Global and asymptotic features of fast neutrino-flavor conversion in supernova and binary neutron star merger

Hiroki Nagakura
(National Astronomical Observatory of Japan)

INT workshop at university of Washington in Seattle, July 17 - August 11, 2023

- Multi-dimensional core-collapse supernova (CCSN) simulations

CCSN simulations with full Boltzmann transport CCSN simulations with two-moment method

Neutrino transport plays key roles on CCSN dynamics (Neutrino-heating mechanism for CCSN explosion)

- Towards first-principles CCSN simulations

Dimensionality Beyond Boltzmann (QKE) Neutrino (for Hydro) Full Boltzmann Iransport

Full GR

Gravity
EOS
Weak Interactions

Quantum Kinetics neutrino transport:

$$
p^{\mu} \frac{\partial^{(-)} f}{\partial x^{\mu}}+\frac{d p^{i}}{d \tau} \frac{\partial^{(-)} f}{\partial p^{i}}=-p^{\mu} u_{\mu} \stackrel{(-)}{S}_{\mathrm{col}}+i p^{\mu} n_{\mu}[\stackrel{(-)}{H} \stackrel{(-)}{f}]
$$

Advection terms (Same as Boltz eq.)
f is not a
"distribution function"

Density matrix

Hamiltonian

$$
\stackrel{(-)}{H}=\stackrel{(-)}{H}_{\mathrm{vac}}+\stackrel{(-)}{H}_{\mathrm{mat}}+\stackrel{(-)}{H}_{\nu \nu}
$$

$$
H_{\mathrm{vac}}=\frac{1}{2 \nu} U\left[\begin{array}{ccc}
m_{1}^{2} & 0 & 0 \\
0 & m_{2}^{2} & 0 \\
0 & 0 & m_{3}^{2}
\end{array}\right] U^{\dagger},
$$

$H_{\mathrm{mat}}=D\left[\begin{array}{ccc}V_{e} & 0 & 0 \\ 0 & V_{\mu} & 0 \\ 0 & 0 & V_{\tau}+V_{\mu \tau}\end{array}\right]$,

$$
H_{\nu \nu}=\sqrt{2} G_{F} \int \frac{d^{3} q^{\prime}}{(2 \pi)^{3}}\left(1-\sum_{i=1}^{3} \ell_{(i)}^{\prime} \ell_{(i)}\right)\left(f\left(q^{\prime}\right)-\bar{f}^{*}\left(q^{\prime}\right)\right)
$$

- Fast neutrino-flavor conversion (FFC)

Nagakura et al. 2021

Binary neutron star merger (BNSM)

Wu and Tamborra 2017

- Collisional instability

Xiong et al. 2023

- Need of global simulations in the study of flavor conversions in CCSN/BNSM

- Phenomenological approach: Examples

CCSN

Jacob et al. 2023

BNSM

Just et al. 2022

Fernandez et al. 2022

- Phenomenological approach: Uncertainties

\checkmark Degree of flavor mixing can not be determined.
It is a parameter in phenomenological models
\checkmark No reliable approximate neutrino transport have been established.
Requirements of quantum closure relations for angular moments
\checkmark Systematic errors are involved due to collision term (neutrino-matter interactions).
Non-linear evolution of flavor conversions strongly hinge on collision term

These issues can be addressed only by solving quantum kinetic neutrino transport

- Global Simulations: code development

General-relativistic quantum-kinetic neutrino transport (GRQKNT)

$$
p^{\mu} \frac{\partial^{(-)}}{\partial x^{\mu}}+\frac{d p^{i}}{d \tau} \frac{\partial^{(-)}}{\partial p^{i}}=-p^{\mu} u_{\mu} \stackrel{(-)}{S}_{\mathrm{col}}+i p^{\mu} n_{\mu}[\stackrel{(-)}{H}, \stackrel{(-)}{f}]
$$

\checkmark Fully general relativistic ($3+1$ formalism) neutrino transport
\checkmark Multi-Dimension (6-dimensional phase space)
\checkmark Neutrino matter interactions (emission, absorption, and scatterings)
\checkmark Neutrino Hamiltonian potential of vacuum, matter, and self-interaction
$\checkmark 3$ flavors + their anti-neutrinos
\checkmark Solving the equation with Sn method (explicit evolution: WENO-5th order)
\checkmark Hybrid OpenMP/MPI parallelization

- Time-dependent global simulations of FFC

Nagakura and Zaizen PRL 2022, PRD 2023

- Issue:

Oscillation wavelength is an order of sub-centimeter.

Too short !!!!

How can we make FFC simulations tractable???

- Strategy:

$$
\begin{aligned}
& \frac{\partial \stackrel{(-)}{f}}{\partial t}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \cos \theta_{\nu} \stackrel{(-)}{f}\right)-\frac{1}{r \sin \theta_{\nu}} \frac{\partial}{\partial \theta_{\nu}}\left(\sin ^{2} \theta_{\nu} \stackrel{(-)}{f}\right) \\
& =-i \xi[\stackrel{(-)}{H} \stackrel{(-)}{f}]
\end{aligned}
$$

Attenuation parameter $(0 \leqq \xi \leqq 1)$
\checkmark Attenuating Hamiltonian makes global QKE simulations tractable.
\checkmark Realistic features can be learned by a convergence study of $\xi(\rightarrow 1)$.

Temporal and quasi-steady features of FFC in global scale (1D in space + 1D angle in momentum space)

Attenuating Hamiltonian potential does not change degree of flavor conversion in asymptotic states.

Global simulations of FFC in a CCSN environment

Nagakura PRL 2023
Neutrino heating/cooling

Numerical setup:

Collision terms are switched on.
Fluid-profiles are taken from a CCSN simulation.

General relativistic effects are taken into account.

A wide spatial region is covered.
Three-flavor framework

Neutrino-cooling is enhanced by FFCs Neutrino-heating is suppressed by FFCs

Global simulations of FFC in a CCSN environment

Nagakura PRL 2023

Average energy
Energy flux

Global Simulations of FFC in a BNSM environment

V Setup:

- Hypermassive neutron star (HMNS) + disk geometry
- Thermal emission on the neutrino sphere
- QKE (FFC) simulations in axisymmetry
- Resolutions: $1152(r) \times 384(\theta) \times 98\left(\theta_{\mathrm{v}}\right) \times 48\left(\phi_{\mathrm{v}}\right)$

Global Simulations of FFC in a BNSM environment

Nagakura (arXiv:2306.10108)
\checkmark Temporal evolution of FFCs in global scale:
$\operatorname{ELN}(\mathrm{t})-\operatorname{ELN}(0)$

Time

Take-home message 1
Non-conservations of ELN (and XLN) number density represent the importance of global advection of neutrinos in space!

Global Simulations of FFC in a BNSM environment

Nagakura (arXiv:2306.10108)
\checkmark EXZS (ELN-XLN Zero Surface):

ELN - XLN

Flavor coherency

Global Simulations of FFC in a BNSM environment

\checkmark Flavor swap between electron- and heavy-leptonic neutrinos:

Global Simulations of FFC in a BNSM environment

\checkmark Substantial change of neutrino radiation field:

Note: Increase or decrease of electron-type neutrinos hinge on heavy-leptonic neutrinos

More detailed study is required!!

Summary

\checkmark Radiation-hydrodynamic simulations under classical treatments of neutrino kinetics have been matured in CCSN and BNSM community.
\checkmark Collective neutrino oscillations, one of the quantum kinetics features of neutrinos, ubiquitously occur in CCSN and BNSM environments.
\checkmark Fast neutrino-flavor conversion (FFC) potentially gives a huge impact on fluiddynamics, nucleosynthesis, and neutrino signal.
\checkmark We developed a new GRQKNT code for time-dependent global simulations of neutrino quantum kinetics (QKE).
\checkmark QKE simulations are done in CCSN and BNSM environments with GRQKNT code.
\checkmark Global advection of neutrinos play important roles in FFC dynamics.

