发TRIUMF

Ab initio calculations of beta decays of light nuclei

INT Workshop 23-1b
New physics searches at the precision frontier May 8, 2023

Petr Navratil

TRIUMF

Collaborators:

Peter Gysbers (TRIUMF/UBC), Michael Gennari (UVic/TRIUMF)
Lotta Jokiemi (TRIUMF), Mehdi Drissi (TRIUMF), Ayala Glick-Magid (INT), Doron Gazit (Hebrew U), Christian Forssen (Chalmers UT),
Daniel Gazda (NPI Rez), Kostas Kravvaris (LLNL), Mack Atkinson (LLNL), Chien Yeah Seng (INT), Misha Gorshteyn (U Mainz)
2023-05-08

Outline

- Calculations of ${ }^{6} \mathrm{He} \beta$-decay electron spectrum including nuclear structure and recoil corrections - published in PLB (2022)
- Calculations of ${ }^{16} \mathrm{~N} \beta$-decay electron spectrum including nuclear structure and recoil corrections - ongoing, related to calculations of the muon capture on ${ }^{16} \mathrm{O}$
- Ongoing calculations of nuclear structure corrections δ_{C} and $\delta_{N S}$ for the extraction of the $V_{u d}$ matrix element from the ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$ superallowed Fermi transition (Michael Gennari on May $1^{\text {st }}$)
- Investigation of the β-delayed proton emission from ${ }^{11} \mathrm{Be}$ - published in PRC (2022)

Calculations performed within the no-core shell model (NCSM), δ_{C} and ${ }^{11} \mathrm{Be}$ decay within the NCSM with continuum (NCSMC)

发TRIUMF

${ }^{6} \mathrm{He} \beta$-decay

Precise measurements of β decays to search for Physics Beyond the Standard Model

- Precision measurements of β-decay observables offer the possibility to search for deviations from the Standard Model
- β-decay observables are sensitive to interference of currents of SM particles and hypothetical BSM physics
- Such couplings are proportional to v / Λ, with $v \approx 174 \mathrm{GeV}$, the SM vacuum expectation value, and Λ the new physics energy scale
- a $\sim 10^{-4}$ coupling between SM and BSM physics would suggest new physics at a scale that is out of the reach of current particle accelerators
- Discovering such small deviations from the SM predictions demands also high-precision theoretical calculations
- \Rightarrow Nuclear structure calculations with quantified uncertainties
- Theoretical analysis of β-decay observables of the pure Gamow-Teller (GT) transition ${ }^{6} \mathrm{He}\left(0^{+}\right.$g.s. $) \rightarrow{ }^{6} \mathrm{Li}\left(1^{+}\right.$g.s.) using ab initio nuclear structure calculations in combination with the chiral effective field theory ($\chi \mathrm{EFT}$)
- Details published in

Nuclear ab initio calculations of ${ }^{6} \mathrm{He} \beta$-decay for beyond the Standard Model studies
Ayala Glick-Magid ${ }^{\text {a }}$, Christian Forssén ${ }^{\mathrm{b}, *,}$, Daniel Gazda ${ }^{\mathrm{c}}$, Doron Gazit ${ }^{\mathrm{a}, *}$, Peter Gysbers ${ }^{\mathrm{d}, \mathrm{e}}$,
Petr Nayratid ${ }^{\text {d }}$,
Petr Navrátil ${ }^{\text {d }}$

Precise measurements of β decays to search for Physics Beyond the Standard Model

- Decay rate proportional to
$d \omega \propto 1+a_{\beta \nu} \vec{\beta} \cdot \hat{v}+b_{\mathrm{F}} \frac{m_{e}}{E} \quad \vec{\beta}=\frac{\vec{k}}{E} \quad \vec{v}=\nu \hat{v}$
$a_{\beta \nu} \quad$ angular correlation coefficient between the emitted electron and the antineutrino

$b_{\mathrm{F}} \quad$ Fierz interference term that can be extracted from electron energy spectrum measurements
- The V - A structure of the weak interaction in the Standard Model implies for a Gamow-Teller transition

$$
\begin{aligned}
a_{\beta \nu} & =-\frac{1}{3} \\
b_{\mathrm{F}} & =0
\end{aligned}
$$

- In the presence of Beyond the Standard Model interactions

$$
\begin{aligned}
& a_{\beta \nu}^{\mathrm{BSM}}=-\frac{1}{3}\left(1-\frac{\left|C_{T}\right|^{2}+\left|C_{T}^{\prime}\right|^{2}}{2\left|C_{A}\right|^{2}}\right) \\
& b_{\mathrm{Fierz}}^{\mathrm{BSM}}=\frac{C_{T}+C_{T}^{\prime}}{C_{A}}
\end{aligned}
$$

- with tensor and pseudo-tensor contributions
- However, deviations also within the Standard Model caused by the finite momentum transfer, higher-order transition operators, and nuclear structure effects
- Detailed, accurate, and precise calculations required

Precise measurements of β decays to search for Physics Beyond the Standard Model

- ${ }^{6} \mathrm{He} \beta^{-}$-decay differential distribution within the SM-including the leading shape and recoil corrections (NLO in GT)

$$
\begin{array}{r}
\frac{d \omega^{1^{+} \beta^{-}}}{d E \frac{d \Omega_{k} d \Omega_{v}}{4 \pi} \frac{4}{4 \pi}}=\frac{4}{\pi^{2}}\left(E_{0}-E\right)^{2} k E F^{-}\left(Z_{f}, E\right) C_{\mathrm{corr}}\left|\left\langle\left\|\hat{L}_{1}^{A}\right\|\right\rangle\right|^{2} \\
\quad \times 3\left(1+\delta_{1}^{1^{+} \beta^{-}}\right)\left[1+a_{\beta \nu}^{1+\beta^{-}} \vec{\beta} \cdot \hat{v}+b_{\mathrm{F}}^{1^{+} \beta^{-}} \frac{m_{e}}{E}\right]
\end{array}
$$

$\hat{L}_{1}^{A} \propto 1 \ldots$ longitudinal operator of the axial current, Gamow-Teller leading order
$F-\left(Z_{f}, E\right) \ldots$ Fermi function, deformation of the electron wave function due to the EM interaction with the nucleus

Corr $_{\text {corr }} \quad$.. radiative corrections, finite-mass and electrostatic finite-size effects, and atomic effects

OPEN ACCESS IOP Publishing

J. Phys. G: Nucl. Part. Phys. 49 (0222) 105105 (2400)

A formalism to assess the accuracy

 of nuclear-structure weak interaction effects in precision β-decay studies
Precise measurements of β decays to search for Physics Beyond the Standard Model

- Higher-order Standard Model recoil and shape corrections

$$
\begin{aligned}
a_{\beta \nu}^{1^{+} \beta^{-}} & =-\frac{1}{3}\left(1+\tilde{\delta}_{a}^{1^{+} \beta^{-}}\right) \\
b_{\mathrm{F}}^{1^{+} \beta^{-}} & =\delta_{b}^{1^{+} \beta^{-}} \\
\delta_{1}^{1^{+} \beta^{-}} & \equiv \frac{2}{3} \Re \mathfrak{R e}\left[-E_{0} \frac{\left\langle\left\|\hat{C}_{1}^{A} / q\right\|\right\rangle}{\left\langle\left\|\hat{L}_{1}^{A}\right\|\right\rangle}+\sqrt{2}\left(E_{0}-2 E\right) \frac{\left\langle\left\|\hat{M}_{1}^{V} / q\right\|\right\rangle}{\left\langle\left\|\hat{L}_{1}^{A}\right\|\right\rangle}\right] \\
& -\frac{4}{7} E R \alpha Z_{f}-\frac{233}{630}\left(\alpha Z_{f}\right)^{2}, \\
\tilde{\delta}_{a}^{1^{+} \beta^{-}} & \equiv \frac{4}{3} \Re \mathfrak{R e}\left[2 E_{0} \frac{\left\langle\left\|\hat{C}_{1}^{A} / q\right\|\right\rangle}{\left\langle\left\|\hat{L}_{1}^{A}\right\|\right\rangle}+\sqrt{2}\left(E_{0}-2 E\right) \frac{\left\langle\left\|\hat{M}_{1}^{V} / q\right\|\right\rangle}{\left\langle\left\|\hat{L}_{1}^{A}\right\|\right\rangle}\right] \\
& +\frac{4}{7} E R \alpha Z_{f}-\frac{2}{5} E_{0} R \alpha Z_{f}, \\
\delta_{b}^{1+\beta^{-}} & \equiv \frac{2}{3} m_{e} \Re \mathfrak{R e}\left[\frac{\left\langle\left\|\hat{C}_{1}^{A} / q\right\|\right\rangle}{\left\langle\left\|\hat{L}_{1}^{A}\right\|\right\rangle}+\sqrt{2} \frac{\left\langle\left\|\hat{M}_{1}^{V} / q\right\|\right\rangle}{\left\langle\left\|\hat{L}_{1}^{A}\right\|\right\rangle}\right],
\end{aligned}
$$

$$
\vec{q}=\vec{k}+\vec{v} \quad \text { momentum transfer }
$$

\hat{C}_{1}^{A} axial charge
\hat{M}_{1}^{V} vector magnetic or weak magnetism
$\hat{L}_{1}^{A} \propto 1 \quad$ Gamow-Teller leading order
$\hat{C}_{1}^{A} \quad \hat{M}_{1}^{V} \quad$ NLO recoil corrections, order q / m_{N}

```
OFRENGCESS
IOP Publising
IOP Publishing
J. Phys. G: Nut. Pat. Phys. 49 (2022) 105105 (244p)
```


A formalism to assess the accuracy

 of nuclear-structure weak interaction effects in precision β-decay studies
Precise measurements of β decays to search for Physics Beyond the Standard Model

- Higher-order Standard Model recoil and shape corrections

$$
\begin{aligned}
\frac{\hat{C}_{J M_{J}}^{A}}{q} & =\sum_{j=1}^{A} \frac{i}{m_{N}}\left[g_{A} \hat{\Omega}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)\right. \\
& \left.-\frac{1}{2} \frac{\tilde{g}_{P}}{2 m_{N}}\left(E_{0}+\Delta E_{c}\right) \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right)\right] \tau_{j}^{+}, \\
\hat{L}_{J M_{J}}^{A} & =\sum_{j=1}^{A} i\left(g_{A}+\frac{\tilde{g}_{P}}{\left(2 m_{N}\right)^{2}} q^{2}\right) \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right) \tau_{j}^{+}, \\
\frac{\hat{M}_{J M_{J}}^{V}}{q} & =\sum_{j=1}^{A} \frac{-i}{m_{N}}\left[g_{V} \hat{\Delta}_{J M_{J}}\left(q \vec{r}_{j}\right)-\frac{1}{2} \mu \hat{\Sigma}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)\right] \tau_{j}^{+}
\end{aligned}
$$

Hadronic vector, axial vector and pseudo-scalar charges

$$
g_{V}=1 \quad g_{A}=-1.2756(13) \quad \tilde{g}_{P}=-\frac{\left(2 m_{N}\right)^{2}}{m_{\pi}^{2}-q^{2}} g_{A}
$$

$\mu \approx 4.706$ is the nucleon isovector magnetic moment

$$
\Delta E_{c} \equiv\left\langle{ }^{6} \mathrm{Li} 1_{\mathrm{gs}}^{+}\right| V_{c}\left|{ }^{6} \mathrm{Li} 1_{\mathrm{gs}}^{+}\right\rangle-\left\langle{ }^{6} \mathrm{He} 0_{\mathrm{gs}}^{+}\right| V_{c}\left|{ }^{6} \mathrm{He} 0_{\mathrm{gs}}^{+}\right\rangle
$$

$$
\begin{aligned}
& \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right)= {\left[\frac{1}{q} \vec{\nabla}_{\vec{r}_{j}} M_{J M_{J}}\left(q \vec{r}_{j}\right)\right] \cdot \vec{\sigma}(j), } \\
& \hat{\Omega}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)= M_{J M_{J}}\left(q \vec{r}_{j}\right) \vec{\sigma}(j) \cdot \vec{\nabla}_{\vec{r}_{j}}+\frac{1}{2} \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right), \\
& \hat{\Delta}_{J M_{J}}\left(q \vec{r}_{j}\right)= \vec{M}_{J J M_{J}}\left(q \vec{r}_{j}\right) \cdot \frac{1}{q} \vec{\nabla}_{\vec{r}_{j}}, \\
& \hat{\Sigma}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)=-i\left[\frac{1}{q} \vec{\nabla}_{\vec{r}_{j}} \times \vec{M}_{J J M_{J}}\left(q \vec{r}_{j}\right)\right] \cdot \vec{\sigma}(j), \\
& \uparrow M_{J M_{J}}\left(q \vec{r}_{j}\right)=j_{J}\left(q r_{j}\right) Y_{J M_{J}}\left(\hat{r}_{j}\right) \\
& \vec{M}_{J L M_{J}}\left(q \vec{r}_{j}\right)=j_{L}\left(q r_{j}\right) \vec{Y}_{J L M_{J}}\left(\hat{r}_{j}\right)
\end{aligned}
$$

$$
\mu \approx 4.706 \text { is the nucleon isovector magnetic moment }
$$

Ultimately, we need to calculate
${ }^{6} \mathrm{He}\left(0^{+} 1\right) \rightarrow{ }^{6} \mathrm{Li}\left(1^{+} 0\right)$ matrix elements of these "one-body" operators

Apply ab initio No-Core Shell Model (NCSM) to calculate the ${ }^{6} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ wave functions and the operator matrix elements

- Basis expansion method
- Harmonic oscillator (HO) basis truncated in a particular way ($N_{\max }$)
- Why HO basis?
- Lowest filled HO shells match magic numbers of light nuclei $\left(2,8,20-{ }^{4} \mathrm{He},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}\right)$
- Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis

- Short- and medium range correlations
- Bound-states, narrow resonances

$$
\left.\begin{array}{c}
\begin{array}{c}
N=2 n+l \\
l=1,3 \\
l=0,2 \\
l=1 \\
l=0
\end{array} \\
N=2 \\
N=1 \\
N=0
\end{array}\right)<\begin{gathered}
20 \rightarrow 40 \\
12 \rightarrow 20 \\
6 \rightarrow 8 \\
2 \rightarrow 2
\end{gathered}
$$

Apply ab initio No-Core Shell Model (NCSM) to calculate the ${ }^{6} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ wave functions and the operator matrix elements

- Basis expansion method
- Harmonic oscillator (HO) basis truncated in a particular way ($N_{\max }$)
- Why HO basis?
- Lowest filled HO shells match magic numbers of light nuclei (2, 8, $\left.20-{ }^{4} \mathrm{He},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}\right)$
- Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis

- Short- and medium range correlations
- Bound-states, narrow resonances

$$
8 \Psi^{A}=\sum_{N=0}^{N_{\max }} \sum_{i} c_{N i} \Phi_{N i}^{H O}\left(\vec{\eta}_{1}, \vec{\eta}_{2}, \ldots, \vec{\eta}_{A-1}\right)
$$

$83 \Psi_{\mathrm{SD}}^{A}=\sum_{N=0}^{N_{\max }} \sum_{j} c_{N j}^{\mathrm{SD}} \Phi_{\mathrm{SD} N j}^{H O}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right)=\Psi^{A} \varphi_{000}\left(\vec{R}_{C M}\right)$

$$
\left.E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{}\right)
$$

Apply ab initio No-Core Shell Model (NCSM) to calculate the ${ }^{6} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ wave functions and the operator matrix elements

- Basis expansion method
- Harmonic oscillator (HO) basis truncated in a particular way ($N_{\max }$)
- Why HO basis?
- Lowest filled HO shells match magic numbers of light nuclei (2, 8, $\left.20-{ }^{4} \mathrm{He},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}\right)$
- Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis

- Short- and medium range correlations

For ${ }^{6} \mathrm{Li},{ }^{6} \mathrm{He}$ and heavier nuclei we use the SD basis

- Bound-states, narrow resonances

$$
\Psi^{A}=\sum_{N=0}^{N_{\max }} \sum_{i} c_{N i} \Phi_{N i}^{H O}\left(\vec{\eta}_{1}, \vec{\eta}_{2}, \ldots, \vec{\eta}_{A-1}\right)
$$

$83 \Psi_{\mathrm{SD}}^{A}=\sum_{N=0}^{N_{\max }} \sum_{j} c_{N j}^{\mathrm{SD}} \Phi_{\mathrm{SDNj}}^{H O}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right)=\Psi^{A} \varphi_{000}\left(\vec{R}_{C M}\right)$

$$
\left.E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{}\right)
$$

- Approach taking advantage of the separation of scales
- Based on the symmetries of QCD
- Chiral symmetry of QCD ($\left.m_{\mathrm{u}} \approx m_{\mathrm{d}} \approx 0\right)$, spontaneously broken with pion as the Goldstone boson
- Degrees of freedom: nucleons + pions
- Systematic low-momentum expansion to a given order ($\mathrm{Q} / \Lambda_{\mathrm{x}}$)
- Hierarchy
- Consistency
- Low energy constants (LEC)
- Fitted to data
- Can be calculated by lattice QCD

- Interactions used in this study
- $\mathrm{NNLO}_{\text {opt }}$
- NN only $\begin{array}{ll}\text { PRL 110, } 192502 \text { (2013) } & \text { PHYSICAL REVIEW LETTERS }\end{array} \begin{gathered}\text { week ending } \\ 10 \mathrm{MAY} \text { 2013 }\end{gathered}$

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order
A. Ekström, ${ }^{1,2}$ G. Baardsen, ${ }^{1}$ C. Forsséne ${ }^{3}$ G. Hagen, ${ }^{4,5}$ M. Hjorth-Jensen, ${ }^{1,2,6}$ G. R. Jansen ${ }^{4,5}$ R. Machleidt, ${ }^{7}$

- Reproduces reasonably well binding energies \& radii of $A=3,4$ and 6 nuclei
- $\mathrm{NNLO}_{\text {sat }}$
- NN+3N
- More accurate for medium mass nuclei especially for radii
- No further renormalization (no SRG or OLS ...)

- Interactions used in this study
- NNLO ${ }_{\text {opt }}$
- NN only $\begin{array}{ll}\text { PRL 110, } 192502 \text { (2013) } & \text { PHYSICAL REVIEW LETTERS }\end{array} \begin{gathered}\text { week ending } \\ 10 \mathrm{MAY} \text { 2013 }\end{gathered}$

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order
A. Ekström, ${ }^{1,2}$ G. Baardsen, ${ }^{1}$ C. Forsséne ${ }^{3}$ G. Hagen, ${ }^{4,5}$ M. Hjorth-Jensen, ${ }^{1,2,6}$ G. R. Jansen ${ }^{4,5}$ R. Machleidt, ${ }^{7}$

- Reproduces reasonably well binding energies \& radii of $A=3,4$ and 6 nuclei
- $\mathrm{NNLO}_{\text {sat }}$
- NN+3N
- More accurate for medium mass nuclei especially for radii
- No further renormalization (no SRG or OLS ...)

- Interactions used in this study
- $\mathrm{NNLO}_{\text {opt }}$
- NN only

> | PRL 110, 192502 (2013) | PH Y SICAL | REVIEW |
| :--- | :---: | :---: |
| Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order | | |

A. Ekström, ${ }^{1,2}$ G. Baardsen, ${ }^{1}$ C. Forsséne ${ }^{3}$ G. Hagen, ${ }^{4,5}$ M. Hjorth-Jensen, ${ }^{1,2,6}$ G. R. Jansen ${ }^{4,5}$ R. Machleidt, ${ }^{7}$

- Reproduces reasonably well binding energies \& radii of $A=3,4$ and 6 nuclei
- $\mathrm{NNLO}_{\text {sat }}$
- NN+3N
- More accurate for medium mass nuclei especially for radii
- No further renormalization (no SRG or OLS ...)

- Straightforward to calculate matrix elements of one-body operators

$$
\begin{aligned}
\left\langle\Psi_{f}\left\|\sum_{j=1}^{A} \hat{O}_{J}\left(\vec{r}_{j}\right)\right\| \Psi_{i}\right\rangle & =\frac{-1}{\sqrt{2 J+1}} \sum_{|\alpha|,|\beta|}\langle | \alpha| |\left|\hat{O}_{J}(\vec{r}) \|||\beta|\rangle\right. & & \text { One-body operator matrix element } \\
& \times\left\langle\Psi_{f}\left\|\left(a_{|\alpha|}^{\dagger} \tilde{a}_{|\beta|}\right) J\right\| \Psi_{i}\right\rangle, & & \text { One-body density }
\end{aligned}
$$

- In our case $J=1, \quad\left|\Psi_{i}\right\rangle=\mid{ }^{6} \mathrm{He}$ gs $\left.0^{+} 1\right\rangle$

$$
\left|\Psi_{f}\right\rangle=\left|{ }^{6} \mathrm{Ligs} 1^{+} 0\right\rangle
$$

However, NCSM wave function include spurious center of mass component and the "one-body" operator depends on coordinates measured from the center of mass of the nucleus: $\quad \vec{r}_{i} \rightarrow \vec{r}_{i}-\vec{R}_{\mathrm{CM}}$

$$
\text { 33 } \Psi_{\mathrm{SD}}^{A}=\sum_{N=0}^{N_{\max }} \sum_{j} c_{N j}^{\mathrm{SD}} \Phi_{\mathrm{SD} N j}^{H O}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right)=\Psi^{A} \varphi_{000}\left(\vec{R}_{C M}\right)
$$

Apply ab initio No -Core Shell Model to calculate the ${ }^{6} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ wave functions and the operator matrix elements

- How to do this right?
- Introduce Jacobi coordinates, use transformations of HO wave functions
- Done successfully in the past for radial density

$$
\rho_{o p}(\vec{r})=\sum_{i=1}^{A} \delta\left(\vec{r}-\vec{r}_{i}\right)
$$

PHYSICAL REVIEW C 70, 014317 (2004)
Translationally invariant density

Petr Navrátil
Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, California 94551, USA (Received 23 May 2004; published 30 July 2004)

PHYSICAL REVIEW C 99, 024305 (2019)

Nuclear kinetic density from ab initio theory
University of Waterloo, 200 University Avencel Gennari* West
University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3 GI, Canadd and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia VGT 2A3, Canada
Petr Navrátil

IRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

PHYSICAL REVIEW LETTERS 124, 162501 (2020)

Elastic Antiproton-Nucleus Scattering from Chiral Forces

Apply ab initio No-Core Shell Model to calculate the ${ }^{6} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ wave

 functions and the operator matrix elements- How to do this right?
- Can this be generalized for an arbitrary operator $\sum_{j=1}^{A} \hat{O}\left(\vec{r}_{j}-\vec{R}_{\mathrm{CM}}\right)$? Yes!
$\left\langle\Psi_{f}\left\|\sum_{j=1}^{A} \hat{O}_{J}\left(\vec{r}_{j}-\vec{R}_{\mathrm{CM}}\right)\right\| \Psi_{i}\right\rangle=\frac{-1}{\sqrt{2 J+1}} \sum_{|a||b||\alpha||\beta|}\langle | a\left|\| \hat{O}_{J}(-\sqrt{A-1 / A} \vec{\xi})\right|| | b| \rangle$

$$
\times\left(M^{J}\right)_{|a||b|,|\alpha \||\beta|}^{-1}\left\langle\Psi_{f}\left\|\left(a_{|\alpha|}^{\dagger} \tilde{a}_{|\beta|}\right) J\right\| \Psi_{i}\right\rangle
$$

$$
\left(M^{K}\right)_{n_{1} 1 l_{1} j_{1} n_{2} l_{2} j_{2}, n l j_{j n^{\prime}} l^{\prime} j^{\prime}}
$$

$$
=\sum_{N_{1} L_{1}} \hat{j}_{1} \hat{j}_{2} \hat{j} \hat{j}^{\prime} \hat{l} \hat{l}^{\prime}(-1)^{K+L_{1}+l_{1}+l_{2}+j^{\prime}+j_{2}}
$$

$$
\times\left\{\begin{array}{ccc}
j^{\prime} & L_{1} & j_{2} \\
l_{2} & \frac{1}{2} & l^{\prime}
\end{array}\right\}\left\{\begin{array}{ccc}
j_{1} & L_{1} & j \\
l & \frac{1}{2} & l_{1}
\end{array}\right\}\left\{\begin{array}{ccc}
j_{1} & L_{1} & j \\
j^{\prime} & K & j_{2}
\end{array}\right\}
$$

$$
\times\left\langle n l 00 l \mid N_{1} L_{1} n_{1} l_{1} l\right\rangle_{\frac{1}{A-1}}\left\langle n^{\prime} l^{\prime} 00 l^{\prime} \mid N_{1} L_{1} n_{2} l_{2} l^{\prime}\right\rangle_{\frac{1}{A-1}} .
$$

Apply ab initio No-Core Shell Model to calculate the ${ }^{6} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ wave functions and the operator matrix elements

NCSM

- Matrix elements of the relevant operators

$$
\begin{aligned}
& \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right)=\left[\frac{1}{q} \vec{\nabla}_{\vec{r}_{j}} M_{J M_{J}}\left(q \vec{r}_{j}\right)\right] \cdot \vec{\sigma}(j), \\
& \hat{\Omega}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)=M_{J M_{J}}\left(q \vec{r}_{j}\right) \vec{\sigma}(j) \cdot \vec{\nabla}_{\vec{r}_{j}}+\frac{1}{2} \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right), \\
& \hat{\Delta}_{J M_{J}}\left(q \vec{r}_{j}\right)=\vec{M}_{J J M_{J}}\left(q \vec{r}_{j}\right) \cdot \frac{1}{q} \vec{\nabla}_{\vec{r}_{j}}, \\
& \hat{\Sigma}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)=-i\left[\frac{1}{q} \vec{\nabla}_{\vec{r}_{j}} \times \vec{M}_{J J M_{J}}\left(q \vec{r}_{j}\right)\right] \cdot \vec{\sigma}(j),
\end{aligned}
$$

- Convergence investigation
- Variation of HO frequency
- $h \boldsymbol{\Omega}=16-24 \mathrm{MeV}$
- Variation of basis size
- $N_{\max }=0-14$ for $\mathrm{NNLO}_{\text {opt }}$
- $N_{\text {max }}=0-12$ for $\mathrm{NNLO}_{\text {sat }}$

Apply ab initio No-Core Shell Model to calculate the ${ }^{6} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ wave functions and the operator matrix elements

- Matrix elements of the relevant operators

$$
\begin{aligned}
& \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right)=\left[\frac{1}{q} \vec{\nabla}_{\vec{r}_{j}} M_{J M_{J}}\left(q \vec{r}_{j}\right)\right] \cdot \vec{\sigma}(j), \\
& \hat{\Omega}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)=M_{J M_{J}}\left(q \vec{r}_{j}\right) \vec{\sigma}(j) \cdot \vec{\nabla}_{\vec{r}_{j}}+\frac{1}{2} \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right), \\
& \hat{\Delta}_{J M_{J}}\left(q \vec{r}_{j}\right)=\vec{M}_{J J M_{J}}\left(q \vec{r}_{j}\right) \cdot \frac{1}{q} \vec{\nabla}_{\vec{r}_{j}} \\
& \hat{\Sigma}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)=-i\left[\frac{1}{q} \vec{\nabla}_{\vec{r}_{j}} \times \vec{M}_{J J M_{J}}\left(q \vec{r}_{j}\right)\right] \cdot \vec{\sigma}(j),
\end{aligned}
$$

- Impact of the CM correction
$\left\langle\Psi_{f}\left\|\sum_{j=1}^{A} \hat{O}_{J}\left(\vec{r}_{j}\right)\right\| \Psi_{i}\right\rangle \longleftrightarrow\left\langle\Psi_{f}\left\|\sum_{j=1}^{A} \hat{O}_{J}\left(\vec{r}_{j}-\vec{R}_{\mathrm{CM}}\right)\right\| \Psi_{i}\right\rangle$
At $q=0$:
No difference for $\hat{\Sigma}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right), \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right)$, and $\hat{\Delta}_{J M_{J}}\left(q \vec{r}_{j}\right)$
Change by a factor of ~ 2 for $\hat{\Omega}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)$
Increasing deviations for all operators with increase of q

Apply ab initio No-Core Shell Model to calculate the ${ }^{6} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ wave functions and the operator matrix elements

- Matrix elements of the relevant operators

$$
\begin{aligned}
\frac{\hat{C}_{J M_{J}}^{A}}{q} & =\sum_{j=1}^{A} \frac{i}{m_{N}}\left[g_{A} \hat{\Omega}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)\right. \\
& \left.-\frac{1}{2} \frac{\tilde{g}_{P}}{2 m_{N}}\left(E_{0}+\Delta E_{c}\right) \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right)\right] \tau_{j}^{+}, \\
\hat{L}_{J M_{J}}^{A} & =\sum_{j=1}^{A} i\left(g_{A}+\frac{\tilde{g}_{P}}{\left(2 m_{N}\right)^{2}} q^{2}\right) \hat{\Sigma}_{J M_{J}}^{\prime \prime}\left(q \vec{r}_{j}\right) \tau_{j}^{+}, \\
\frac{\hat{M}_{J M_{J}}^{V}}{q} & =\sum_{j=1}^{A} \frac{-i}{m_{N}}\left[g_{V} \hat{\Delta}_{J M_{J}}\left(q \vec{r}_{j}\right)-\frac{1}{2} \mu \hat{\Sigma}_{J M_{J}}^{\prime}\left(q \vec{r}_{j}\right)\right] \tau_{j}^{+}
\end{aligned}
$$

- Convergence investigation
- Variation of HO frequency
- h $\boldsymbol{\Omega}=16$ - 24 MeV
- Variation of basis size
- $N_{\max }=0-14$ for $\mathrm{NNLO}_{\text {opt }}$
- $N_{\text {max }}=0-12$ for $\mathrm{NNLO}_{\text {sat }}$

- Impact of the CM correction

$$
\left\langle\Psi_{f}\left\|\sum_{j=1}^{A} \hat{O}_{J}\left(\vec{r}_{j}\right)\right\| \Psi_{i}\right\rangle_{\longleftrightarrow} \longleftrightarrow\left\langle\Psi_{f}\left\|\sum_{j=1}^{A} \hat{O}_{J}\left(\vec{r}_{j}-\vec{R}_{\mathrm{CM}}\right)\right\| \Psi_{i}\right\rangle
$$

Almost no difference for $\hat{L}_{J M_{J}}^{A \pm}$ and $\hat{M}_{J M_{J}}^{V \pm}$
Change of $\sim 40 \%$ for $\hat{C}_{J M_{J}}^{A \pm}$

Overall results for ${ }^{6} \mathrm{He}\left(\mathbf{0}^{+} 1\right) \rightarrow{ }^{6} \mathrm{Li}\left(1^{+} \mathbf{0}\right)+\mathrm{e}^{-}+\bar{v}$

- Calculations performed in the impulse approximations
- Weak magnetism $\mathrm{M}_{1}{ }^{\vee}$ receives two-body current correction of the order the χ EFT expansion parameter ϵ_{EFT}
- $L_{1}{ }^{A}$ and $C_{1}{ }^{A}$ two-body current terms are associated with the next order, $\epsilon_{\mathrm{EFT}}^{2}$
- The effect of two-body currents on the Gamow-Teller matrix element ($q=0$) quite small, $\sim 2 \%$
- Two-body contribution to the magnetic moment of ${ }^{6}$ Li negligible, correction to the $\mathrm{B}\left(\mathrm{M} 1 ; 1^{+}->0^{+}\right) \sim 10 \%$

	$\mathrm{NNLO}_{\text {sat }}$
\checkmark -	${ }^{3} \mathrm{H}_{\frac{1}{2}} \rightarrow{ }^{3} \mathrm{He}_{\frac{1}{2}}$
\diamond GT only	$\checkmark \quad{ }^{6} \mathrm{He}_{0} \rightarrow{ }^{6} \mathrm{Li}_{1}$
$\checkmark \mathrm{GT}+2 \mathrm{BC}$	
\checkmark -	${ }^{7} \mathrm{Be}_{\frac{3}{2}} \rightarrow{ }^{7} \mathrm{Li}_{\frac{3}{2}}$
	${ }^{8} \mathrm{He}_{0} \rightarrow{ }^{8} \mathrm{Li}_{1}$
	${ }^{10} \mathrm{C}_{0} \rightarrow{ }^{10} \mathrm{~B}_{1}$
$\begin{array}{llll}0.95 & 1.00 & 1.05 & 1.10\end{array}$	
$\mid M_{\text {GT }}$	\| ratio to experiment

Contens istss avialable at Scienceobirect	
Se. Physics Letters B	
ELSEVIER mwvelseviercommocatephysleth	
Nuclear $a b$ initio calculations of ${ }^{6} \mathrm{He} \beta$-decay for beyond the Standard Model studies	$@$
Ayala Glick-Magid ${ }^{\mathrm{a}}$, Christian Forssén ${ }^{\mathrm{b}, *}$, Daniel Gazda ${ }^{\mathrm{c}}$, Doron Gazit ${ }^{\mathrm{a}, *}$, , Peter Gyrátil ${ }^{\mathrm{d}}$${ }^{\text {Gybers }}{ }^{\mathrm{d}, \mathrm{e},}$,	

$$
\text { Conservative estimate } \epsilon_{\text {EFT }} \lesssim 0.15
$$

Overall results for ${ }^{6} \mathrm{He}\left(\mathbf{0}^{+} \mathbf{1}\right) \rightarrow{ }^{6} \mathrm{Li}\left(1^{+} \mathbf{0}\right)+\mathrm{e}^{-}+\bar{v}$

- We find up to 1% correction for the β spectrum and up to 2% correction for the angular correlation
- Propagating nuclear structure and $\chi \mathrm{EFT}$ uncertainties results in an overall uncertainty of 10-4
- Comparable to the precision of current experiments

$$
b_{\mathrm{F}}^{1^{+} \beta^{-}}=\delta_{b}^{1^{+} \beta^{-}}=-1.52(18) \cdot 10^{-3}
$$

$\left\langle\tilde{\delta}_{a}^{1+} \beta^{-}\right\rangle=-2.54(68) \cdot 10^{-3}$
Non-zero Fierz interference term due to nuclear structure corrections

Note that new physics at TeV scale implies

$$
b_{\mathrm{Fierz}}^{\mathrm{BSM}}=\frac{C_{T}+C_{T}^{\prime}}{C_{A}} \sim 10^{-3}
$$

发TRIUMF

Unique first-forbidden beta decay ${ }^{16} \mathrm{~N}\left(2^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(\mathrm{O}^{+}\right)$

Unique first-forbidden beta decay ${ }^{16} \mathrm{~N}\left(2^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(0^{+}\right)$

- The unique first-forbidden transition, $\mathrm{J}^{\Delta \pi}=2^{-}$, is of great interest for BSM searches
- Energy spectrum of emitted electrons sensitive to the symmetries of the weak interaction, gives constraints both in the case of right and left couplings of the new beyond standard model currents
- Ayala Glick-Magid et al., PLB 767 (2017) 285
- Ongoing experiment at SARAF, Israel

Ordinary muon capture on ${ }^{16} \mathrm{O}$ within the NCSM

- Investigated using three sets of chiral EFT NN+3N interactions:
- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)
Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

- NN(N4LO)+3N(N²LO,Inl,E7)

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E7)

- NN(N3LO) $+3 N\left(N^{2} \mathrm{LO}, \operatorname{lnl}\right)$

Entem, Machleidt, Phys. Rev. C 68, 041001 (2003) (NN)
Soma, Navratil et al., Phys. Rev. C 101, 014318 (2020) (3N)

- Results quite encouraging
- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- \rightarrow Feasible to apply NCSM to the ${ }^{16} \mathrm{~N}$ beta decay

Lotta Jokiniemi, PN, Kotila, and Kravvaris, in progress

${ }^{16} \mathrm{~N}$ and ${ }^{16} \mathrm{O}$ energies

- Chiral NN N ${ }^{4} \mathrm{LO}+3 \mathrm{~N}_{\text {ln }}$ interaction:
- Binding energies underestimated by $\sim 2 \mathrm{MeV}$
- Excitation energies overestimated by $\sim 1 \mathrm{MeV}$

${ }^{16} \mathrm{~N}\left(2^{-}\right)$Gamow-Teller transitions to the negative parity excited states of ${ }^{16} \mathrm{O}$

- Tests of NCSM wave functions
- B(GT)s overestimated - operator SRG, 2BC need to be included
- Correct hierarchy of transitions

Unique first-forbidden beta decay ${ }^{16} \mathrm{~N}\left(2^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(0^{+}\right)$

- Basic operator matrix elements
- NN-N3LO $+3 \mathrm{~N}_{\text {Inl }}-N_{\max }$ dependence, COM effect Preliminary

Unique first-forbidden beta decay ${ }^{16} \mathrm{~N}\left(2^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(0^{+}\right)$

- Basic operator matrix elements
- Interaction dependence, COM effect

Preliminary

き TRIUMF

Electroweak radiative correction $\delta_{\text {NS }}$

- Precise $V_{u d}$ from superallowed Fermi transitions

$$
\left|V_{u d}\right|^{2}=\frac{\hbar^{7}}{G_{F}^{2} m_{e}^{5} c^{4}} \frac{\pi^{3} \ln (2)}{\mathcal{F} t\left(1+\Delta_{R}^{V}\right)}
$$

$G_{F} \equiv$ Fermi coupling constant
determined from muon β decay

- hadronic matrix elements modified by nuclear environment
-Fermi matrix element renormalized by isospin non-conserving forces

$$
\mathcal{F} t=f t\left(1+\delta_{R}^{\prime}\right) \underline{\left(1-\delta_{C}+\delta_{N S}\right)} \quad \mathcal{F} t=\frac{K}{G_{V}^{2}\left|M_{F 0}\right|^{2}\left(1+\Delta_{R}^{V}\right)}
$$

- Tree level beta decay amplitude $\quad M_{\text {tree }}=-\frac{G_{F}}{\sqrt{2}} L_{\lambda} F^{\lambda}\left(p^{\prime}, p\right)$
- Hadronic correction in forward scattering limit

$$
\delta M=-i \sqrt{2} G_{F} e^{2} L_{\lambda} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2}-q^{2}} \frac{\epsilon^{\mu \nu \alpha \lambda} q_{\alpha}}{\left[\left(p_{e}-q\right)^{2}-m_{e}^{2}\right] q^{2}} \underline{T_{\mu \nu}\left(p^{\prime}, p, q\right)}
$$

$$
\delta M=\square_{\gamma W}\left(E_{e}\right) M_{t r e e}
$$

- Tree level beta decay amplitude

$$
M_{\text {tree }}=-\frac{G_{F}}{\sqrt{2}} L_{\lambda} F^{\lambda}\left(p^{\prime}, p\right)
$$

- Hadronic correction in forward scattering limit

$$
\delta M=\square_{\gamma W}\left(E_{e}\right) M_{\text {tree }}
$$

$$
\square_{\gamma W}^{b}\left(E_{e}\right)=\frac{e^{2}}{M} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2}-q^{2}} \frac{1}{q^{2}+i \epsilon} \frac{1}{\left(p_{e}-q\right)^{2}+i \epsilon^{\prime}} \frac{M \nu\left(\frac{p_{e} \cdot q}{p \cdot p_{e}}\right)-q^{2}}{\nu} \frac{T_{3}(\nu,|\vec{q}|)}{f_{+}(0)}
$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

$$
\begin{array}{cc}
M_{J M}(q):=\int d^{3} r \mathcal{M}_{J M}(q, \vec{r}) \rho(\vec{r}) & T_{J M}^{\mathrm{el}}(q):=\int d^{3} r \frac{1}{q}\left(\vec{\nabla} \times \overrightarrow{\mathcal{M}}_{J J}^{M}(q, \vec{r})\right) \cdot \vec{J}(\vec{r}) \\
L_{J M}(q):=\int d^{3} r \frac{i}{q}\left(\vec{\nabla} \mathcal{M}_{J M}(q, \vec{r})\right) \cdot \vec{J}(\vec{r}) & T_{J M}^{\mathrm{mag}}(q):=\int d^{3} r \overrightarrow{\mathcal{M}}_{J J}^{M}(q, \vec{r}) \cdot \vec{J}(\vec{r})
\end{array}
$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

$$
\begin{aligned}
& T_{3}(\nu,|\vec{q}|)=4 \pi i \frac{\nu}{|\vec{q}|} \sqrt{M_{i} M_{f}} \sum_{J=1}^{\infty}(2 J+1)\left\langle\Psi_{f}\right|\left\{T_{J 0}^{\mathrm{mag}} G\left(\nu+M_{f}+i \epsilon\right) T_{J 0}^{5, \mathrm{el}}+T_{J 0}^{\mathrm{el}} G\left(\nu+M_{f}+i \epsilon\right) T_{J 0}^{5, \mathrm{mag}}\right. \\
&\left.+T_{J 0}^{5, \mathrm{mag}} G\left(-\nu+M_{i}+i \epsilon\right) T_{J 0}^{\mathrm{el}}+T_{J 0}^{5, \mathrm{el}} G\left(-\nu+M_{i}+i \epsilon\right) T_{J 0}^{\mathrm{mag}}\right\}(|\vec{q}|)\left|\Psi_{i}\right\rangle
\end{aligned}
$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space

Lanczos continued fraction method to compute nuclear Green's functions

The $v \equiv q_{0}$ integration performed using Wick rotation
Residues for ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$ in NCSM

Second 1^{+}below 0^{+}sensitive to interaction and $N_{\max }$

Poles	$n=1$	$n=2$	$n=3$
$P_{-}[\mathrm{MeV}]$	$-1.6572(J=3)$	$-0.6974(J=1)$	$-0.1861(J=1)$

Table 1: Pole locations along v axis corresponding to n-th excited state in T_{3} for ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$ transition at $N_{\max }=5$.

- Ground state 3^{+}and low-lying 1^{+}incur residues after Wick rotation
- Remaining pole in residue terms must also be treated

Preliminary $\delta_{N S}$ result at $N_{\max }=3$ and $N_{\max }=5$ still being double checked
Feasible to reach $N_{\max }=11$
Towner \& Hardy used $\delta_{N S}=-0.4$

发TRIUMF

Isospin symmetry breaking correction δ_{C}

The pathway to δ_{C}

- δ_{C} in ab initio NCSM over 20 years ago

PHYSICAL REVIEW C 66, 024314 (2002)
$A b$ initio shell model for $A=10$ nuclei
 ${ }^{2}$ Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, California 94551 ${ }^{3}$ Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
(Received 10 May 2002; published 13 August 2002)

HO expansion incompatible with reaction theory
i. imprecise asymptotics
ii. missing correlations in excited states
iii. description of scattering not feasible

Combine NCSM with resonating group method (RGM)

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound \& continuum states

No-Core Shell Model with Continuum (NCSMC)

$$
\Psi^{(A)}=\sum_{\lambda} c_{\lambda}|(A), \lambda\rangle+\sum_{v} \int d \vec{r} \gamma_{v}(\vec{r}) \hat{A}_{v}|\underset{(A-a)}{\vec{r}}(a), v\rangle
$$

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound \& continuum states

No-Core Shell Model with Continuum (NCSMC)

Static solutions for aggregate system, describe all nucleons close together

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound \& continuum states

No-Core Shell Model with Continuum (NCSMC)

Continuous microscopic cluster states, describe long-range projectile-target

Static solutions for aggregate system, describe all nucleons close together

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound \& continuum states

No-Core Shell Model with Continuum (NCSMC)

Continuous microscopic cluster states, describe long-range projectile-target

Static solutions for aggregate system, describe all nucleons close together

Coupled NCSMC equations

$$
\left.\left.H \Psi^{(A)}=E \Psi^{(A)} \quad \Psi^{(A)}=\left.\sum_{\lambda} c_{\lambda}\right|^{(A)}, \lambda\right\rangle+\left.\sum_{v} \int d \vec{r} \gamma_{v}(\vec{r}) \hat{A}_{v}\right|_{(A-a)} ^{\mathcal{G}_{2}}(a), v\right\rangle
$$

δ_{C} in NCSMC

- Compute Fermi matrix element in NCSMC

$$
M_{F}=\left\langle\Psi^{J^{\pi} T_{f} M_{T_{f}}}\right| T_{+}\left|\Psi^{J^{\pi} T_{i} M_{T_{i}}}\right\rangle \longrightarrow\left|M_{F}\right|^{2}=\left|M_{F 0}\right|^{2}\left(1-\delta_{C}\right)
$$

- Total isospin operator $T_{+}=T_{+}^{(1)}+T_{+}^{(2)}$ for partitioned system

${ }^{10} \mathrm{C}$ structure from chiral EFT NN(N4LO)+3N(N2LO,Inl) interaction ($N_{\max }=9$)

$$
\left|{ }^{10} \mathrm{C}\right\rangle=\sum_{\alpha} c_{\alpha}\left|{ }^{10} \mathrm{C}, \alpha\right\rangle_{\mathrm{NCSM}}+\sum_{\nu} \int d r \gamma_{\nu}^{J^{\pi} T}(r) \mathcal{A}_{\nu}\left|{ }^{9} \mathrm{~B}+\mathrm{p}, \nu\right\rangle
$$

- Treat as mass partition of proton plus ${ }^{9} \mathrm{~B}$
- Use $3 / 2^{-}$and $5 / 2^{-}$states of ${ }^{9} B$
- Known bound states captured by NCSMC

State	$\mathrm{E}_{\text {NCSM }}(\mathrm{MeV})$	$\mathrm{E}(\mathrm{MeV})$	$\mathrm{E}_{\exp }(\mathrm{MeV})$
0^{+}	-3.09	-3.46	-4.006
2^{+}	+0.40	-0.03	-0.652

${ }^{10} \mathrm{C}$ structure from chiral EFT NN($\left.\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{Inl}\right)$ interaction $\left(N_{\max }=9\right)$
Eigenphase shifts

${ }^{10} \mathrm{~B}$ structure from chiral EFT NN($\left.\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \operatorname{Inl}\right)$ interaction $\left(N_{\max }=9\right)$

$$
\left|{ }^{10} \mathrm{~B}\right\rangle=\sum_{\alpha} c_{\alpha}\left|{ }^{10} \mathrm{~B}, \alpha\right\rangle_{\mathrm{NCSM}}+\sum_{\nu} \int d r \gamma_{\nu}(r) \mathcal{A}_{\nu}\left|{ }^{9} \mathrm{Be}+p, \nu\right\rangle+\sum_{\mu} \int d r \gamma_{\mu}(r) \mathcal{A}_{\mu}\left|{ }^{9} \mathrm{~B}+n, \mu\right\rangle
$$

发TRIUMF

β-delayed proton emission in ${ }^{11} \mathrm{Be}$

β-delayed proton emission in ${ }^{11} \mathrm{Be}$

Physics Letters B 732 (2014) 305-308

Contents lists available at ScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb
${ }^{11} \operatorname{Be}(\beta \mathrm{p})$, a quasi-free neutron decay?
K. Riisager ${ }^{\mathrm{a}, *}$, O. Forstner ${ }^{\text {b,c }}$, M.J.G. Borge ${ }^{\text {d,e }}$, J.A. Briz ${ }^{\mathrm{e}}$, M. Carmona-Gallardo ${ }^{\mathrm{e}}$,
L.M. Fraile ${ }^{f}$, H.O.U. Fynbo ${ }^{\text {a }}$, T. Giles ${ }^{\text {g }}$, A. Gottberg ${ }^{\text {e,g }}$, A. Heinz ${ }^{\text {h }}$, J.G. Johansen ${ }^{\text {a, }}{ }^{1}$,
B. Jonson ${ }^{\text {h }}$, J. Kurcewicz ${ }^{\text {d }}$, M.V. Lund ${ }^{\text {a }}$, T. Nilsson ${ }^{\text {h }}$, G. Nyman ${ }^{\text {h }}$, E. Rapisarda ${ }^{\text {d }}$, P. Steier ${ }^{\text {b }}$,
O. Tengblad ${ }^{\mathrm{e}}$, R. Thies ${ }^{\mathrm{h}}$, S.R. Winkler ${ }^{\text {b }}$

- Indirectly observed ${ }^{11} \mathrm{Be}(\beta p)^{10} \mathrm{Be}$
- Measured an extremely high branching ratio $b_{p}=8.3 \pm 0.9 \times 10^{-6}$
- Orders of magnitude larger than theoretical predictions (e.g. 3.0×10^{-8})
- Two proposed explanations: D. Baye and E.M. Tursunov, PLB 696, 4, 464-467 (2011)
(1) The neutron decays to an unobserved $p+{ }^{10} \mathrm{Be}$ resonance in ${ }^{11} \mathrm{~B}$
(2) There are unobserved dark decay modes

β-delayed proton emission in ${ }^{11} \mathrm{Be}$

Eur. Phys. J. A (2020) 56:100
The European
https://doi.org/10.1140/epja/s10050-020-00110-2
Regular Article - Experimental Physics

Search for beta-delayed proton emission from ${ }^{11} \mathrm{Be}$

K. Riisager ${ }^{1, \mathrm{a}}$, M. J. G. Borge ${ }^{2,3}$, J. A. Briz ${ }^{3}$, M. Carmona-Gallardo ${ }^{4}$, O. Forstner 5, L. M. Fraile ${ }^{4}$, H. O. U. Fynbo ${ }^{1}$, A. Garzon Camacho ${ }^{3}$, J. G. Johansen ${ }^{1}$, B. Jonson ${ }^{6}$, M. V. Lund ${ }^{1}$, J. Lachner ${ }^{5}$, M. Madurga ${ }^{2}$, S. Merchel ${ }^{7}$,
E. Nacher 3, T. Nilsson ${ }^{6}$, P. Steier ${ }^{5}$, O. Tengblad ${ }^{3}$, V. Vedia ${ }^{4}$

- New Accelerator Mass Spectrometry experiment that supersedes the 2014 measurement
- Branching ratio $b_{\mathrm{p}} \sim 2.2 \times 10^{-6}$
- Upper limit, possible contamination by BeH molecular ions

β-delayed proton emission in ${ }^{11} \mathrm{Be}$

Direct Observation of Proton Emission in ${ }^{11} \mathrm{Be}$
Y. Ayyad, ${ }^{1,2, *}$ B. Olaizola, ${ }^{3}$ W. Mittig, ${ }^{2,4}$ G. Potel, ${ }^{1}$ V. Zelevinsky, ${ }^{1,2,4}$ M. Horoi, ${ }^{5}$ S. Beceiro-Novo, ${ }^{4}$ M. Alcorta, ${ }^{3}$
C. Andreoiu, ${ }^{6}$ T. Ahn, ${ }^{7}$ M. Anholm, ${ }^{3,8}$ L. Atar, ${ }^{9}$ A. Babu, ${ }^{3}$ D. Bazin, ${ }^{2,4}$ N. Bernier, ${ }^{3,10}$ S. S. Bhattacharjee, ${ }^{3}$ M. Bowry, ${ }^{3}$ R. Caballero-Folch, ${ }^{3}$ M. Cortesi, ${ }^{2}$ C. Dalitz, ${ }^{11}$ E. Dunling, ${ }^{3,12}$ A. B. Garnsworthy, ${ }^{3}$ M. Holl, ${ }^{3,13}$ B. Kootte, ${ }^{3,8}$ K. G. Leach, ${ }^{14}$ J. S. Randhawa, ${ }^{2}$ Y. Saito, ${ }^{3,10}$ C. Santamaria, ${ }^{15}$ P. Šiuryte,,${ }^{3,16}$ C. E. Svensson, ${ }^{9}$
R. Umashankar, ${ }^{3}$ N. Watwood, ${ }^{2}$ and D. Yates ${ }^{3,10}$

- Directly observed the protons from ${ }^{11} \operatorname{Be}(\beta p)^{10} \mathrm{Be}$
- Measured consistent branching ratio $b_{p}=1.3(3) \times 10^{-5}$
- Still orders of magnitude larger than theoretical predictions
- Predict the proton resonance at $11.425(20) \mathrm{MeV}$ from the proton energy distribution
- Predicted to be either $\frac{1}{2}^{+}$or $\frac{3}{2}^{+}$
- Corresponds to excitation energy of 197 keV

NCSMC extended to describe exotic ${ }^{11} \mathrm{Be} \beta \mathrm{p}$ emission

$$
\begin{aligned}
\left|\Psi_{A}^{J^{\pi} T}\right\rangle= & \sum_{\lambda} c_{\lambda}^{J^{\pi} T}\left|A \lambda{ }^{\circ} J^{\pi} T\right\rangle+\sum_{\nu} \int d r r^{2} \frac{\gamma_{v}^{J^{\pi} T}(r)}{r} \hat{\mathcal{A}}_{v}\left|\Phi_{v r}^{J^{\pi} T}\right\rangle \\
\left|\Phi_{v r}^{J^{\pi} T}\right\rangle= & {\left.\left[\left(\left.\right|^{10} \operatorname{Be} \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|N \frac{1}{2}^{+} \frac{1}{2}\right\rangle\right)^{(s T)} Y_{\ell}\left(\hat{r}_{10,1}\right)\right]^{\left(J^{\pi} T\right)} } \\
& \times \frac{\delta\left(r-r_{10,1}\right)}{r r_{10,1}}, \quad n \text { for }{ }^{11} \mathrm{Be} \text { or } p \text { for }{ }^{11} \mathrm{~B}
\end{aligned}
$$

Input chiral interaction
NN N ${ }^{4} \mathrm{LO}(500)+3 \mathrm{~N}(\mathrm{lnI})$
Entem-Machleidt-Nosyk 2017
3N N2LO w local/non-local regulator

Including $0^{+}{ }_{\mathrm{gs}}$ and $2^{+}{ }_{1}$ states of ${ }^{10} \mathrm{Be}$

$$
B(\mathrm{GT})=\frac{1}{2} \|\left\langle\Psi_{11,}^{\frac{1}{2} \frac{1}{2}}\|\hat{\mathrm{GT}}\| \Psi_{11 \mathrm{Be}}^{\frac{1}{2}+\frac{3}{2}} \|^{2}\right.
$$

${ }^{11} \mathrm{Be}$ and ${ }^{11} \mathrm{~B}$ nuclear structure results

- Bound states wrt ${ }^{10} \mathrm{Be}+N$ thresholds

NCSMC phenomenology

$$
H \Psi^{(A)}=E \Psi^{(A)} \quad \Psi^{(A)}=\sum_{\lambda} c_{\lambda}|(A) 8, \lambda\rangle+\sum_{v} \int d \vec{r} \gamma_{v}(\vec{r}) \hat{A}_{v}|\underset{(A-a)}{\stackrel{\rightharpoonup}{r}}, v\rangle
$$

${ }^{11} \mathrm{Be}$ and ${ }^{11} \mathrm{~B}$ nuclear structure results

- Bound states wrt ${ }^{10} \mathrm{Be}+N$ thresholds

${ }^{11} \mathrm{Be}$ and ${ }^{11} \mathrm{~B}$ nuclear structure results

- ${ }^{11} \mathrm{~B}$ resonances above ${ }^{10} \mathrm{Be}+p$ threshold

				$\frac{\frac{103}{{ }^{\mathrm{Li}-\mathrm{d}}}}{\frac{6.1965}{{ }^{7} \mathrm{Li}+{ }^{7} \mathrm{Li} \mathrm{Li}}}$
J^{π}	$\begin{gathered} S\left({ }^{11} \mathrm{~B} \rightarrow{ }^{10} \mathrm{Be}\right) \\ \left(0^{+}, 1\right) \end{gathered}$	$\begin{gathered} S\left({ }^{11} \mathrm{~B}\right. \\ \left(1_{1}^{+}, 0\right) \end{gathered}$	$\begin{aligned} & \left.{ }^{10} \mathrm{~B}\right) \\ & \left(1_{2}^{+}, 0\right) \end{aligned}$	$\begin{gathered} S\left({ }^{11} \mathrm{~B} \rightarrow{ }^{7} \mathrm{Li}\right) \\ \left(3 / 2^{+}, 1 / 2\right) \end{gathered}$
$1 / 2_{1}^{+}$	0.276	0.250	2×10^{-4}	0.218
$1 / 2_{2}^{+}$	0.0525	0.171	0.562	0.002
$1 / 2_{3}^{+}$	0.067	0.231	0.188	0.011
$3 / 2_{1}^{+}$	0.079	6×10^{-4}	0.215	0.009
$3 / 2_{2}^{+}$	4×10^{-4}	0.581	0.002	0.012
$3 / 2_{3}^{+}$	6×10^{-4}	0.011	0.006	0.021
$3 / 2_{4}^{+}$	0.067	0.034	0.35	0.006

NCSMC extended to describe exotic ${ }^{11} \mathrm{Be} \beta \mathrm{p}$ emission, supports large branching ratio due to narrow $1 / 2^{+}$resonance

$$
{ }^{11} \mathrm{Be} \rightarrow\left({ }^{10} \mathrm{Be}+\mathrm{p}\right)+\beta^{-}+\bar{v}_{e} \mathrm{GT} \text { transition }
$$

$\mathrm{p}+{ }^{10} \mathrm{Be}$ Scattering Phase Shifts

PHYSICAL REVIEW C 105, 054316 (2022)
$A b$ initio calculation of the β decay from ${ }^{11} \mathrm{Be}$ to a ${ }^{10} \mathrm{Be}+\boldsymbol{p}$ resonance

NCSMC extended to describe exotic ${ }^{11} \mathrm{Be} \beta \mathrm{p}$ emission, supports large branching ratio due to narrow $1 / 2^{+}$resonance

NCSMC extended to describe exotic ${ }^{11} \mathrm{Be} \beta \mathrm{p}$ emission, supports large branching ratio due to narrow $1 / 2^{+}$resonance

PHYSICAL REVIEW LETTERS 129, 012502 (2022)

β-delayed proton emission in ${ }^{11} \mathrm{Be}$

- New FRIB experiment measuring proton emission led by Jason Surbrook reports branching ratio $b_{p} \sim 8(4) \times 10^{-6}$
- Lower but still consistent with Ayyad TRIUMF experiment
- More experiments planned!
- NCSMC calculations will be extended by including the ${ }^{7} \mathrm{Li}+\alpha$ mass partition

Conclusions

- We used ab initio nuclear theory and the χ EFT framework to analyze the nuclear-structure corrections to ${ }^{6} \mathrm{He} \beta$-decay observables
- The angular correlation coefficient
- Nuclear structure term with an inverse energy spectral dependence, imitating a Fierz interference term
- We find a non-zero Fierz term comparable to an effect of interference between SM and a TeV-scale BSM currents
- The achieved uncertainty of $\sim 15 \%$ is dominated by the neglect of the weak magnetism two-body currents \rightarrow the next thing to focus on
- Ab initio investigation of the fist forbidden unique ${ }^{16} \mathrm{~N} \rightarrow{ }^{16} \mathrm{O}$ beta decay ongoing
- Electron spectrum sensitive to BSM physics
- Ab initio calculations of the structure corrections for the extraction of the $V_{u d}$ matrix element from the ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$ Fermi transition under way
- Preliminary result for $\delta_{N S}$
- The same approach will be applied to ${ }^{14} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}$ Fermi transition and possibly also to ${ }^{18} \mathrm{Ne} \rightarrow{ }^{18} \mathrm{~F}$ and ${ }^{22} \mathrm{Mg} \rightarrow{ }^{22} \mathrm{Na}$
- Applications of NCSMC to ${ }^{11} \mathrm{Be} \beta$ decay with the proton emission
- Supports large branching ratio due to a narrow $1 / 2^{+}$resonance

发TRIUMF

Backup slides

Applications to β decays in p-shell nuclei and beyond

- Problem of quenching of the axial-vector coupling constant g_{A} in shell model calculations of GT transitions

Institut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, F-67037 Strasbourg, France
G. Martínez-Pinedo ${ }^{\dagger}$

CREA and Institut d'Estudis Espacials de Catalunya, Universitat Autònoma de Barcelon E-08193 Bellaterra, Spain
F. Nowacki ${ }^{\ddagger}$

Institut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, F-67037 Strasbourg, France
A. Poves ${ }^{\S}$

Departamento de Física Teórica, Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
A. P. Zuker ${ }^{1}$
istitut de Recherches Subatomiques, IN2P3-CNRS, Université Louis Pasteur, F-67037 Strasbourg, France

Applications to β decays in p-shell nuclei and beyond

 first principles- Does inclusion of the MEC explain g_{A} quenching?
- In light nuclei correlations present in ab initio (NCSM) wave functions explain almost all of the quenching compared to the standard shell model
- MEC inclusion overall improves agreement with experiment
- The effect of the MEC inclusion is greater in heavier nuclei
- SRG evolved matrix elements used in coupled-cluster and IM-SRG calculations (up to ${ }^{100} \mathrm{Sn}$)

Hollow symbols - GT
Filled symbols - GT+MEC
Both Hamiltonian and operators SRG evolved Hamiltonian and current consistent parameters

50 year old puzzle of quenched beta decays resolved from first principles

PRL (2019)
 S. Quaglioni ${ }^{\circ}$, A. Schwenk ${ }^{\text {s.9,0, }}$, S.R. Stroberg ${ }^{12,12}$ and K. A. Wendt ${ }^{7}$

Strong nuclear correlations and two-body

 currents solve the beta decay quenching problem
Ab initio calculations of the ${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$

 neutrinoless double beta decay matrix elements- Benchmarks for light nuclei: NCSM \& Coupled-Cluster
- Both two-neutrino and neutrinoless double beta decay
- Coupled-Cluster ${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$ results

