}_{j}) \right] \tau_{j}^{+}$$

Hadronic vector, axial vector and pseudo-scalar charges

$$g_V = 1$$
 $g_A = -1.2756(13)$ $\tilde{g}_P = -\frac{(2m_N)^2}{m_\pi^2 - q^2} g_A$

 $\mu \approx 4.706$ is the nucleon isovector magnetic moment $\Delta E_c \equiv \langle {}^{6}\text{Li} \ 1^{+}_{gs} | V_c | {}^{6}\text{Li} \ 1^{+}_{gs} \rangle - \langle {}^{6}\text{He} \ 0^{+}_{gs} | V_c | {}^{6}\text{He} \ 0^{+}_{gs} \rangle$

$$\hat{\Sigma}_{JM_{J}}^{\prime\prime}(q\vec{r}_{j}) = \left[\frac{1}{q}\vec{\nabla}_{\vec{r}_{j}}M_{JM_{J}}(q\vec{r}_{j})\right] \cdot \vec{\sigma}(j),$$

$$\hat{\Omega}_{JM_{J}}^{\prime}(q\vec{r}_{j}) = M_{JM_{J}}(q\vec{r}_{j}) \vec{\sigma}(j) \cdot \vec{\nabla}_{\vec{r}_{j}} + \frac{1}{2}\hat{\Sigma}_{JM_{J}}^{\prime\prime}(q\vec{r}_{j}),$$

$$\hat{\Delta}_{JM_{J}}(q\vec{r}_{j}) = \vec{M}_{JJM_{J}}(q\vec{r}_{j}) \cdot \frac{1}{q}\vec{\nabla}_{\vec{r}_{j}},$$

$$\hat{\Sigma}_{JM_{J}}^{\prime}(q\vec{r}_{j}) = -i\left[\frac{1}{q}\vec{\nabla}_{\vec{r}_{j}} \times \vec{M}_{JJM_{J}}(q\vec{r}_{j})\right] \cdot \vec{\sigma}(j),$$

$$M_{JM_{J}}(q\vec{r}_{j}) = j_{J}(qr_{j})Y_{JM_{J}}(\hat{r}_{j}),$$

$$\vec{M}_{JLM_{J}}(q\vec{r}_{j}) = j_{L}(qr_{j})\vec{Y}_{JLM_{J}}(\hat{r}_{j})$$

Ultimately, we need to calculate ${}^{6}\text{He}(0^{+} 1) \rightarrow {}^{6}\text{Li}(1^{+} 0)$ matrix elements of these "one-body" operators

Progress in Particle and Nuclear Physics ournal homenage: www.elsevier.com/locate/r

Review

Ab initio no core shell model

Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{c,*}

10

 $E = (2n + l + \frac{3}{2})\mathfrak{h}\Omega$

Apply ab initio No-Core Shell Model (NCSM) to calculate the ⁶Li and ⁶He wave functions and the operator matrix elements

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis
- Short- and medium range correlations
- Bound-states, narrow resonances

Review

11

Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{c,*}

Ab initio no core shell model

 $E = (2n + l + \frac{3}{2})\mathfrak{h}\Omega$

Apply *ab initio* No-Core Shell Model (NCSM) to calculate the ⁶Li and ⁶He wave functions and the operator matrix elements

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis
- Short- and medium range correlations
- Bound-states, narrow resonances

$$\mathbf{S} \quad \Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

view

Ab initio no core shell model Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{C.*}

12

- Apply *ab initio* No-Core Shell Model (NCSM) to calculate the ⁶Li and ⁶He wave functions and the operator matrix elements
- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis
- Short- and medium range correlations
- Bound-states, narrow resonances

$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

For ⁶Li, ⁶He and heavier nuclei we use the SD basis N = 2n + 1 I = 1,3 N = 3 I = 0,2 N = 2 I = 1 N = 1 I = 0 N = 0 I = 0 N = 0 I = 0 N = 0 I = 0,2 N = 2 I = 0I

 $E = (2n + l + \frac{3}{2})\mathfrak{h}\Omega$

- Approach taking advantage of the separation of scales
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD ($m_u \approx m_d \approx 0$), spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_{χ})
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

Interactions used in this study

No further renormalization (no SRG or OLS ...)

Apply *ab initio* No-Core Shell Model to calculate the ⁶Li and ⁶He wave functions and the operator matrix elements

However, NCSM wave function include spurious center of mass component and the "one-body" operator depends on coordinates measured from the center of mass of the nucleus: $\vec{r_i} \rightarrow \vec{r_i} - \vec{R}_{\rm CM}$

$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

NCSM

Apply *ab initio* No-Core Shell Model to calculate the ⁶Li and ⁶He wave functions and the operator matrix elements

- How to do this right?
 - Introduce Jacobi coordinates, use transformations of HO wave functions
 - Done successfully in the past for radial density

$$\rho_{op}(\vec{r}) = \sum_{i=1}^{A} \delta(\vec{r} - \vec{r}_i)$$

PHYSICAL REVIEW C 70, 014317 (2004)

Translationally invariant density

Petr Navrátil Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, California 94551, USA (Received 23 May 2004; published 30 July 2004)

PHYSICAL REVIEW C 99, 024305 (2019)

Nuclear kinetic density from *ab initio* theory

Michael Gennari^{*} University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Petr Navrátil[†] TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

PHYSICAL REVIEW C 97, 034619 (2018)

Microscopic optical potentials derived from *ab initio* translationally invariant nonlocal one-body densities

Michael Gennari^{*} University of Waterloo, 200 University Avenue West Waterloo, Ontario N2L 3G1, Canada and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Matteo Vorabbi,[†] Angelo Calci, and Petr Navrátil[‡] TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

PHYSICAL REVIEW LETTERS 124, 162501 (2020)

Elastic Antiproton-Nucleus Scattering from Chiral Forces

Matteo Vorabbi[®],^{1,2} Michael Gennari[®],^{2,3} Paolo Finelli[®],⁴ Carlotta Giusti[®],⁵ and Petr Navrátil[®]²

Apply *ab initio* No-Core Shell Model to calculate the ⁶Li and ⁶He wave functions and the operator matrix elements

Matrix elements of the relevant operators

$$\begin{split} \hat{\Sigma}_{JM_J}^{\prime\prime}(q\vec{r}_j) &= \left[\frac{1}{q}\vec{\nabla}_{\vec{r}_j}M_{JM_J}(q\vec{r}_j)\right]\cdot\vec{\sigma}(j),\\ \hat{\Omega}_{JM_J}^{\prime}(q\vec{r}_j) &= M_{JM_J}(q\vec{r}_j)\,\vec{\sigma}(j)\cdot\vec{\nabla}_{\vec{r}_j} + \frac{1}{2}\hat{\Sigma}_{JM_J}^{\prime\prime}(q\vec{r}_j),\\ \hat{\Delta}_{JM_J}(q\vec{r}_j) &= \vec{M}_{JJM_J}(q\vec{r}_j)\cdot\frac{1}{q}\vec{\nabla}_{\vec{r}_j},\\ \hat{\Sigma}_{JM_J}^{\prime}(q\vec{r}_j) &= -i\left[\frac{1}{q}\vec{\nabla}_{\vec{r}_j}\times\vec{M}_{JJM_J}(q\vec{r}_j)\right]\cdot\vec{\sigma}(j), \end{split}$$

- Convergence investigation
 - Variation of HO frequency
 - hΩ = 16 24 MeV
 - Variation of basis size
 - N_{max}= 0 14 for NNLO_{opt}
 - N_{max}= 0 12 for NNLO_{sat}

Petr Navráti

Apply ab initio No-Core Shell Model to calculate the ⁶Li and ⁶He wave functions and the operator matrix elements

Petr Navráti NCSM

0.138

Matrix elements of the relevant operators

$$\begin{split} \hat{\Sigma}_{JM_J}^{\prime\prime}(q\vec{r}_j) &= \left[\frac{1}{q}\vec{\nabla}_{\vec{r}_j}M_{JM_J}(q\vec{r}_j)\right]\cdot\vec{\sigma}(j),\\ \hat{\Omega}_{JM_J}^{\prime}(q\vec{r}_j) &= M_{JM_J}(q\vec{r}_j)\,\vec{\sigma}(j)\cdot\vec{\nabla}_{\vec{r}_j} + \frac{1}{2}\hat{\Sigma}_{JM_J}^{\prime\prime}(q\vec{r}_j),\\ \hat{\Delta}_{JM_J}(q\vec{r}_j) &= \vec{M}_{JJM_J}(q\vec{r}_j)\cdot\frac{1}{q}\vec{\nabla}_{\vec{r}_j},\\ \hat{\Sigma}_{JM_J}^{\prime}(q\vec{r}_j) &= -i\left[\frac{1}{q}\vec{\nabla}_{\vec{r}_j}\times\vec{M}_{JJM_J}(q\vec{r}_j)\right]\cdot\vec{\sigma}(j), \end{split}$$

Impact of the CM correction $\langle \Psi_f \| \sum_{j=1}^{A} \hat{O}_J(\vec{r}_j) \| \Psi_i \rangle \longrightarrow \langle \Psi_f \| \sum_{i=1}^{A} \hat{O}_J(\vec{r}_j - \vec{R}_{\rm CM}) \| \Psi_i \rangle$

At q = 0:

No difference for $\hat{\Sigma}'_{JM_J}(q\vec{r}_j)$, $\hat{\Sigma}''_{JM_J}(q\vec{r}_j)$, and $\hat{\Delta}_{JM_J}(q\vec{r}_j)$ Change by a factor of ~2 for $\hat{\Omega}'_{JM_J}(q\vec{r_j})$ Increasing deviations for all operators with increase of q

z[(+0 −)]gHe 0+)] 0.1. 0.13(0.128 0.2² 0.27 0.27 0.26¹ 0.26¹ 0.260 0.255 **NNLO**_{opt} **NNLO**opt **NNLO**_{sat} **NNLO**_{sat} 0.0008 |(⁶Li 1 + ||Ω'(q)||⁶He 0⁺)|² 2000'0 00 000'0 9000'0 2000'0 10 9000'0 8000'0 [{⁶Li1+||Δ(*q*)||⁶He 0⁺)|² 0.000 0.001 0.003 **NNLO**_{opt} **NNLO**sat **NNLO**_{opt} **NNLO**_{sat} 0.0 2.5 0.0 2.5 5.0 5.0 q (MeV) q (MeV)

	Contents lists available at ScienceDirect	PHYSICS LETTERS D
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	

Nuclear ab initio calculations of "He β-decay for beyond the Standard Model studies Ayala Glick-Magid^a, Christian Forssén^{b,*}, Daniel Gazda^c, Doron Gazit^{a,*}, Peter Gysbers^{d,e}, Petr Navrátil^d

Apply *ab initio* No-Core Shell Model to calculate the ⁶Li and ⁶He wave functions and the operator matrix elements

Matrix elements of the relevant operators

$$\begin{split} \frac{\hat{C}_{JM_{J}}^{A}}{q} &= \sum_{j=1}^{A} \frac{i}{m_{N}} \left[g_{A} \hat{\Omega}'_{JM_{J}}(q\vec{r}_{j}) \right. \\ &\left. - \frac{1}{2} \frac{\tilde{g}_{P}}{2m_{N}} \left(E_{0} + \Delta E_{c} \right) \hat{\Sigma}''_{JM_{J}}(q\vec{r}_{j}) \right] \tau_{j}^{+}, \\ \hat{L}_{JM_{J}}^{A} &= \sum_{j=1}^{A} i \left(g_{A} + \frac{\tilde{g}_{P}}{(2m_{N})^{2}} q^{2} \right) \hat{\Sigma}''_{JM_{J}}(q\vec{r}_{j}) \tau_{j}^{+}, \\ \frac{\hat{M}_{JM_{J}}^{V}}{q} &= \sum_{j=1}^{A} \frac{-i}{m_{N}} \left[g_{V} \hat{\Delta}_{JM_{J}}(q\vec{r}_{j}) - \frac{1}{2} \mu \hat{\Sigma}'_{JM_{J}}(q\vec{r}_{j}) \right] \tau_{j}^{+} \end{split}$$

- Convergence investigation
 - Variation of HO frequency

hΩ = 16 - 24 MeV

- Variation of basis size
 - N_{max}= 0 14 for NNLO_{opt}
 - N_{max}= 0 12 for NNLO_{sat}

Overall results for ⁶He(0⁺ 1) \rightarrow ⁶Li(1⁺ 0) + e⁻ + $\overline{\nu}$

- Calculations performed in the impulse approximations
 - Weak magnetism M_1^{\vee} receives two-body current correction of the order the χ EFT expansion parameter ϵ_{EFT}
 - L_1^A and C_1^A two-body current terms are associated with the next order, ϵ_{EFT}^2
- The effect of two-body currents on the Gamow-Teller matrix element (q=0) quite small, ~2%
- Two-body contribution to the magnetic moment of ⁶Li negligible, correction to the B(M1; 1⁺->0⁺) ~ 10%

P. Gysbers¹², G. Hagen³⁴⁺, J.D. Holt⁰¹, G. R. Jansen³⁵, T.D. Morris³⁴⁶, P. Navrátil⁰⁰, T. Papenbrock³⁴, S. Quaglioni⁰⁷, A. Schwenk^{89,10}, S. R. Stroberg¹¹¹² and K. A. Wendt⁷

Overall results for ⁶He(0⁺ 1) \rightarrow ⁶Li(1⁺ 0) + e⁻ + $\overline{\nu}$

- We find up to 1% correction for the β spectrum and up to 2% correction for the angular correlation
- Propagating nuclear structure and χ EFT uncertainties results in an overall uncertainty of 10⁻⁴
 - Comparable to the precision of current experiments

$$b_{\rm F}^{1^+\beta^-} = \delta_b^{1^+\beta^-} = -1.52\,(18)\cdot 10^{-3}$$

$$\left\langle \tilde{\delta}_{a}^{1^{+}\beta^{-}} \right\rangle = -2.54\,(68)\cdot 10^{-3}$$

Non-zero Fierz interference term due to nuclear structure corrections

% TRIUMF

Unique first-forbidden beta decay ${}^{16}N(2^{-}) \rightarrow {}^{16}O(0^{+})$

Discovery, accelerated

Unique first-forbidden beta decay $^{16}N(2^{-}) \rightarrow {}^{16}O(0^{+})$

- The unique first-forbidden transition, J^{Δπ} =2⁻, is of great interest for BSM searches
 - Energy spectrum of emitted electrons sensitive to the symmetries of the weak interaction, gives constraints both in the case of right and left couplings of the new beyond standard model currents
 - Ayala Glick-Magid *et al.*, PLB 767 (2017) 285
- Ongoing experiment at SARAF, Israel

Ordinary muon capture on ¹⁶O within the NCSM

- Investigated using three sets of chiral EFT NN+3N interactions:
 - NN(N⁴LO)+3N(N²LO,InI)

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

- Gysbers et al., Nature Phys. 15, 428 (2019) (3N)
- NN(N⁴LO)+3N(N²LO,InI,E7)

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E7)

NN(N³LO)+3N(N²LO,InI)

Entem, Machleidt, Phys. Rev. C 68, 041001 (2003) (NN) Soma, Navratil *et al.*, Phys. Rev. C 101, 014318 (2020) (3N)

- Results quite encouraging
 - NCSM describes well the complex systems ¹⁶O and ¹⁶N
 - \rightarrow Feasible to apply NCSM to the ¹⁶N beta decay

27

Lotta Jokiniemi, PN, Kotila, and Kravvaris, in progress

¹⁶N and ¹⁶O energies

- Chiral NN N⁴LO+3N_{Inl} interaction:
 - Binding energies underestimated by ~2 MeV
 - Excitation energies overestimated by ~1 MeV

¹⁶N(2⁻) Gamow-Teller transitions to the negative parity excited states of ¹⁶O ²⁹

- Tests of NCSM wave functions
 - B(GT)s overestimated operator SRG, 2BC need to be included
 - Correct hierarchy of transitions

Unique first-forbidden beta decay ${}^{16}N(2) \rightarrow {}^{16}O(0)$

Basic operator matrix elements

Unique first-forbidden beta decay ${}^{16}N(2) \rightarrow {}^{16}O(0)$

- Basic operator matrix elements
 - Interaction dependence, COM effect
 Preliminary

% TRIUMF

$\begin{array}{c} \text{Electroweak radiative} \\ \text{correction } \delta_{\text{NS}} \end{array}$

32

1

celerat

ac

2023-05-08

V_{ud} element of CKM matrix

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} (\bar{u}_L, \bar{c}_L, \bar{t}_L) \gamma^{\mu} W^{\dagger}_{\mu} V_{CKM} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + h.c.$$

Precise V_{ud} from superallowed Fermi transitions

$$|V_{ud}|^2 = \frac{\hbar^7}{G_F^2 m_e^5 c^4} \frac{\pi^3 \ln(2)}{\mathcal{F}t(1+\Delta_R^V)}$$

 $G_F \equiv$ Fermi coupling constant determined from muon β decay

- hadronic matrix elements modified by nuclear environment
- Fermi matrix element renormalized by isospin non-conserving forces

$$\mathcal{F}t = ft(1+\delta_R')(1-\delta_C+\delta_{NS}) \qquad \qquad \mathcal{F}t = \frac{K}{G_V^2|M_{F0}|^2(1+\Delta_R^V)}$$

 $\Delta_{\rm R}^{\rm V}$ and $\delta_{\rm NS}$

Tree level beta decay amplitude

$$M_{tree} = -\frac{G_F}{\sqrt{2}} L_{\lambda} F^{\lambda}(p', p)$$

Leptonic current

1

NME of charged weak current

34

Hadronic correction in forward scattering limit

$$\delta M = -i\sqrt{2}G_F e^2 L_\lambda \int \frac{d^4q}{(2\pi)^4} \frac{M_W^2}{M_W^2 - q^2} \frac{\epsilon^{\mu\nu\alpha\lambda}q_\alpha}{[(p_e - q)^2 - m_e^2]q^2} \frac{T_{\mu\nu}(p', p, q)}{[(p_e - q)^2 - m_e^2]q^2}$$

[6] Seng et al. (2023)

 $\Delta_{\rm R}^{\rm V}$ and $\delta_{\rm NS}$

Tree level beta decay amplitude

$$M_{tree} = -\frac{G_F}{\sqrt{2}} L_\lambda F^\lambda(p', p)$$

Leptonic current

NME of charged weak current

Hadronic correction in forward scattering limit

$$\delta M = \Box_{\gamma W}(E_e) M_{tree}$$

$$\Box_{\gamma W}^{b}(E_{e}) = \frac{e^{2}}{M} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2} - q^{2}} \frac{1}{q^{2} + i\epsilon} \frac{1}{(p_{e} - q)^{2} + i\epsilon'} \frac{M\nu\left(\frac{p_{e} \cdot q}{p \cdot p_{e}}\right) - q^{2}}{\nu} \frac{T_{3}(\nu, |\vec{q}|)}{f_{+}(0)}$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

$$M_{JM}(q) \coloneqq \int d^3r \ \mathcal{M}_{JM}(q, \vec{r}) \rho(\vec{r}) \qquad T_{JM}^{\text{el}}(q) \coloneqq \int d^3r \ \frac{1}{q} \left(\vec{\nabla} \times \vec{\mathcal{M}}_{JJ}^M(q, \vec{r}) \right) \cdot \vec{J}(\vec{r})$$
$$L_{JM}(q) \coloneqq \int d^3r \ \frac{i}{q} \left(\vec{\nabla} \mathcal{M}_{JM}(q, \vec{r}) \right) \cdot \vec{J}(\vec{r}) \qquad T_{JM}^{\text{mag}}(q) \coloneqq \int d^3r \ \vec{\mathcal{M}}_{JJ}^M(q, \vec{r}) \cdot \vec{J}(\vec{r})$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

$$T_{3}(\nu, |\vec{q}|) = 4\pi i \frac{\nu}{|\vec{q}|} \sqrt{M_{i}M_{f}} \sum_{J=1}^{\infty} (2J+1) \left\langle \Psi_{f} \right| \left\{ T_{J0}^{\text{mag}} G(\nu + M_{f} + i\epsilon) T_{J0}^{5,\text{el}} + T_{J0}^{\text{el}} G(\nu + M_{f} + i\epsilon) T_{J0}^{5,\text{mag}} + T_{J0}^{5,\text{mag}} G(-\nu + M_{i} + i\epsilon) T_{J0}^{\text{el}} + T_{J0}^{5,\text{el}} G(-\nu + M_{i} + i\epsilon) T_{J0}^{\text{mag}} \right\} (|\vec{q}|) |\Psi_{i}\rangle$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

Lanczos continued fraction method to compute nuclear Green's functions

$$T_{3}(\nu, |\vec{q}|) = 4\pi i \frac{\nu}{|\vec{q}|} \sqrt{M_{i}M_{f}} \sum_{J=1}^{\infty} (2J+1) \left\langle \Psi_{f} \middle| \left\{ T_{J0}^{\text{mag}} G(\nu + M_{f} + i\epsilon) T_{J0}^{5,\text{el}} + T_{J0}^{\text{el}} G(\nu + M_{f} + i\epsilon) T_{J0}^{5,\text{mag}} + T_{J0}^{5,\text{mag}} G(-\nu + M_{i} + i\epsilon) T_{J0}^{\text{el}} + T_{J0}^{5,\text{el}} G(-\nu + M_{i} + i\epsilon) T_{J0}^{\text{mag}} \right\} (|\vec{q}|) \left| \Psi_{i} \right\rangle$$

Residues for ${}^{10}C \rightarrow {}^{10}B$ in NCSM				
Poles	n = 1	n=2	n = 3	
P_{-} [MeV]	$-1.6572 \ (J=3)$	$-0.6974 \ (J=1)$	$-0.1861 \ (J=1)$	

Table 1: Pole locations along ν axis corresponding to n-th excited state in T_3 for ${}^{10}C \rightarrow {}^{10}B$ transition at $N_{max} = 5$.

- Ground state 3⁺ and low-lying 1⁺ incur residues after Wick rotation
- Remaining pole in residue terms must also be treated

Preliminary δ_{NS} result at N_{max} =3 and N_{max} =5 still being double checked

Feasible to reach N_{max} =11

Towner & Hardy used δ_{NS} = -0.4

% TRIUMF

Isospin symmetry breaking correction δ_{C}

41

ð

celerat

ac

The pathway to δ_{C}

δ_C in *ab initio* NCSM over 20 years ago

PHYSICAL REVIEW C 66, 024314 (2002)

Ab initio shell model for A = 10 nuclei

E. Caurier,¹ P. Navrátil,² W. E. Ormand,² and J. P. Vary³ ¹Institut de Recherches Subatomiques (IN2P3-CNRS-Université Louis Pasteur), Batiment 27/1, 67037 Strasbourg Cedex 2, France ²Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, California 94551 ³Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (Received 10 May 2002; published 13 August 2002)

HO expansion incompatible with reaction theory

- i. imprecise asymptotics
- ii. missing correlations in excited states
- iii. description of scattering not feasible

Combine NCSM with resonating group method (RGM)

Ab Initio Calculations of Structure, Scattering, Reactions Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| {}^{(A)} \mathfrak{B}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \mathfrak{B}_{(A-a)}^{\vec{r}} \mathfrak{B}_{(a)}, \nu \right\rangle$$

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} | \stackrel{(A)}{\Longrightarrow}, \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} | \stackrel{\vec{r}}{\bigoplus}_{(A-a)} (a), \nu \rangle$$

$$N = N_{\max} + 1 \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=1} \Delta E = N_{\max} \hbar \Omega$$

$$N = 0$$

Static solutions for aggregate system, describe all nucleons close together

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

Static solutions for aggregate system, describe all nucleons close together

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

Static solutions for aggregate system, describe all nucleons close together

Coupled NCSMC equations

47

Physica Scripta doi:10.1088/0031-8949/91/5/053002

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4}, Carolina Romero-Redondo² and Angelo Calci¹

Ab initio calculation of the β decay from ¹¹Be to a ¹⁰Be + p resonance

Compute Fermi matrix element in NCSMC

 $\delta_{\rm C}$ in NCSMC

$$M_F = \left\langle \Psi^{J^{\pi}T_f M_{T_f}} \Big| T_+ \Big| \Psi^{J^{\pi}T_i M_{T_i}} \right\rangle \longrightarrow |M_F|^2 = |M_{F0}|^2 (1 - \delta_C)$$

• Total isospin operator $T_+ = T_+^{(1)} + T_+^{(2)}$ for partitioned system

$$M_{F} \sim \left\langle A\lambda_{f}J_{f}T_{f}M_{T_{f}}|T_{+}|A\lambda_{J_{i}}T_{i}M_{T_{i}}\rangle + \left\langle A\lambda J_{f}T_{f}M_{T_{f}}|T_{+}\mathcal{A}_{\nu i}|\Phi_{\nu r}^{J_{i}T_{i}M_{T_{i}}}\rangle \right\rangle + \left\langle \Phi_{\nu r}^{J_{f}T_{f}M_{T_{f}}}|\mathcal{A}_{\nu f}T_{+}\mathcal{A}_{\nu i}|\Phi_{\nu r}^{J_{i}T_{i}M_{T_{i}}}\rangle \right\rangle$$

$$NCSM matrix element$$

$$NCSM Cluster metrix element$$

$$Continuum (cluster) matrix element$$

NCSM-Cluster matrix elements

¹⁰C structure from chiral EFT NN(N⁴LO)+3N(N²LO,InI) interaction ($N_{max} = 9$)

$$|^{10}\mathrm{C}\rangle = \sum_{\alpha} c_{\alpha} |^{10}\mathrm{C}, \alpha\rangle_{\mathrm{NCSM}} + \sum_{\nu} \int dr \,\gamma_{\nu}^{J^{\pi}T}(r)\mathcal{A}_{\nu} |^{9}\mathrm{B} + \mathrm{p}, \nu\rangle$$

- Treat as mass partition of proton plus ⁹B
- Use 3/2⁻ and 5/2⁻ states of ⁹B
- Known bound states captured by NCSMC

State	E _{NCSM} (MeV)	E (MeV)	E_{exp} (MeV)
0+	-3.09	-3.46	-4.006
2+	+0.40	-0.03	-0.652

¹⁰C structure from chiral EFT NN(N⁴LO)+3N(N²LO,InI) interaction ($N_{max} = 9$)

¹⁰B structure from chiral EFT NN(N⁴LO)+3N(N²LO,InI) interaction ($N_{max} = 9$)

$$|^{10}\mathrm{B}\rangle = \sum_{\alpha} c_{\alpha} |^{10}\mathrm{B}, \alpha\rangle_{\mathrm{NCSM}} + \sum_{\nu} \int dr \,\gamma_{\nu}(r)\mathcal{A}_{\nu} |^{9}\mathrm{Be} + p, \nu\rangle + \sum_{\mu} \int dr \,\gamma_{\mu}(r)\mathcal{A}_{\mu} |^{9}\mathrm{B} + n, \mu\rangle$$

Use 3/2⁻ and 5/2⁻ states of ⁹B and ⁹Be
Eight of twelve bound states predicted

State	E (MeV)	E _{exp} (MeV)
3+	-5.75	-6.5859
1+	-5.33	-5.8676
0+	-4.30	-4.8458
1+	-4.26	-4.4316
2+	-2.69	-2.9988
2+	-0.93	-1.4220
2+	-0.70	-0.6664
4+	-0.19	-0.5609

%TRIUMF

2023-05-08

β-delayed proton emission in ¹¹Be

¹¹Be(β p), a quasi-free neutron decay?

K. Riisager^{a,*}, O. Forstner^{b,c}, M.J.G. Borge^{d,e}, J.A. Briz^e, M. Carmona-Gallardo^e, L.M. Fraile^f, H.O.U. Fynbo^a, T. Giles^g, A. Gottberg^{e,g}, A. Heinz^h, J.G. Johansen^{a,1}, B. Jonson^h, J. Kurcewicz^d, M.V. Lund^a, T. Nilsson^h, G. Nyman^h, E. Rapisarda^d, P. Steier^b, O. Tengblad^e, R. Thies^h, S.R. Winkler^b

- Indirectly observed ${}^{11}\text{Be}(\beta p){}^{10}\text{Be}$
- Measured an extremely high branching ratio $b_p = 8.3 \pm 0.9 \times 10^{-6}$
 - Orders of magnitude larger than theoretical predictions (e.g. 3.0×10^{-8})
- Two proposed explanations:

- D. Baye and E.M. Tursunov, PLB 696, 4, 464-467 (2011)
- **①** The neutron decays to an unobserved $p+^{10}Be$ resonance in ^{11}B
- **2** There are unobserved dark decay modes

Eur. Phys. J. A (2020) 56:100 https://doi.org/10.1140/epja/s10050-020-00110-2 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

Search for beta-delayed proton emission from ¹¹Be

K. Riisager^{1,a}, M. J. G. Borge^{2,3}, J. A. Briz³, M. Carmona-Gallardo⁴, O. Forstner⁵, L. M. Fraile⁴, H. O. U. Fynbo¹, A. Garzon Camacho³, J. G. Johansen¹, B. Jonson⁶, M. V. Lund¹, J. Lachner⁵, M. Madurga², S. Merchel⁷, E. Nacher³, T. Nilsson⁶, P. Steier⁵, O. Tengblad³, V. Vedia⁴

New Accelerator Mass Spectrometry experiment that supersedes the 2014 measurement

- Branching ratio $b_p \sim 2.2 \times 10^{-6}$
 - Upper limit, possible contamination by BeH molecular ions

PHYSICAL REVIEW LETTERS 123, 082501 (2019)

Editors' Suggestion

Direct Observation of Proton Emission in ¹¹Be

Y. Ayyad,^{1,2,*} B. Olaizola,³ W. Mittig,^{2,4} G. Potel,¹ V. Zelevinsky,^{1,2,4} M. Horoi,⁵ S. Beceiro-Novo,⁴ M. Alcorta,³
C. Andreoiu,⁶ T. Ahn,⁷ M. Anholm,^{3,8} L. Atar,⁹ A. Babu,³ D. Bazin,^{2,4} N. Bernier,^{3,10} S. S. Bhattacharjee,³ M. Bowry,³
R. Caballero-Folch,³ M. Cortesi,² C. Dalitz,¹¹ E. Dunling,^{3,12} A. B. Garnsworthy,³ M. Holl,^{3,13} B. Kootte,^{3,8}
K. G. Leach,¹⁴ J. S. Randhawa,² Y. Saito,^{3,10} C. Santamaria,¹⁵ P. Šiurytė,^{3,16} C. E. Svensson,⁹
R. Umashankar,³ N. Watwood,² and D. Yates^{3,10}

- Directly observed the protons from ${}^{11}\text{Be}(\beta p){}^{10}\text{Be}$
- Measured consistent branching ratio $b_p = 1.3(3) \times 10^{-5}$
 - Still orders of magnitude larger than theoretical predictions
- Predict the proton resonance at 11.425(20) MeV from the proton energy distribution
 - Predicted to be either $\frac{1}{2}^+$ or $\frac{3}{2}^+$
 - Corresponds to excitation energy of 197 keV

NCSMC extended to describe exotic ¹¹Be β p emission

$$|\Psi_{A}^{J^{\pi}T}\rangle = \sum_{\lambda} c_{\lambda}^{J^{\pi}T} |A\lambda J^{\pi}T\rangle + \sum_{\nu} \int dr r^{2} \frac{\gamma_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} |\Phi_{\nu r}^{J^{\pi}T}\rangle$$
$$|\Phi_{\nu r}^{J^{\pi}T}\rangle = \left[\left(|^{10}\text{Be}\,\alpha_{1}I_{1}^{\pi_{1}}T_{1}\rangle |N\frac{1}{2}+\frac{1}{2}\rangle \right)^{(sT)} Y_{\ell}(\hat{r}_{10,1}) \right]^{(J^{\pi}T)}$$
$$\times \frac{\delta(r-r_{10,1})}{rr_{10,1}}, \qquad n \text{ for } {}^{11}\text{Be or } p \text{ for } {}^{11}\text{B}$$

Input chiral interaction NN N⁴LO(500) + 3N(InI) t Entem-Machleidt-Nosyk 2017 3N N²LO w local/non-local regulator

Including 0^{+}_{gs} and 2^{+}_{1} states of ^{10}Be

$$B(\text{GT}) = \frac{1}{2} \left| \left\langle \Psi_{11B}^{\frac{1}{2} + \frac{1}{2}} \| \hat{\text{GT}} \| \Psi_{11Be}^{\frac{1}{2} + \frac{3}{2}} \right\rangle \right|^2$$

PHYSICAL REVIEW C 105, 054316 (2022)
 · · · · · ·
Ab initia calculation of the β decay from ¹¹ Be to a ¹⁰ Be $\pm n$ resonance
The many curculation of the p accuy from the to a the p resonance
M. C. Atkinson [•] , ¹ P. Navrátil [•] , ¹ G. Hupin [•] , ² K. Kravvaris, ³ and S. Quaglioni ³

¹¹Be and ¹¹B nuclear structure results

Bound states wrt ¹⁰Be+N thresholds

1.85

1.46

§<u>11.228</u>5

5.05 4.60 4.43

 $\frac{1/2^+; T = (3/2)}{0 \qquad 7/2^+} 1/2^ \frac{11.600 \qquad 5/2^+}{5/2^-}$

-9/2+

12.554

NCSMC phenomenology

$$H \Psi^{(A)} = E \Psi^{(A)} \qquad \Psi^{(A)} = \sum_{\lambda} c_{\lambda} |^{(A)} \otimes , \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} |_{(A-a)} \vec{r} \cdot \vec{r$$

¹¹Be and ¹¹B nuclear structure results

Bound states wrt ¹⁰Be+N thresholds

1.85

1.46

§<u>11.228</u>5

5.05 4.60 4.43

 $\frac{1/2^+; T = (3/2)}{0 \qquad 7/2^+} 1/2^ \frac{11.600 \qquad 5/2^+}{5/2^-}$

-9/2+

12:554

¹¹Be and ¹¹B nuclear structure results

 $L^{(a)}$

(b)

 $(1/2^{-}, 3/2)$

 $(1/2^{-}, 3/2)$

3

4 $E_{\rm c.m.}$ [MeV]

5

6

 $(1/2^+, 3/2)$

 $\mathbf{2}$

 $(1/2^+, 3/2)$

150

100

50

0

-50

200

150

100

50

0

0

1

 $\delta \, [\mathrm{deg}]$

 δ [deg]

¹¹B resonances above ¹⁰Be+p threshold

7

8

(11.5092 ¹¹Be

NCSMC extended to describe exotic ¹¹Be β p emission, supports large branching ratio due to narrow ¹/₂⁺ resonance

¹¹Be \rightarrow (¹⁰Be+p) + β^- + $\bar{\nu}_e$ GT transition

NCSMC extended to describe exotic ¹¹Be β p emission, supports large branching ratio due to narrow ¹/₂⁺ resonance

NCSMC extended to describe exotic ¹¹Be β p emission, supports large branching ratio due to narrow ¹/₂⁺ resonance

- New FRIB experiment measuring proton emission led by Jason Surbrook reports branching ratio b_p ~ 8(4) x 10⁻⁶
 - Lower but still consistent with Ayyad TRIUMF experiment
- More experiments planned!
- NCSMC calculations will be extended by including the ⁷Li+ α mass partition

Conclusions

- We used *ab initio* nuclear theory and the χEFT framework to analyze the nuclear-structure corrections to ⁶He β-decay observables
 - The angular correlation coefficient
 - Nuclear structure term with an inverse energy spectral dependence, imitating a Fierz interference term
 - We find a non-zero Fierz term comparable to an effect of interference between SM and a TeV-scale BSM currents
 - The achieved uncertainty of ~15% is dominated by the neglect of the weak magnetism two-body currents
 → the next thing to focus on
- Ab initio investigation of the fist forbidden unique ${}^{16}N \rightarrow {}^{16}O$ beta decay ongoing
 - Electron spectrum sensitive to BSM physics
- Ab initio calculations of the structure corrections for the extraction of the V_{ud} matrix element from the ¹⁰C → ¹⁰B Fermi transition under way
 - Preliminary result for δ_{NS}
 - The same approach will be applied to ${}^{14}O \rightarrow {}^{14}N$ Fermi transition and possibly also to ${}^{18}Ne \rightarrow {}^{18}F$ and ${}^{22}Mg \rightarrow {}^{22}Na$
- Applications of NCSMC to ¹¹Be β decay with the proton emission
 - Supports large branching ratio due to a narrow ¹/₂+ resonance

% TRIUMF

Backup slides

Applications to β decays in p-shell nuclei and beyond

• Problem of quenching of the axial-vector coupling constant g_A in shell model calculations of GT transitions

REVIEWS OF MODERN PHYSICS, VOLUME 77, APRIL 2005

The shell model as a unified view of nuclear structure

E. Caurier*

Institut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, F-67037 Strasbourg, France

G. Martínez-Pinedo[†]

ICREA and Institut d'Estudis Espacials de Catalunya, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

F. Nowacki[‡]

Institut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, F-67037 Strasbourg, France

A. Poves§

Departamento de Física Teórica, Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain

A. P. Zuker^{II}

Institut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, F-67037 Strasbourg, France

Discrepancy between experimental and theoretical β-decay rates resolved from first principles

S. Quaglioni¹⁰⁷, A. Schwenk^{8,9,10}, S. R. Stroberg^{1,11,12} and K. A. Wendt⁷

P.Gysbers¹², G.Hagen^{3,4*}, J.D.Holt⁰¹, G.R.Jansen³⁵, T.D.Morris^{34,6}, P.Navrátil⁰¹, T.Papenbrock³⁴

Applications to β decays in p-shell nuclei and beyond

- Does inclusion of the MEC explain g_A quenching?
- In light nuclei correlations present in *ab initio* (NCSM) wave functions explain almost all of the quenching compared to the standard shell model
 - MEC inclusion overall improves agreement with experiment
- The effect of the MEC inclusion is greater in heavier nuclei
- SRG evolved matrix elements used in coupled-cluster and IM-SRG calculations (up to ¹⁰⁰Sn)

Hollow symbols – GT Filled symbols – GT+MEC Both Hamiltonian and operators SRG evolved Hamiltonian and current consistent parameters

physics

50 year old puzzle of quenched beta decays resolved from first principles

Ab initio calculations of the ${}^{48}Ca \rightarrow {}^{48}Ti$ neutrinoless double beta decay matrix elements

- Benchmarks for light nuclei: NCSM & Coupled-Cluster
 - Both two-neutrino and neutrinoless double beta decay
- Coupled-Cluster ${}^{48}Ca \rightarrow {}^{48}Ti$ results

