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CCSN simulations with full Boltzmann transport CCSN simulations with two-moment method

- Multi-dimensional core-collapse supernova (CCSN) simulations
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Neutrino transport plays key roles on CCSN dynamics
(Neutrino-heating mechanism for CCSN explosion)
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Beyond Boltzmann (QKE)

- Towards first-principles CCSN simulations
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In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the
four-velocity of fluid and the unit vector normal to the
spatial hypersurface of constant time, respectively; Scol

and S̄col are the collision terms measured at the fluid rest
frame; H and H̄ denote the Hamiltonian operators which
can be decomposed as
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where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D
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where D = (�p
µ
uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
nally, H⌫⌫ represents the self-interaction potential, which
can be written as

H⌫⌫ =
p
2GF
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(7)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(8)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (9)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
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where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).
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Density matrix

Hamiltonian

Vlasenko et al. 2014, Volpe 2015,
Blaschke et al. 2016, Richers et al. 2019 

conversions may induce sharp spectral swapping in energy
direction. These facts suggest that high numerical resolu-
tions in the energy direction may be still necessary even
reduction of the Hamiltonian potential. The resolution study
would help us to exclude spurious evolution of flavor
conversion.
It is worthy to note that the similar approach can be seen

in other fields; for instance, ion-to-electron mass ratio is
frequently reduced in particle-in-cell simulations of plasma
physics to save computational time.2 Realistic FFC features
(i.e., without reduction of neutrino number density) can be
obtained by increasing the neutrino number density, and the
resolutions in neutrino phase space and the size of
computational domain are controlled in accordance with
computational power. Following the above approach, we
carried out a time-dependent global simulations of FFC; the
results are reported in a separate paper [82]. We confine the
scope of this paper to describing philosophy, design, and
numerical aspects of GRQKNT.
This paper is organized as follows. We describe the basic

equation and the numerical formalism in Sec. II. We
encapsulate the detail of each numerical module into each
section: transport module (in Sec. III), collision term (in
Sec. IV), and oscillation module (in Sec. V). Finally, we
summarize and conclude in Sec. VI. We use the unit with
c ¼ G ¼ ℏ ¼ 1, where c, G, and ℏ are the light speed, the
gravitational constant, and the reduced Planck constant,
respectively. We use the metric signature of −þþþ.

II. BASIC EQUATIONS

In GRQKNT code, we solve general relativistic mean-
field quantum kinetic equation (QKE), which is written as
(see also [83])

pμ ∂ f
ð−Þ

∂xμ
þ dpi

dτ
∂ f
ð−Þ

∂pi ¼ −pμuμ S
ð−Þ

þ ipμnμ½H
ð−Þ

; f
ð−Þ

&: ð1Þ

In the expression, we use the same convention as [84].3 f
and f̄ denote the density matrix of neutrinos and antineu-
trinos, respectively; xμ and pμ are spacetime coordinates
and the four-momentum of neutrinos (and antineutrinos);
uμ and nμ represent the four-velocity of fluid and the unit
vector normal to the spatial hypersurface of constant time,
respectively; S (S̄) represents the collision terms measured

at the fluid rest frame; H (H̄) denotes the Hamiltonian
operator associated with neutrino-flavor conversion. The
Hamiltonian is composed of three compositions,

H
ð−Þ

¼ H
ð−Þ

vac þ H
ð−Þ

mat þ H
ð−Þ

νν; ð2Þ

where

H̄vac ¼ H'
vac;

H̄mat ¼ −H'
mat;

H̄νν ¼ −H'
νν: ð3Þ

Hvac denotes the vacuum Hamiltonian with the
expression in the neutrino-flavor eigenstate, which can
be written as

Hvac ¼
1

2ν
U

2

664

m2
1 0 0

0 m2
2 0

0 0 m2
3

3

775U
†; ð4Þ

where ν ¼ −pμnμ ¼ p0α; α denotes the lapse function
associated with spacetime foliation (3þ 1 formalism of
curved spacetime); mi denotes the mass of neutrinos; U
denotes the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix. The matter potential Hmat can be written as

Hmat ¼ D

2

664

Ve 0 0

0 Vμ 0

0 0 Vτ þ Vμτ

3

775; ð5Þ

whereD ¼ ð−pμuμÞ=ν denotes the effective Doppler factor
between the laboratory frame and the fluid-rest frame, i.e.,
representing the Lorentz boost between n and u under local
flatness (see [72,74] for more details). The leading order of
Vl can be written as

Vl ¼
ffiffiffi
2

p
GFðnl− − nlþÞ; ð6Þ

where GF and nl represent the Fermi constant and the
number density of charged leptons ðl ¼ e; μ; τÞ, respec-
tively. As a default set, we assume that on-shell heavy
leptons (μ and τ) do not appear; i.e., Vμ and Vτ are set to be
zero. It should be mentioned, however, that Vμ may not
always be zero, since on-shell muons would appear in the
vicinity of (or inside) neutrino star [see, e.g., [85,86] ]. Vμτ

represents, on the other hand, the radiative correction of
neutral current [1,87], which is a leading order to distin-
guish νμ and ντ in cases with Vμ ¼ Vτ ¼ 0. Following [1],
Vμτ can be computed as

2It is worthy to note that nowadays the increased computa-
tional resources allow PIC simulations with real mass ratio
(see, e.g., [81]).

3This is also the same convention that used in [83], although
there is a typo in the right-hand side of Eq. (9) in the paper
(computing self-interaction potentials). f̄0 needs to be replaced to
f̄'0, which is confirmed with one of the authors (Sherwood
Richers, private communication). We also note that our con-
vention for f̄ corresponds to ρ̄' in [25] [see, e.g., Eq. (A2) in in
[25]], which has been frequently used in the literature.
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where ν ¼ −pμnμ ¼ p0α; α denotes the lapse function
associated with spacetime foliation (3þ 1 formalism of
curved spacetime); mi denotes the mass of neutrinos; U
denotes the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix. The matter potential Hmat can be written as

Hmat ¼ D

2

664

Ve 0 0

0 Vμ 0

0 0 Vτ þ Vμτ

3

775; ð5Þ

whereD ¼ ð−pμuμÞ=ν denotes the effective Doppler factor
between the laboratory frame and the fluid-rest frame, i.e.,
representing the Lorentz boost between n and u under local
flatness (see [72,74] for more details). The leading order of
Vl can be written as

Vl ¼
ffiffiffi
2

p
GFðnl− − nlþÞ; ð6Þ

where GF and nl represent the Fermi constant and the
number density of charged leptons ðl ¼ e; μ; τÞ, respec-
tively. As a default set, we assume that on-shell heavy
leptons (μ and τ) do not appear; i.e., Vμ and Vτ are set to be
zero. It should be mentioned, however, that Vμ may not
always be zero, since on-shell muons would appear in the
vicinity of (or inside) neutrino star [see, e.g., [85,86] ]. Vμτ

represents, on the other hand, the radiative correction of
neutral current [1,87], which is a leading order to distin-
guish νμ and ντ in cases with Vμ ¼ Vτ ¼ 0. Following [1],
Vμτ can be computed as

2It is worthy to note that nowadays the increased computa-
tional resources allow PIC simulations with real mass ratio
(see, e.g., [81]).

3This is also the same convention that used in [83], although
there is a typo in the right-hand side of Eq. (9) in the paper
(computing self-interaction potentials). f̄0 needs to be replaced to
f̄'0, which is confirmed with one of the authors (Sherwood
Richers, private communication). We also note that our con-
vention for f̄ corresponds to ρ̄' in [25] [see, e.g., Eq. (A2) in in
[25]], which has been frequently used in the literature.
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6

Time

Any type of crossings (PNS convection)

Type II crossings
(neutrino absorption)

Type II crossings [Exp-only] 
(asymmetric ν emission)

Type I crossings [Exp-only] 
(nucleon-scattering + α    1 + cold matter)

Shock wave

Space-time diagram of ELN-angular crossings in CCSNe

�

� 1 s

�200 km

FIG. 4. Space-time diagram for appearance of ELN crossings. The bold red line portrays a time
trajectory for the shock wave in exploding models. The thin and dashed line represents the counterpart
of shock trajectory for non-exploding models. The color code for enclosed regions distinguishes types
of ELN crossing. The green, blue, and brown color denote Type I, Type II, and any type of crossings,
respectively. In each region, we provide some representative characteristics of ELN-crossings. The
remark ”Exp-only” denotes that the ELN-crossing appears only in exploding models. See text for
more detail.

anism for these is di↵erent. In Sec. III B, we conduct an
in-depth analysis of their physical origin.

We provide a schematic space-time diagram of ELN
crossings in Fig. 4. This figure summarizes the over-
all trends of crossings observed in our CCSN models.
We note that crossings relevant to PNS convection and
the pre-shock region drawn in Fig. 4 are not included in
Fig. 3. There is a technical reason why we do not include
the case with PNS convection in Fig. 3. This issue will be
discussed later. To facilitate the readers’ understanding,
the color in Fig. 4 distinguishes types of ELN-crossings.
Below, we turn our attention to the physical origin of
ELN crossing generation.

B. Generation mechanism of ELN crossings

1. Type-II crossings at early post-bounce phase

Let us start by analyzing the Type-II crossings that
appear at the early post-bounce phase (⇠ 100 ms) in all
CCSN models (see the top left panel in Fig. 3). We first
present the result from the 12 solar mass model as a rep-
resentative case. The progenitor-dependence is discussed
later. In Fig. 5, we show Mollweide projections of the
ELN crossing and some important quantities at 130 km
for the 12 solar mass model case. We find that the Type
II crossing has a rather scattered distribution (see the

top left panel). To see the trend more quantitatively, we
show �Gout in the left middle panel in Fig. 5, which cor-
responds to the ELN at µ = 1. Here �Gout and �Gin

are defined as follows. The energy-integrated number of
neutrinos at µ = 1 and �1 are written as

Gout =

Z
d(

"3

3
)fout("),

Gin =

Z
d(

"3

3
)fin("),

(2)

respectively, where " denotes the neutrino energy in units
of MeV. We stress that both fout and fin in Eq. 2 are the
basic output of our angular reconstruction computation
complemented by the ray-tracing method (see Sec. II B).
Here �G is the di↵erence of the ⌫e and ⌫̄e G values:

�G = G⌫e �G⌫̄e , (3)

where we omit the subscript ”out” or ”in” in Eq. 3. As
shown in Fig. 5, we find that ⌫̄e dominates over ⌫e in
some regions (blue-colored area), and these regions are
in one-to-one correspondence to the regions of Type-II
crossings. The one-to-one correspondence is attributed
to the fact that ⌫e always overwhelms ⌫̄e in µ = �1
(incoming) direction.
We find some interesting correlations between the

Type-II crossings and other physical quantities. These
correlations provide useful insight for studying the phys-
ical origin of the crossings. To quantify the correlations,

Nagakura et al.  2021

instabilities should, therefore, be expected [40–42]. Note
that in SNe, crossings of ELN distribution are not guar-
anteed (see e.g. Ref. [43]); they may only occur in the
presence of LESA for certain emission directions [42,44].
Therefore, fast conversions in supernovae may mainly
occur because of the non-negligible flux of neutrinos not
streaming in the radially forward direction [42]. In this
sense, the merger remnants offer a more natural environ-
ment than SNe for fast conversions.
In this paper, the neutrino angular distributions are taken

into account in the study of ν–ν interactions above merger
remnant disks for the first time. Similarly to core-collapse
SNe, an exact numerical solution of the flavor distribution
of propagating neutrinos in mergers is not yet affordable.
However, we can estimate whether favorable conditions for
fast flavor conversions are present in compact binary
merger remnants by adopting analytical tools. To this
purpose, we rely on the dispersion relation (DR) approach
recently developed in Ref. [42].
The outline of our manuscript is as follows. First, we

model the neutrino emission from compact binary merger
remnants by introducing a simple two-neutrino-emitting
disk model motivated by existing hydrodynamical simu-
lations in Sec. II. In Sec. III, we introduce the equation of
motion governing the neutrino flavor evolution and the DR
in the flavor space. Results on the occurrence of temporal
and spatial instabilities in the flavor space are presented in

Sec. IV and Sec. V, respectively. Caveats on our main
findings are discussed in Sec. VI, and conclusions are
reported in Sec. VII.

II. TWO-NEUTRINO-EMITTING DISK MODEL

In order to examine whether fast flavor conversion
occurs above the merger remnants, we refrain from relying
on a specific merger model given the uncertainties intrinsic
to the neutrino transport adopted in hydrodynamical
simulations of these objects. We instead rely on the simple
two-neutrino-emitting disk model shown in Fig. 1 (see also
Appendix A). The choice of the model parameters is,
however, guided by the hydrodynamical simulation of the
massive NS–disk evolution [12].
In addition to the overall protonization discussed in the

previous section, an important feature of merger remnants
is that the spectral-averaged decoupling surfaces of νe and
ν̄e are spatially well separated. This can be seen, for
example, in Fig. 12 of Ref. [11] and Fig. 3 of Ref. [34]
showing the size ratio of the decoupling surface of ν̄e to that
of νe ∼ 3=4. This is a consequence of the neutron richness
of the remnant system and the spatial extension of the
accretion disk which leads to a smaller density gradient
with respect to the SN proto-neutron star.
Based on the above discussion, we assume that for a

NS–disk remnant, νe and ν̄e decouple instantaneously at
surfaces approximated as finite-size disks of radii Rν̄e ¼
0.75Rνe and heights hνe=Rνe ¼ hν̄e=Rν̄e ¼ 0.25. They are
emitted half-isotropically from their respective surfaces
with a flux ratio α≡Φ0

ν̄e=Φ
0
νe ¼ 2.4 and propagate freely

afterwards. For the BH–torus, we model the ν-emitting tori
by setting an inner edge of the surface at R0 ¼ 0.15Rνe
[11], representing the innermost stable circular orbit. Since,
in the merger remnants, the nonelectron neutrinos share the
same properties, they do not enter the following analysis
and will be omitted.

III. DISPERSION RELATION IN FLAVOR SPACE

The equation of motion (EoM) for each momentummode
governing the evolution of free streaming neutrinos
is given by ð∂t þ v · ∂xÞϱ ¼ −i½H; ϱ&, where v ¼
ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the velocity of an ultra-
relativistic neutrino, whose 4-vector is vμ ¼ ð1; vÞ. The
Wigner-transformed density matrix ϱ in the flavor basis
encodes the flavor occupation numbers in the diagonal terms
and flavor correlations in the off-diagonal terms. The
Hamiltonian, H, consists of the contributions from the
vacuum mixing [45], coherent-forward scattering between
neutrinos and electrons, and that among neutrino themselves.
Dismissing the vacuum term and ignoring the

energy dependence since we are interested in fast
conversions, we express the neutrino density matrix in terms
of the “flavor isospin” ξ and the occupation numbers fνβ for
the neutrino flavor νβ: ϱ ¼ ½ðfνe þ fνxÞ þ ðfνe − fνxÞξ&=2
(ϱ̄ ¼ −½ðfνe þ fν̄xÞ þ ðfν̄e − fν̄xÞξ

'&=2) for neutrinos

FIG. 1. Geometry of νe (in red) and ν̄e (in blue) emitting
surfaces with radii Rνe and Rν̄e , heights hνe and hν̄e . R0 is the
innermost stable circular orbit for a BH-disk system (R0 ¼ 0 for a
NS-disk remnant). Inset: Example of crossings of the ELN
distribution (Φνe −Φν̄e ) as a function of the polar and azimuthal
angles cos θ and ϕ above the NS–disk. The exact shapes are
calculated at ðx; zÞ ¼ ð0.6Rνe ; 0.35RνeÞ with Rν̄e ¼ 0.75Rνe and
hνe=Rνe ¼ hν̄e=Rν̄e ¼ 0.25. The region shaded in red (blue)
corresponds to Φνe < Φν̄e (Φνe > Φν̄e ).
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- Collisional instability

at ∼36 km around t ∼ 0.08 ms. The inner sub-branch
moves at a similar group velocity of ∼0.4 and disappears
at t ∼ 0.5 ms. On the other hand, the outer one propagates
with a group velocity of ∼0.9, quick enough to reach
the free-streaming region where flavor mixing gets trans-
ported away from our simulation domain for positive vr
modes. Afterwards, the neutrino fields remain stable
(against oscillations) for a duration of ∼0.2 ms during
0.5 ms≲ t≲ 0.7 ms. At t ≈ 0.7 ms, the collisional insta-
bility appears once again around r ∼ 28 km after the
neutrino field self-regulates its distributions near the
decoupling region. Unlike the first instability discussed
above, the flavor mixing due to the second collisional
instability does not get transported away this time and
eventually freezes into a stationary state until the end of our
simulation at t ∼ 1 ms.
Figure 3 shows the maximum growth rates of flavor

instabilities among all Kr modes, ImðΩÞ, as a function of
radius for Model II at different times. These ImðΩÞ are
derived by numerically solving the linearized Eqs. (17) and
(18). At t ¼ 0 ms, ImðΩÞ peaks at r ≃ 27 km. The growth
of this instability thus dominates the evolution of the
system initially, consistent with results shown in Fig. 2.
When t ¼ 0.024 ms after flavor transformation occurs,
ImðΩÞ in 25 km≲ r≲ 32 km becomes smaller than
∼0.1 km−1, while its value maintain roughly the same
for r≳ 32 km. For t ¼ 0.42 ms when flavor mixings
around r ∼ 30 km gets suppressed, ImðΩÞ < 0.1 km−1

for all radii. At an even later time t ¼ 0.66 ms when flavor
conversion reappears (see Fig. 2), larger ImðΩÞ are found in
27 km≲ r≲ 31 km again.

We compare the maximum growth rates obtained from
the stability analysis at 0 ms with the numerical evolution
for Model II at four different radii. Figure 4 shows that the
time evolution of seμ of radial velocity vr ¼ 1 in the linear
regime perfectly agree with the prediction determined by
seμðt ¼ 0Þ exp½ImðΩÞt% at 28 km, 30 km, and 32 km,
respectively, which is expected since the growth of colli-
sional instability dominates over the disturbance from
advection.
Although positive ImðΩÞ are found for nearly all radii

larger than 20 km at all times, not all of them lead to the
growth of jhϱeμij in the simulation. This is because the
stability analyses can only tell how a perturbation evolves
around where the local condition can be maintained.
However, in realistic simulations where advection occurs
in the presence of inhomogenous neutrino number density,
the instability growth rate needs to compete with advection
for a perturbation to grow before it being transported away.
To illustrate this, we show in Fig. 2 a characteristic value of
advection rate as 5=r for Model II by the red solid line. We
take this function in an empirical way motivated by the
advection term in Eqs. (1) and (2) being generally propor-
tional to 1=r. Comparing Figs. 2 and 3, it seems to suggest
that when ImðΩÞ is roughly less than 5=r, the growth rate of
the instability is too small against the advection, such that
no significant flavor conversion can develop. For example,
although the stability analysis yields a positive ImðΩÞ at
r ¼ 40 km and t ¼ 0 ms, seμ decreases in the simulation as
shown in Fig. 4. In addition, ImðΩÞ are positive from
0.024 ms to 0.42 ms at r ¼ 27 km in Fig. 3, while seμ
decreases in Fig. 2.
Next, we examine the impact of flavor conversion due to

collisional instability on the property of neutrinos of all

FIG. 3. Growth rates ImðΩÞ from linear stability analysis as
functions of radius r for four simulation times in Model II. We
sample 31 values of Kr from −2 km−1 to 2 km−1 and show the
maximal values for each radius. The red curve indicates 5=r as an
empirical criteria to determine the growth of instability against
advection.

FIG. 4. Time evolution of the dimensionless ratio seμ of radial
velocity vr ¼ 1 for four different radii in Model II. Each of them
is compared with a black dashed line determined by seμðt ¼
0Þ exp½ImðΩÞt% with the growth rate ImðΩÞ in Fig. 3 at t ¼ 0 ms.
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FIG. 3. The ⌫ELN excess parameter D = 1 � n⌫̄e/n⌫e (upper row) and the frequency ⌦ = !P + i� of the normal mode with
the maximum growth rate � > 10�3 µs�1 (middle and lower rows) at three snapshots (as labeled) in the BH accretion disk
model M3A8m3a5 of Ref. [15]. The solid and dashed curves are the contours with F⌫e = 1/3 and F⌫̄e = 1/3, respectively. [See
Eq. (19)]. The dot-dashed curves are the contours with D = 0.

model can be found in Refs. [15, 25].
For the neutrino gases with discrete energy groups,

Eq. (6) becomes

X

j

{[⌦a + !e↵(Ei)]�ij + µgj�Ej}Sa
j = 0, (18)

where Ej , gj , and �Ej are the energy, the ⌫ELN weight,
and the width of the neutrino in the jth energy group, re-
spectively. (The antineutrinos are counted as the neutri-
nos with negative energies.) There are N normal modes
for N discrete neutrino energy groups, and ⌦a and Sa

(a = 1, . . . , N) are the eigenvalues and eigenvectors of the
matrix with the elements ⇤ij = �[!e↵(Ei)�ij +µgj�Ej ],
respectively. We solve the frequencies of the normal
modes in M3A8m3a5 with �m2 = 2.5⇥ 10�3 eV2, ✓ =
8.6°, and the emission and absorption rates of ⌫e and ⌫̄e
in Eq. (1) [26]. In Fig. 3 we show both the real and imag-
inary components of the frequency of the normal mode
that has the largest growth rate in each spatial grid. One
can see that the growth rates of the flavor instabilities are
the largest where the net ⌫ELN is negligible which is ex-
pected from the previous analysis.

Strictly speaking, Eqs. (6) and (18) are valid only for
a homogeneous and isotropic neutrino gas. Following
Ref. [25], we plot

F⌫(t, r) =

��R v f⌫(t, r,p) d3p
��

R
f⌫(t, r,p) d3p

=
1

3
(19)

in Fig. 3 for ⌫ = ⌫e and ⌫̄e as the solid and dashed curves,
respectively. The condition of homogeneity and isotropy
is approximately satisfied in the inner part of the disk
where F⌫ is small.
Throughout the BH-torus system, one has �/�̄ > 1 be-

cause the collision rates are dominated by the neutrino
absorption rates and there are more neutrons than pro-
tons in this region. Although the entire accretion disk
tends to emit more ⌫̄e than ⌫e, the density of ⌫e in the
inner torus is actually larger where the chemical poten-
tial of the electron is significant. Therefore, we expect
only the CFI of the plus type (with !P/µ ⇡ 0) can ex-
ist in the inner torus. Earlier in Fig. 1 we have shown
the frequency ⌦ of the normal mode with the largest
growth rate in the equatorial plane of the accretion disk
at t = 20ms. It is clear from Figs. 1 and 3 that the CFI
in the inner torus is indeed of the plus type, while the
instability in the outer region of the torus is of the minus
type [!P / (n⌫e �n⌫̄e)] if our analysis can be generalized
to the anisotropic environment.
Discussion and conclusions We have shown that

there exist two types of CFI in a dense neutrino gas that
preserves the homogeneity and isotropy. The CFI tran-
sitions from one type to the other where the net ⌫ELN is
zero and has a resonance-like instability that grows at a

rate / n1/2
⌫ . But this is only part of the story. There can

exist the CFI that breaks these symmetries or even in
the inhomogeneous and anisotropic environment as one
maps out the full dispersion relation ⌦(K) of the col-

Xiong et al. 2022
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where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D

2

4
Ve 0 0
0 Vµ 0
0 0 V⌧ + Vµ⌧

3

5 , (5)

where D = (�p
µ
uµ)/⌫ denotes the e↵ective Doppler

factor between the laboratory frame and the fluid-rest
frame, representing the Lorentz boost between n and u

under the locally-flat metric (see [52, 53] for more de-
tails). The leading order of V` can be written as

V` =
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. In our de-
fault set, we assume that on-shell heavy leptons (muons
and tau) do not appear, i.e., Vµ and V⌧ are set to be zero.
It should be mentioned, however, that Vµ should be set
appropriately, if muons appear in the vicinity of (or in-
side) neutrino star [see, e.g., 54, 55]. Vµ⌧ represents, on
the other hand, the radiative correction of neutral current
[56, 57], which is a leading order potential to distinguish
⌫µ and ⌫⌧ in the case of Vµ = V⌧ = 0. Following Dighe
and Smirnov [57], Vµ⌧ can be computed as,

Vµ⌧ = Ve
3GFm

2
⌧

2
p
2⇡2Ye

✓
ln

m
2
W

m2
⌧

� 1 +
Yn

3

◆
, (7)

where m⌧ and mW denote the mass of tau and W boson,
respectively. Ye and Yn represents the electron-fraction
and neutron-fraction, respectively.

Finally, H⌫⌫ represents the self-interaction potential,
which can be written as

H⌫⌫ =
p
2GF

Z
d
3
q
0

(2⇡)3
(1�

3X

i=1

`
0
(i)`(i))(f(q

0)� f̄
⇤(q0)),

(8)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(9)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

There are two remarks in the expressions. First, we
take the relativistic limit of neutrinos; the energy of neu-
trinos is much larger than the rest-mass energy, which is
reasonable approximation for the system of CCSN and
BNSM2. Hence, we treat the neutrinos as massless parti-
cles in the transport equation (the left hand side of Eq. 1)
and the collision term (the first term in the right hand
side of Eq. 1), meanwhile we leave the leading term of
⌫⇥ (m/⌫)2 in the Hamiltonian operator (see Eq. 4). Sec-
ond, we define the Hamiltonian operator in the labora-
tory frame, although the choice of the frame is arbitrary.
Indeed, [59] defines them on the fluid-rest frame, which
may be convenient in the optically thick region where
neutrinos are isotropic angular distributions in the fluid-
rest frame.

Following [60], we cast the QKE equation in a con-
servative form, which is desirable not only for numer-
ical simulations but also dividing the global quantities
(space-time average) from the subgrid-scale fluctuations
(see below). The conservative form of QKE can be writ-
ten as;

1p
�g

@

@x↵

����
qi

"⇣
n
↵ +

3X

i=1

`ie
↵
(i)

⌘p
�g

(�)

f

#

� 1

⌫2

@

@⌫
(⌫3

(�)

f !(0)) +
1

sin ✓⌫

@

@✓⌫
(sin ✓⌫

(�)

f !(✓⌫))

+
1

sin2 ✓⌫

@

@�⌫
(
(�)

f !(�⌫)) = D

(�)

S col � i[
(�)

H ,

(�)

f ],

(12)

where g, x
↵ are the determinant of the four-dimensional

metric, coordinates of spacetime, respectively. e
↵
(i)(i =

1, 2, 3) denote a set of the (spatial) tetrad bases normal

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (10)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
q
0F

(2⇡)3
(1�

3X

i=1

`
0F
(i)`

F
(i))(f

F
(q

0F
)�f̄

F⇤
(q

0F
)), (11)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[53] (see Eqs.14-20 in the paper).
2
The typical energy of neutrinos in CCSN and BNSM is an order

of 10 MeV, meanwhile the current upper bound of neutrino mass

is <⇠ 0.1 eV [58].

Self-interaction potential 
depends on neutrino angular 
distributions in momentum space
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Figure 2. dMej as a function of freeze-out electron fraction, Ye,1.
We focus on the ejecta that is located at ≤ 10, 000 km at the
onset of gravitational collapse. We show results for masy = 10%
(top) and 30% (bottom). In each figure, we display the results
with (p, p̄) = (1, 1) (no FFC), (2/3, 2/3), and (1/3, 1/3) (flavor
equilibrium), (2/3, 1/3) and (1/3, 2/3) from top to bottom.

lighter than Co are chiefly produced, is less influenced by ν
absorption and thus by FFCs.

To understand the mechanism of how FFC gives impact
on FFC, we show the trajectory and the time evolution of Ye

for neutron-rich ejecta by focusing on three individual par-
ticles having the lowest Ye,1. In the following discussions, we
refer to these particles as P1, P2, and P3 in order of increas-
ing Ye,1 (0.390, 0.400, and 0.409 for P1, P2, and P3 in the
case without FFC). Figure 4 depicts the trajectories of these
particles. We note that the trajectories are independent of p
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Figure 3. [X/Fe] of all ejecta for cases with masy = 10% and with
(p, p̄) = (1, 1) (no FFC), (2/3, 2/3), and (1/3, 1/3) (flavor equi-
librium), (2/3, 1/3) and (1/3, 2/3) in panels from top to bottom.
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Figure 4. Trajectories of three tracer particles with the lowest
Ye,1. All particles eject through the ν̄e-hemisphere, where the
FFC appears.

and p̄ for each particle since the fluid background is identical
among models with a different set of p and p̄. As shown in
the figure, all particles reach near the ν sphere, suggesting
that they experience strong deleptonization. We also find
that they pass through the region around the southern pole,
indicating that they are influenced by FFC (see also Fig. 1).

The rolls of FFCs on ejecta compositions can be inter-

MNRAS 000, 1–7 (2022)

Fujimoto and H.N 2023

Just et al. 2022

CCSN BNSM
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- Phenomenological approach: Uncertainties

Degree of flavor mixing can not be determined. 

No reliable approximate neutrino transport have been established.

Systematic errors are involved due to collision term (neutrino-matter interactions).

It is a parameter in phenomenological models

Requirements of quantum closure relations for angular moments

Non-linear evolution of flavor conversions strongly hinge on collision term

These issues can be addressed only by solving quantum kinetic neutrino transport 
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Fully general relativistic (3+1 formalism) neutrino transport

Multi-Dimension (6-dimensional phase space)

Neutrino matter interactions (emission, absorption, and scatterings)

Neutrino Hamiltonian potential of vacuum, matter, and self-interaction

3 flavors + their anti-neutrinos

Solving the equation with Sn method (explicit evolution: WENO-5th order)

Hybrid OpenMP/MPI parallelization

Nagakura 2022
General-relativistic quantum-kinetic neutrino transport (GRQKNT)

Towards global simulations of quantum kinetic equation for neutrino transport with
subgrid modellings I. Formulations

Hiroki Nagakura⇤

Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA

Sherwood Richers and Lucas Johns
Department of Physics, University of California, Berkeley, CA 94720, USA

abstract

I. INTRODUCTION

II. BASIC EQUATIONS

p
µ @

(�)

f

@xµ
+

dp
i

d⌧

@

(�)

f

@pi
= �p

µ
uµ

(�)

S col + ip
µ
nµ[

(�)

H ,

(�)

f ], (1)

In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the
four-velocity of fluid and the unit vector normal to the
spatial hypersurface of constant time, respectively; Scol

and S̄col are the collision terms measured at the fluid rest
frame; H and H̄ denote the Hamiltonian operators which
can be decomposed as

(�)

H =
(�)

H vac +
(�)

Hmat +
(�)

H ⌫⌫ , (2)

where

H̄vac = H
⇤
vac,

H̄mat = �H
⇤
mat,

H̄⌫⌫ = �H
⇤
⌫⌫ .

(3)

Hvac denotes the vacuum Hamiltonian with the ex-
pression in the neutrino-flavor eigenstate, which can be
written as

Hvac =
1

2⌫
U

2

4
m

2
1 0 0
0 m

2
2 0

0 0 m
2
3

3

5U
†
, (4)

where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D

2

4
Ve 0 0
0 Vµ 0
0 0 V⌧

3

5 , (5)

⇤
hirokin@astro.princeton.edu

where D = (�p
µ
uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
nally, H⌫⌫ represents the self-interaction potential, which
can be written as

H⌫⌫ =
p
2GF

Z
d
3
q
0

(2⇡)3
(1�

3X

i=1

`
0
(i)`(i))(f(q

0)� f̄
⇤(q0)),

(7)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(8)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (9)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
q
0F

(2⇡)3
(1�

3X

i=1

`
0F
(i)`

F
(i))(f

F
(q

0F
)�f̄

F⇤
(q

0F
)), (10)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).

- Global Simulations: code development
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- Time-dependent global simulations of FFC

- Strategy:

2

tion). These simulations are useful to demonstrate how
FFCs give impacts on CCSN and BNSM dynamics quali-
tatively. On the other hand, their outcome hinges on the
instability criteria and the choice of parameter for neu-
trino mixings, exhibiting that better approximate pre-
scriptions are required to gauze accurate sensitivity of
CCSN and BNSM dynamics to FFCs.

Recently we proposed a novel approach to pave the
way towards incorporating FFCs into CCSN and BNSM
simulations [48] (hereafter the paper is referred to as
NZv1). In this approach, neutrino transport is solved
with quantum kinetic treatments with attenuating neu-
trino Hamiltonian potentials parametrically. Thanks to
the attenuation of the Hamiltonian, large-scale FFC sim-
ulations can be carried out with feasible computational
costs. It is also worth to note that our proposed method
can be used for other studies of neutrino flavor conver-
sions; for instance, Xiong et al. [49] recently carried out
large-scale simulations of collisional instability with at-
tenuating Hamiltonian.

In NZv1, we performed FFC simulations in 50km spa-
tial scales (50km  R  100km), and then we ana-
lyzed their global features. We found that the time-
averaged neutrino distributions are insensitive to the at-
tenuation of Hamiltonian1, suggesting that the similar
time-averaged profile would appear in the case without
the attenuation. We also found in NZv1 that the di↵er-
ence of angular distributions of ELN (electron-neutrino
lepton number) and XLN (heavy-neutrino lepton num-
ber) is a key quantity to determine the non-linear satu-
ration of flavor conversion, and to characterize the subse-
quent quasi-steady state of FFCs. In fact, the ELN-XLN
angular crossings become very shallow or even disappear
in the time-averaged profile after the system reaches non-
linear saturation. As such, NZv1 illustrated that the pro-
posed method, attenuating Hamiltonian, can bring new
insights on FFCs. This method is also expected to play a
crucial role to connect local- and global features of neu-
trino quantum kinetics.

In this paper, we extend our previous study in NZv1
by covering various initial states of neutrinos. This study
is motivated by the fact that we focused on the ability
of our new approach in NZv1, and therefore we fixed
the initial angular distributions of neutrinos. However,
it is necessary to carry out a systematic study for vari-
ous initial conditions so as to capture generic features of
FFCs. To analyze the large-scale numerical simulations,
we also carry out local simulations in the vicinity of inner
boundary without attenuation of Hamiltonian. We shall
show that some intrinsic features of FFCs can be com-
plemented from these small-scale simulations. Finally, we
provide an approximate method that determines quasi-

1 A word of caution should be spent here. Extreme attenuation
of Hamiltonian potential lead to no flavor conversion. This in-
dicates that there is a threshold in the attenuation-parameter to
capture the qualitative trend of FFCs in global scales.

steady states of FFC without solving QKE. For future
users, we provide a recipe of the method, which can be
easily implemented in existing classical neutrino trans-
port codes.
This paper is structured as follows. In Sec. II we first

review the essence of our approach, attenuation of Hamil-
tonian potentials, for large-scale QKE simulations. We
then describe our models in Sec. III. All numerical re-
sults presented in this paper are encapsulated in Sec. IV.
The approximate method to determine the quasi-steady
state of FFCs is described in Sec. V. Finally, we summa-
rize our conclusions and key messages from the present
work in Sec. VI. Throughout the paper, we use the unit
with c = h̄ = 1, where c and h̄ are the light speed and
the reduced Planck constant, respectively; we choose the
metric signature of �+++.

II. METHOD

The numerical simulations presented in this paper are
carried out with a newly developed QKE neutrino trans-
port code, GRQKNT. Details of the design and a suite
of tests are presented in [50]. Here, we describe only the
essential components of the code directly related to this
present work.
In GRQKNT, we adopt a discrete-ordinate Sn method.

The transport operator is handled with 5th-order
weighted essentially non-oscillatory (WENO) scheme
with a five-stage fourth-order TVD Runge-Kutta. In this
study, we assume spherical symmetry and ignore general
relativistic e↵ects, fluid-velocity dependence, and the col-
lision term. The resultant QKE can be written as,

@

(�)

f

@t
+

1

r2

@

@r
(r2 cos ✓⌫

(�)

f )� 1

r sin ✓⌫

@

@✓⌫
(sin2 ✓⌫

(�)

f )

= �i ⇠ [
(�)

H ,

(�)

f ],

(1)

where f and f̄ represent the density matrix of neutrinos
and antineutrinos, respectively. t, r, and ✓⌫ denote time,
radius, and neutrino flight angle with respect to radial
direction, respectively. H (H̄) represents the neutrino
(antineutrino) oscillation Hamiltonian potential, which is
composed of vacuum-, matter-, and self-interaction com-
ponents. In this study, the matter potential is set to
be zero, but we reduce the mixing angle in the vacuum
potential from that constrained by experiments. This
is a common prescription to e↵ectively include e↵ects of
matter potential2. In this study, the vacuum potential
is added as a perturbation to trigger FFCs3. Following
the previous studies as NZv1, we adopt the two-flavor

2 It is also equivalent to work with polarization vectors of neutrinos
in a co-rotating frame, see [51].

3 As we shall show in Sec. IV, flavor conversions are a↵ected by
vacuum potentials in some of our models. Although the neu-

Attenuation parameter (0 ≦ ξ ≦ 1)

Nagakura and Zaizen PRL 2022, PRD 2023

Attenuating Hamiltonian makes global QKE simulations tractable.

Realistic features can be learned by a convergence study of ξ (→ 1).

Semi-global simulations of fast-pairwise flavor conversion in core-collapse supernova

Hiroki Nagakura⇤

Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

Semi-global simulations.

I. INTRODUCTION

II. RESOLUTION REQUIREMENTS

n⌫ =6.63⇥ 1032 cm�3

✓
L⌫

4⇥ 1052erg/s

◆

✓
Eave

12MeV

◆�1 ✓ R

50km

◆�2 ✓ 

1/3

◆�1 (1)

Tn⌫ ⌘
⇣p

2GFn⌫

⌘�1

=7.84⇥ 10�12 s

✓
L⌫

4⇥ 1052erg/s

◆�1

✓
Eave

12MeV

◆✓
R

50km

◆2 ✓ 

1/3

◆
(2)

`n⌫ ⌘ cTn⌫

=0.235 cm

✓
L⌫

4⇥ 1052erg/s

◆�1

✓
Eave

12MeV

◆✓
R

50km

◆2 ✓ 

1/3

◆
(3)

Correction by asymmetric degree: �.

Tosc ⌘�Tn⌫

=7.84⇥ 10�11 s

✓
L⌫

4⇥ 1052erg/s

◆�1

✓
Eave

12MeV

◆✓
R

50km

◆2 ✓ 

1/3

◆✓
�

0.1

◆�1

(4)

`osc ⌘� `n⌫

=2.35 cm

✓
L⌫

4⇥ 1052erg/s

◆�1

✓
Eave

12MeV

◆✓
R

50km

◆2 ✓ 

1/3

◆✓
�

0.1

◆�1

(5)

Let us estimate the size of numerical simulations to
solve QKE in the spatial range of R < r < R+�R. The

⇤ hiroki.nagakura@nao.ac.jp

grid width (�r) and the total number of grid points (Nr)
in radial direction can be estimated as1

�r ⌘`osc
qr

⇠0.1 cm
⇣ qr
20

⌘�1
✓

L⌫

4⇥ 1052erg/s

◆�1

✓
Eave

12MeV

◆✓
R

50km

◆2 ✓ 

1/3

◆✓
�

0.1

◆�1

,

(6)

and

Nr ⌘ qr
�R

`osc

⇠108
⇣ qr
20

⌘✓
�R

100km

◆✓
L⌫

4⇥ 1052erg/s

◆

✓
Eave

12MeV

◆�1 ✓ R

50km

◆�2 ✓ 

1/3

◆�1 ✓ �

0.1

◆
.

(7)

In the estimation, we resolve an oscillation wavelength
(`osc) by qr grid points.
The time step (�t) can be estimated as

�t ⌘CFL⇥ �r

c

⇠3⇥ 10�13 s

✓
CFL

0.1

◆⇣ qr
20

⌘�1
✓

L⌫

4⇥ 1052erg/s

◆�1

✓
Eave

12MeV

◆✓
R

50km

◆2 ✓ 

1/3

◆✓
�

0.1

◆�1

,

(8)

where CFL denotes a Courant–Friedrichs–Lewy factor.
The simulation time (�T) can be estimated as

�T = qt
�R

c
⇠ 10�3 s

⇣qt
3

⌘✓
�R

100km

◆
. (9)

In Eq. 10, a new variable, qt(� 1), is introduced to take
into account the flight direction of neutrinos in the esti-
mation of �T. In the case without the correction, i.e.,
qt = 1, Nt, �T corresponds to the light-crossing time of
�R for the neutrinos propagating along the radial direc-
tion. For other neutrinos propagating in di↵erent (but
outgoing) directions, their radial velocity is smaller than
the speed of light, indicating that most of the neutri-
nos emitted from the inner boundary point have not yet

1 Just for simplicity, the uniform mesh is assumed.

Oscillation wavelength is an order of sub-centimeter.

Too short !!!!
How can we make FFC simulations tractable???

- Issue:
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Temporal and quasi-steady features of FFC in global scale 
(1D in space + 1D angle in momentum space) 2
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FIG. 1. All plots show fxx/(fee + fxx) as functions of radius and cos θν . Top and bottom panels show results of Model-Γ1
and Model-Γ4, respectively. The left and middle panels display the result at t = 0.1ms and 0.5ms, respectively. The right
panels depict time-averaged distributions in a quasi-steady state phase (0.3ms ≤ t ≤ 0.5ms). The black solid- and dashed lines
represent trajectories of neutrinos emitted in the direction of cos θν = 0 (perpendicular to the radial direction) and cos θν = 0.5
(ELN crossing point), respectively, at the inner boundary (50km).

at outer boundary. 〈
(−)

f
ee
〉 and

(−)

β
ee

are control parame-
ters, which are directly associated with the number den-
sity and anisotropy of angular distributions of neutri-
nos, respectively. In this study, number density of νe
(nν) is set to be 6 × 1032cm−3 at the inner boundary
(50km), which corresponds to Lν ∼ 4 × 1052erg/s for
Eave ∼ 12MeV, where Lν and Eave denotes the νe lu-
minosity and average energy, respectively. We assume
〈fee〉 = 〈f̄ee〉, βee = 0, and β̄ee = 1. The parameter η
in Eq. 3 represents the diluteness of incoming neutrinos
emitted from outer boundary, which is set to be η = 10−6.

In the setup, the oscillation wavelength of FFC at
50km is subcentimeter. The required radial resolution
is, hence, ∼ 0.1cm, illustrating that unfeasible compu-
tational resources are needed for global simulations. We
tackle this issue in the following way. First, we intro-
duce a new parameter, Γ, which represents a reduction
factor of nν . It effectively rescales the oscillation scale
(∼ 104 times larger than the target one as shown below),
which makes > 10km simulations tractable. Second, we
run multiple simulations with different choice of Γ; in
this Letter we study four cases: Γ = 10−4 (Model-Γ1),
2× 10−4 (Model-Γ2), 4× 10−4 (Model-Γ4), and 8× 10−4

(Model-Γ8). To see the impact of angular resolution, we
also run another simulation (Model-Γ1h), in which Γ is
set to be the same as Model-Γ1 but the angular resolution

is twice higher.
We cover a spatial domain of 50km ≤ r ≤ 100km ex-

cept for Model-Γ8. Although Model-Γ8 covers the narrow
spatial domain (50km ≤ r ≤ 60km), it corresponds to the
highest nν among our models, and therefore the model is
worthy to extrapolate our results to the case with Γ = 1.
We deploy 128 angular grid points in our simulations, and
only Model-Γ1h has 256 angular points. In the radial di-
rection, we employ uniform grids with 24576 (for Model-
Γ1 and Model-Γ1h), 49152 (for Model-Γ2), 98304 (for
Model-Γ4), and 49152 (for Model-Γ8) points. It should
be stressed that these large number of grids are necessary
to resolve FFC (an oscillation wavelength is resolved by
>
∼ 10 radial grid points).
We impose a Dirichlet boundary condition for outgo-

ing neutrinos (cos θν > 0) at the inner boundary, and
for incoming neutrinos (cos θν < 0) at the outer one.
In the opposite directions, we impose a free-streaming
boundary condition. To prepare the initial condition, we
run the simulations without FFC until the system settles
into a steady state. In FFC simulations, we follow the
time evolution up to 0.5ms (0.12ms only for Model-Γ8),
which is long enough to establish a quasi-steady state.
We work in two-flavor approximations, and employ vac-
uum potential with ∆m2 = 2.5× 10−6eV2, θmix = 10−6

and Eν = 12MeV, where ∆m2 and θmix denote squared
mass difference of neutrinos, mixing angle, and neutrino

Weak 
atenuation

Strong 
attenuation
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Attenuating Hamiltonian potential does not change degree 
of flavor conversion in asymptotic states.
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FIG. 2. Radial profiles of time-averaged neutrino number density in a quasi-steady state. In the left panel, we show nνe

normalized by that at 50km. For comparison, the result without FFC is also shown as a black solid line. In the right panel, we
display nνx/(nνe + nνx), which corresponds to a useful metric to see the degree of flavor conversion.

energy, respectively. We note that the vacuum oscillation
is only important to trigger FFC, and it does not affect
non-linear regimes of FFC in our models. We confirm by
linear analysis that Γ = 10−4 is large enough so that the
fast mode dominates over the slow one.
Results.—Figure 1 shows color maps of fxx normalized

by fee + fxx as functions of radius and neutrino angle.
The black solid line in each panel portrays the radial tra-
jectory of neutrinos emitted perpendicular to radial di-
rection (cos θν = 0) at the inner boundary. This exhibits
a transition to forward-peaked angular distributions of
neutrinos.
As shown in Fig. 1, FFC commonly occurs in our mod-

els (appearance of νx is a sign of flavor conversion). In
the vicinity of inner boundary, however, no strong flavor
conversions occur (see, e.g., 50km < r <

∼ 65km in the
top left panel of Fig. 1), whereas the region becomes nar-
rower with increasing nν (see the bottom panels). This
is attributed to the fact that the growth of FFC becomes
more rapid with increasing nν

1.
Once neutrinos, initially emitted in the radial direc-

tion from the inner boundary, arrive at a certain ra-
dius, flavor structures in all neutrino angles are disor-
ganized (see, e.g., bottom left panel of Fig. 1), despite
the fact that neutrinos traveling in non-radial directions
have not reached yet (since the propagation speed of neu-
trinos with respect to radial direction is proportional to
cos θν). This indicates that the flavor conversion in non-
radial directions is not a consequence of spatial advection

1 In the case without reduction of nν , the width of corresponding
region is only ∼ 20cm; see the left panel of Fig. 11 in [26].

from the inner region (where FFC has already been well
developed), but rather local angular-couplings of FFC.
This also exhibits that neutrinos emitted from the outer
boundary can experience strong flavor conversion. Since
the incoming neutrinos are very dilute, their contribu-
tion to neutrino self-interaction potential is very minor,
suggesting that the flavor conversion is passively induced
by outgoing ones. These incoming neutrinos, possessing
finite flavor off-diagonal components of the density ma-
trix, advect inward, which facilitates the growth of FFC
in the linear regime.

Strong flavor conversion occurs even in the case of low
nν models at late times (see the top middle panel of
Fig. 1), and we find that the system eventually achieves
a quasi-steady state. One of the striking results in this
study is that the degree of flavor conversion does not
hinge on nν in the quasi-steady phase. This trend is
more visible in time-averaged distributions. We com-
pute the time-averaged f by integrating over the time
of 0.3ms ≤ t ≤ 0.5ms; the results are shown in right pan-
els of Fig. 1. Fig. 2 also displays the radial profiles of
time-averaged number density of νe and the ratio of nνx

to nνe
+nνx

in the left and right panel, respectively, for all
models (for Model-Γ8, we compute the time-averaged f
in the time range of 0.06ms ≤ t ≤ 0.12ms). Both figures
illustrate that the degree of flavor mixing is universal. It
should also be mentioned that the angular resolutions in
our simulations does not compromise the time-averaged
profile (see the red dashed-line in Fig. 2 displaying the
result of Model-Γ1h). The result of Model-Γ8, that cor-
responds to the model with the highest spatial resolution
and the modest Γ, also strengthens our conclusion. As
shown in Fig. 2, the results of other models clearly ap-
proach to Model-Γ8 with increasing nν . This lends con-
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FIG. 2. Radial profiles of three key quantities. Left: gain energy from neutrinos. Each color corresponds to a di↵erent model.
Middle: average energy of neutrinos. Line type distinguishes the species of neutrinos. Right: energy flux of neutrinos.

potentially hinders the delayed neutrino-heating mecha-
nism. It may be, however, premature to conclude that
FFCs play negative roles on explosions. As shown in
the same figure, neutrino cooling in optically thick re-
gion is higher in M3F than NFC. Indeed, we find that
the total energy flux of neutrinos at the outer boundary
is increased by ⇠ 33%. This leads to higher matter tem-
perature due to an e�cient contraction of PNS and then
the average energy of neutrinos would also be increased,
that would facilitate neutrino absorptions in the gain re-
gion. This suggests that feedback from neutrino-matter
interactions to fluid dynamics needs to be included to de-
termine whether FFC has a positive or negative role on
driving explosion. The detailed investigation on this is-
sue requires radiation-hydrodynamic simulations, which
is beyond the scope of this paper and will be addressed
in future work.

It is worthy of note that the average energy of electron-
type neutrinos (⌫e) and their antipartners (⌫̄e) in M3F
become higher than the case with NFC (see middle panel
in Fig. 2). This is attributed to the fact that some heavy-
leptonic neutrinos (⌫x), having the highest energy among
flavors, convert to ⌫e and ⌫̄e. On the other hand, energy
fluxes of ⌫e and ⌫̄e become lower (see the right panel of
Fig. 2), which is also due to lower energy flux of ⌫x in
NFC. These two e↵ects compete with each other regard-
ing neutrino heating, and the latter e↵ect dominates over
the former. We also find that the energy flux of ⌫x(ave),
averaging over ⌫x and ⌫̄x, are substantially increased in
M3F, whereas their average energy becomes lower than
the case with NFC. This trend is qualitatively in line with
results of radiation-hydrodynamic simulations of binary
neutron star merger remnant [24, 25].

We make remarks on model-dependent features on
neutrino heating. First, the impact of FFC in M2F is
less remarkable than M3F (see in the left panel of Fig. 2);
the net gain energy is ⇠ 16% lower than the case with
NFC. This indicates that ⌫e- and ⌫̄e conversions to heavy-
leptonic neutrinos are mild compared to the three fla-
vor framework, which is consistent with the di↵erence of

flavor equipartition between these frameworks. Our re-
sult exhibits the importance of three flavor framework to
quantify the actual impact of FFCs on CCSNe. Next, we
find that M3FGR has essentially the same result as M3F,
suggesting that GR e↵ects are subdominant. Quanti-
tatively speaking, however, we find neutrino cooling in
the semi-transparent region (⇠ 50km) is suppressed in
M3FGR. The lower neutrino cooling exhibits that the
number (or energy) density of ⌫e and ⌫̄e is higher than
those in the case with NFC, since the increase of neu-
trino population leads to larger blocking factor for neu-
trino emission and also higher neutrino absorption there.
The increase of neutrino number is a natural outcome
of redshift e↵ect, since the average-energy of neutrinos
becomes lower, resulting in the larger neutrino di↵usion
due to the lower opacity. Finally, we confirm that M3FH
model, which has the highest resolution with the modest
⇠, shows the essentially identical result to M3F.

In Fig. 3, we show energy-integrated angular distribu-
tions (top) and angular-integrated energy spectra (bot-
tom) for each flavor of neutrinos. Here, we again focus on
the result of M3F to discuss key rolls of FFCs in chang-
ing neutrino distributions in momentum space. The left
panels exhibit that FFC can change both angular dis-
tribution and energy spectrum of neutrinos in optically
thick region. One thing we do notice here is that an
ELN crossing appears at cos ✓⌫ ⇠ 0 in NFC, which guar-
antees that FFC occurs in M3F. The flavor conversion
is vigorous at cos ✓⌫ ⇠ 1, and the flavor equipartition
is nearly achieved in the same angular direction. ⌫̄e is
reduced more substantially than ⌫e, which seems to be
due to larger population of ⌫̄e than ⌫e in this direction.
For incoming neutrinos (cos ✓⌫ < 0), the conversion be-
comes ine�cient, but it is still noticeable for ⌫x(ave). The
substantial change of ⌫x(ave) can also be seen in the en-
ergy spectrum, whose feature is strongly dependent on
energy. In the high energy region (>⇠ 40MeV), ⌫x(ave) in
M3F is remarkably lower than NFC, whereas the di↵er-
ence between NFC and M3F is subtle for ⌫e and ⌫̄e. This
result exhibits that FFC o↵ers a new channel to absorb

Numerical setup:

Collision terms are switched on.

Fluid-profiles are taken from a 
CCSN simulation.

General relativistic effects are 
taken into account.

A wide spatial region is covered.

Three-flavor framework

Neutrino-cooling is enhanced by FFCs
Neutrino-heating is suppressed by FFCs Impacts on CCSN explosion !!

Neutrino heating/cooling
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(M2F model). We adopt ξ ¼ 10−4 and Nr ¼ 12 288 (the
number of radial grid) for all these three models. To check
the dependence of attenuation parameter, we run M3FH, in
which we set ξ ¼ 2 × 10−4 with higher spatial resolutions;
the smallest grid widthΔrmin is 15 cm, andNr is 24 576.We
run each simulation for 1 ms and confirm that the system
reaches a quasisteady state. Since we are interested in
astrophysical aspects, temporal variations of FFCs are not
our focus. We, hence, extend each simulation for 0.05 ms,
and all results presented below are computed based on the
time-averaged quantities during the time interval.
Results.—The left panel in Fig. 2 displays radial profiles

of net gain energy from neutrinos. As a representative case,
we first focus on the M3F model. As shown in the panel,
the neutrino heating in the gain region becomes remarkably
lower than NFC. More quantitatively, the gain radius is
increased by ∼7%, causing the reduction of baryon mass
(∼23%) in the gain region. The local neutrino-heating rate
is also reduced, resulting in ∼48% reduction of the net
gain energy. This suggests that FFC potentially hinders the
delayed neutrino-heating mechanism. It may be, however,
premature to conclude that FFCs play negative roles on
explosions. As shown in the same figure, neutrino cooling
in the optically thick region is higher in M3F than NFC.
Indeed, we find that the total energy flux of neutrinos at the
outer boundary is increased by ∼33%. This can lead to
higher matter temperature due to an efficient contraction of
PNS, and, therefore, the average energy of neutrinos can
also be increased, facilitating neutrino absorptions in the
gain region. This suggests that feedback from neutrino-
matter interactions to fluid dynamics needs to be included
to determine whether FFC has a positive or negative role on
driving explosion. Its detailed investigation requires radi-
ation-hydrodynamic simulations, which will be addressed
in future work.
It is worthy of note that the average energy of electron-

type neutrinos (νe) and their antipartners (ν̄e) in M3F
become higher than the case with NFC (see middle panel

in Fig. 2). This is attributed to the fact that some heavy-
leptonic neutrinos (νx), having the highest energy among
flavors, convert to νe and ν̄e. On the other hand, energy
fluxes of νe and ν̄e become lower (see the right panel in
Fig. 2), which is also due to lower energy flux of νx in NFC.
These two effects compete with each other regarding
neutrino heating, and the latter effect dominates over
the former. We also find that the energy flux of νxðaveÞ,
averaging over νx and ν̄x, are substantially increased in
M3F, whereas their average energy becomes lower than in
NFC models. This trend is qualitatively in line with results
of radiation-hydrodynamic simulations of a binary neutron
star merger remnant [27,28].
We make remarks on model-dependent features on

neutrino heating. First, the impact of FFC in M2F is less
remarkable than M3F (see the left panel in Fig. 2); the net
gain energy is ∼16% lower than the case with NFC. This
indicates that νe and ν̄e conversions to heavy-leptonic
neutrinos are mild compared to the three-flavor framework,
which is consistent with the difference of flavor equiparti-
tion between these frameworks. Our result exhibits the
importance of the three-flavor framework to quantify the
actual impact of FFCs on CCSNe. Next, we find that
M3FGR has essentially the same result as M3F, suggesting
that GR effects are subdominant. Quantitatively speaking,
however, we find that neutrino cooling in the semitrans-
parent region (∼50 km) is suppressed in M3FGR. The
lower neutrino cooling exhibits that the number (or energy)
density of νe and ν̄e is higher than in the NFC model,
since the increase of neutrino population leads to a larger
blocking factor for neutrino emission and also higher
neutrino absorption there. The increase of the neutrino
number is a natural outcome of the redshift effect, since the
average energy of neutrinos becomes lower, resulting in the
larger neutrino diffusion due to the lower opacity. Finally,
we confirm that the M3FH model, which has the highest
resolution with the modest ξ, shows the similar result to
M3F, in which the neutrino heating in the gain region is
reduced by ∼40% by FFCs.

FIG. 2. Radial profiles of three key quantities. Left: gain energy from neutrinos. Each color corresponds to a different model. Middle:
average energy of neutrinos. Line type distinguishes the species of neutrinos. Right: energy flux of neutrinos.
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Setup:

2

νe

νx
νe

(r   , θ  )in in

HMNS
Optically thick disk

(r     , θ    )out out
νe νe

(r     , θ    )out out
νx νx

(r     , θ    )out out
νe νe

FIG. 1. Schematic illustration of neutrino spheres in our
model. Neutrinos are radiated at each species-dependent neu-
trino sphere, which are distinguished by color: red, blue, and
green for ⌫e, ⌫̄e, and ⌫x, respectively. At the surface of hy-
permassive neutron star (HMNS) denoted by purple line, we
assume all flavors of neutrinos are emitted.

is assumed, and we adopt squared mass di↵erences of
�m

2 = 2.5⇥ 10�6eV2 for two flavor approximation, and
�m

2
21 = 7.42⇥10�5eV2 and �m

2
31 = 2.51⇥10�3eV2 for

three flavor framework. We set 10�6 for all mixing angles.
Given the set of parameters, we evaluate the vacuum po-
tential with 12 MeV neutrino energy. ⇠( 1) denotes an
attenuation parameter of oscillation Hamiltonian, which
is a parameter to make the simulations tractable. We
employ our GRQKNT code [29] in all simulations.

We assume that each flavor of neutrinos is emitted only
at neutrino sphere. The schematic picture of our model
is provided in Fig. 1. Red, blue, and green solid lines
represent neutrino spheres in the disk for electron-type
neutrinos (⌫e), their antipartners (⌫̄e), and other heavy
leptonic neutrinos (⌫x). Purple solid line represents the
surface of hypermassive neutron star (HMNS) on which
all flavor of neutrinos are radiated. Two remarks should
be mentioned here. Although the HMNS is oblately de-
formed due to rotation in reality, it is assumed to be
spherical just for simplicity; hence the geometry of the
neutrino sphere can be determined by two parameters:
rin and ✓in. The former and the latter denote the radius
of HMNS and the zenith angle where the disk is con-
nected; we set rin = 15km and ✓in = 60� in this study.
Second, the radius of neutrino sphere at the surface of
HMNS is, in general, flavor dependent. However, the
matter-density gradient at the surface of HMNS is very
steep; consequently the di↵erence of neutrino spheres is
minor (see, e.g., [30]). On the other hand, we set flavor
dependent neutrino distributions in momentum space,
in which we assume Fermi-Dirac distributions with zero
chemical potentials, but temperature of neutrinos are dif-
ferent among flavors. In this study, we set 4, 4.5, and
5 MeV for ⌫e, ⌫̄e, and ⌫x, respectively. We note that
our model may overestimate ⌫x luminosities compared to
realistic cases (due to neglecting momentum-exchanged
scatterings with nucleons). Its possible impacts on our
results will be discussed later.

Neutrino spheres in the disk are set to be flavor depen-
dent. The geometry of each neutrino sphere is character-
ized by r

⌫↵
out and ✓

⌫↵
out, where ↵ represents neutrino species

(see Fig. 1). As a representative case, we set (70km, 60�),
(60km, 65�), and (55km, 67�), for ⌫e, ⌫̄e, and ⌫x, respec-
tively. In the angular region from ✓

⌫↵
out to 90�, the sphere

is set on the radius of r = r
⌫↵
out. The equatorial symmetry

is also assumed. In all simulations, we cover from 15km
to 100km. The energy spectra of neutrinos are the same
as those set on the surface of HMNS.
Before carrying out QKE simulations, we run a sim-

ulation without FFC, i.e., H = 0 in Eq. 1 (hereafter
referred to as Mno model). This simulation is stopped at
1ms. We confirm that the system has already reached a
steady state by the time. We use the steady state pro-
file as an initial condition for QKE simulations. We also
note that electron-neutrinos lepton number (ELN) cross-
ings are ubiquitously occur above the disk, which is in
line with the argument in [8] (see Fig 1 in the paper).
This suggests that FFC should occur if we turn on oscil-
lation Hamiltonian.
In QKE simulations, we only focus on the spatial re-

gion above the disk; the simulations are conducted in the
region of 0�  ✓  55�. We use Dirichlet boundary condi-
tions (frozen in time) for neutrinos which come into com-
putational domain, while we adopt a zero-gradient free
boundary condition for outgoing neutrinos from the sim-
ulation box. A reflective boundary condition is adopted
along the z-axis (✓ = 0�). We consider two models in this
study: M3h and M2h. They have the same numerical
setup except that the former and the latter corresponds
to three- and two-flavor frameworks, respectively.
We adopt a non-uniform radial grid (see [23–25]) with

�rmin = 3m, where �rmin denotes the radial width of
the innermost mesh. The number of radial cells is 1152.
In the meridian direction, we set a uniform grid for the
cosine of the zenith-angle. The number of grid points
is 384. Neutrino angles in momentum space are covered
by a uniform grid with respect to cos ✓⌫ and �⌫ with
96 ⇥ 48 grid points. We run the simulations up to t =
0.8ms. ⇠ is set to be 3 ⇥ 10�4. Although we confirm
that the qualitative trend is captured in these simulations
by carrying out the resolution study, the reduction of ⇠
causes some artificial results; its possible impacts will be
discussed later.
Result.—Soon after QKE simulations begin, FFC oc-

curs vigorously in the vicinity of HMNS and the disk.
During the very early phase, FFC dynamics is character-
ized only by local properties of neutrino radiation field.
As discussed in [24, 31], however, non-linear states of
FFC can be substantially changed in the time scale of
advection. Impacts of global advection are vividly illus-
trated in the top panels of Fig. 2, in which we show the
spatial distribution of nELN (ELN number density) sub-
tracted by that of the initial one for M2h model. One no-
ticeable feature is that the positive and negative region of
nELN(t)�nELN(0) is clearly separated from each other by
a very narrow region at t >⇠ 0.1ms. We also find that that
the transition region includes a line (or surface if we take
into account the azimuthal direction) where the sign of
the number density of ELN-XLN (nELN(t) � nXLN(t)),

- Hypermassive neutron star (HMNS) + disk geometry
- Thermal emission on the neutrino sphere
- QKE (FFC) simulations in axisymmetry
- Resolutions: 1152 (r) × 384 (θ) × 98 (θ ) × 48 (φ )ν ν

ELN crossings are ubiquitous in this region 
(Wu & Tamborra 2017)
→ How FFC changes the radiation field? 
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Temporal evolution of FFCs in global scale:

ELN(t) – ELN(0) 

Take-home message 1
Non-conservations of ELN (and XLN) number density

represent the importance of global advection of neutrinos in space! 

3

FIG. 2. Top: di↵erence of ELN number density from the initial distribution, nELN(t)� nELN(0). Bottom: ELN-XLN number
density, nELN�XLN(t), in which we highlight its sign by red- (for positive) and black (for negative) colors. The boundary
between the two regions is a ELN-XLN Zero Surface (EXZS); see the text for more details. We displayed them at five di↵erent
time snapshots for M2h: t = 0.05, 0.1, 0.2, 0.4, and 0.8 ms from left to right.

FIG. 3. Color map for the ratio of the real part of the o↵-
diagonal component of f to the sum of the diagonal elements
at t = 0.8ms for M2h model.

where XLN denotes a heavy-leptonic-neutrinos lepton
number, is flipped (see bottom panels of Fig. 2). We
call the surface as ELN-XLN Zero Surface (EXZS).

As shown in Fig. 2, the EXZS at the ✓-boundary (✓max)
does not evolve with time. This is attributed to the ge-
ometry of neutrino spheres. In our models, ⌫̄e is more
populated than ⌫e in the inner region (r <⇠ r

⌫̄e
out). On

the other hand, the number density of ⌫e can dominate
over ⌫̄e at r ⇠ r

⌫e
out and ✓ ⇠ ✓

⌫e
out. This indicates that

EXZS appears at t = 0ms (since XLN is zero). We note
that the neutrinos injected into computational domain
from ✓ = ✓max are assumed to be fixed in time, and these
neutrinos have the primary contribution in the neutrino

number density; hence, the EXZS is nearly fixed.

However, the EXZS in the region of ✓ < ✓max is not
stationary, but dynamically evolving in the time scale
of global advection (an order of ⇠ 0.1ms). As shown
in the bottom panels of Fig. 2, the negative region of
nELN�XLN expands with time, in particular around the
z-axis. We find that ⌫e in the angular region where ⌫̄e

is absent (see also Fig. 1 in [8]) converts into ⌫x, that is
mainly responsible for the negative nELN�XLN there. One
thing we do notice here is that the flavor conversion is
less vigorous around the z-axis, despite the fact that the
neutrino radiation field is substantially changed. Indeed,
the amplitude of o↵-diagonal components of f is less than
a percent of the diagonal ones around the pole. On the
other hand, it is > 10% around the EXZS at t = 0.8ms
(see Fig. 3), suggesting that flavor conversions occur only
in the vicinity of EXZS, and then the FFC-experienced
neutrinos advect to other regions.

We compare ELN-XLN angular distributions between
two di↵erent spatial positions in Fig. 4. The left and
right panels portray the distribution at ✓ = 30� and 40�,
respectively, on the same radius (r = 80km). We note
that the EXZS is located between the two positions. At
t = 0ms (top panels), the angular distributions of neu-
trinos at the two spatial positions are nearly identical to
each other. At cos ✓⌫ ⇠ 1, ELN is negative, that is due to
the higher emission of ⌫̄e than ⌫e at the neutrino sphere.
However, there is a region (band) where ⌫e dominates
over ⌫̄e around cos ✓⌫ ⇠ 0.6. In this region, ⌫̄e is absent
due to the smaller size of neutrino sphere in the disk than
that of ⌫e (see Fig. 1). At t = 0.8ms, however, the ELN-
XLN in the band becomes negative at the ✓ = 30� posi-
tion, suggesting that these neutrinos undergo an almost
complete swap from ⌫e to ⌫x. As we mentioned above,

Time



Global Simulations of FFC in a BNSM environment
Nagakura (arXiv:2306.10108)

EXZS (ELN-XLN Zero Surface):

3

FIG. 2. Top: di↵erence of ELN number density from the initial distribution, nELN(t)� nELN(0). Bottom: ELN-XLN number
density, nELN�XLN(t), in which we highlight its sign by red- (for positive) and black (for negative) colors. The boundary
between the two regions is a ELN-XLN Zero Surface (EXZS); see the text for more details. We displayed them at five di↵erent
time snapshots for M2h: t = 0.05, 0.1, 0.2, 0.4, and 0.8 ms from left to right.

FIG. 3. Color map for the ratio of the real part of the o↵-
diagonal component of f to the sum of the diagonal elements
at t = 0.8ms for M2h model.

where XLN denotes a heavy-leptonic-neutrinos lepton
number, is flipped (see bottom panels of Fig. 2). We
call the surface as ELN-XLN Zero Surface (EXZS).

As shown in Fig. 2, the EXZS at the ✓-boundary (✓max)
does not evolve with time. This is attributed to the ge-
ometry of neutrino spheres. In our models, ⌫̄e is more
populated than ⌫e in the inner region (r <⇠ r
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the other hand, the number density of ⌫e can dominate
over ⌫̄e at r ⇠ r
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out. This indicates that

EXZS appears at t = 0ms (since XLN is zero). We note
that the neutrinos injected into computational domain
from ✓ = ✓max are assumed to be fixed in time, and these
neutrinos have the primary contribution in the neutrino

number density; hence, the EXZS is nearly fixed.

However, the EXZS in the region of ✓ < ✓max is not
stationary, but dynamically evolving in the time scale
of global advection (an order of ⇠ 0.1ms). As shown
in the bottom panels of Fig. 2, the negative region of
nELN�XLN expands with time, in particular around the
z-axis. We find that ⌫e in the angular region where ⌫̄e

is absent (see also Fig. 1 in [8]) converts into ⌫x, that is
mainly responsible for the negative nELN�XLN there. One
thing we do notice here is that the flavor conversion is
less vigorous around the z-axis, despite the fact that the
neutrino radiation field is substantially changed. Indeed,
the amplitude of o↵-diagonal components of f is less than
a percent of the diagonal ones around the pole. On the
other hand, it is > 10% around the EXZS at t = 0.8ms
(see Fig. 3), suggesting that flavor conversions occur only
in the vicinity of EXZS, and then the FFC-experienced
neutrinos advect to other regions.

We compare ELN-XLN angular distributions between
two di↵erent spatial positions in Fig. 4. The left and
right panels portray the distribution at ✓ = 30� and 40�,
respectively, on the same radius (r = 80km). We note
that the EXZS is located between the two positions. At
t = 0ms (top panels), the angular distributions of neu-
trinos at the two spatial positions are nearly identical to
each other. At cos ✓⌫ ⇠ 1, ELN is negative, that is due to
the higher emission of ⌫̄e than ⌫e at the neutrino sphere.
However, there is a region (band) where ⌫e dominates
over ⌫̄e around cos ✓⌫ ⇠ 0.6. In this region, ⌫̄e is absent
due to the smaller size of neutrino sphere in the disk than
that of ⌫e (see Fig. 1). At t = 0.8ms, however, the ELN-
XLN in the band becomes negative at the ✓ = 30� posi-
tion, suggesting that these neutrinos undergo an almost
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call the surface as ELN-XLN Zero Surface (EXZS).

As shown in Fig. 2, the EXZS at the ✓-boundary (✓max)
does not evolve with time. This is attributed to the ge-
ometry of neutrino spheres. In our models, ⌫̄e is more
populated than ⌫e in the inner region (r <⇠ r
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in the vicinity of EXZS, and then the FFC-experienced
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trinos at the two spatial positions are nearly identical to
each other. At cos ✓⌫ ⇠ 1, ELN is negative, that is due to
the higher emission of ⌫̄e than ⌫e at the neutrino sphere.
However, there is a region (band) where ⌫e dominates
over ⌫̄e around cos ✓⌫ ⇠ 0.6. In this region, ⌫̄e is absent
due to the smaller size of neutrino sphere in the disk than
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Flavor swap between electron- and heavy-leptonic neutrinos: 4

FIG. 4. ELN-XLN angular distributions for M2h. We focus
on the region of cos ✓⌫ > 0 (outgoing neutrinos in the radial
direction). In top and bottom panels, we show the result
at t = 0 and 0.8ms, respectively. The left and right panels
distinguish the spatial position: ✓ = 30� and 40� at r = 80km.

the flavor swap occurs around EXZS and then advect to
the spatial position. On the other hand, the neutrinos in
cos ✓⌫ ⇠ 1 is almost the same at t = 0ms, suggesting that
FFC is ine�cient for these neutrinos.

The trend of ELN-XLN angular distributions at ✓ =
40� displayed in the right bottom panel of Fig. 4 is al-
most opposite to the case with ✓ = 30�. Neutrinos in
cos ✓⌫ ⇠ 1, that experiences to pass through the EXZS,
has a strong flavor conversion, whereas those in the angu-
lar band at cos ✓⌫ ⇠ 0.6 remain ⌫e-dominant. This indi-
cates that the change of neutrino radiation field would be
assessed by how many neutrinos pass through the EXZS
during the travel to the position.

We should remark a caveat here. As shown in the bot-
tom panels of Fig. 4, there are ELN-XLN angular cross-
ings, albeit shallow, indicating that the distribution is
still in unstable state (see also [31, 32]). The suppression
of FFC may be an artifact due to the reduction of self-
interaction potential by ⇠. This issue can be addressed by
increasing ⇠, albeit requiring higher spatial resolutions.
This issue should be deferred to future work.

Finally, we quantify how large ⌫e and ⌫̄e radiation field
is changed due to FFC. One thing we need to mention
is that the degree of species-dependent flavor conversion
depends on the number of neutrino species (two or three);
hence, we show the result in M3h. As displayed in Fig. 5,
both ⌫e and ⌫̄e become lower than Mno in the polar re-
gion. The change of ⌫e number density reaches ⇠ 50% at
r ⇠ 100km, whereas that for ⌫̄e is moderate. The is be-
cause the di↵erence of ⌫̄e- and ⌫̄x spheres and their energy
spectra are smaller than those for ⌫e and ⌫x. Following

similar arguments above,
(�)

⌫ e conversion into
(�)

⌫ x that oc-

curs at EXZS results in the reduction of
(�)

⌫ e around the
polar region. On the other hand, both ⌫e and ⌫̄e become
higher than those at t = 0ms in the region of r >⇠ 50km
and close to the disk. As we have already mentioned, the
neutrinos in cos ✓⌫ ⇠ 1 has an experience of FFC when

they pass through the EXZS. Since
(�)

⌫ x dominates over
(�)

⌫ e in the angular region at t = 0ms, FFC facilitates the

FIG. 5. The di↵erence of neutrino number density between
t = 0.8 and 0ms, which is normalized by the density at t =
0ms. Left: ⌫e. Right: ⌫̄e. The model is M3h.

increase of
(�)

⌫ e. An important remark should be made
here. The above conclusion strongly depends on ⌫x ra-

diation field.
(�)

⌫ e would be decreased everywhere if
(�)

⌫ x

flux is substantially suppressed by nucleon scatterings.
We also note that the disappearance of ⌫x sphere, which
occurs when the matter density in the disk becomes low

(<⇠ 1013g/cm3), results in a substantial reduction of
(�)

⌫ e.

Conclusions.—In this Letter, we discuss global features
of FFC in a geometry of BNSM remnant with HMNS,
based on QKE simulations with attenuating the oscil-
lation Hamiltonian. Our result suggests that e↵ects of
global advection lead to a substantial change of FFC dy-
namics. The most striking result in this study is that
FFC properties are qualitatively di↵erent between the
regions divided by a ELN-XLN Zero Surface (EXZS).
The surface evolves with time, indicating that neutrino
advection dictates its dynamics. When neutrinos pass
through the EXZS, the flavor swap can occur in the very
narrow region. This leads to a substantial change of ⌫e
and ⌫̄e number density.

Although we reveal that the EXZS is a key ingredient
to characterize FFC in BNSM system, there is very little
known about its property. It is worthy of note that such
a rapid transition of flavor conversion may be generic in
the case with Dirichlet boundary condition; the detail
will be reported in our forthcoming paper(s). We also
note that FFC dynamics hinges on species-dependent
neutrino energy spectrum and the geometry of neutrino
spheres. Since both HMNS and the disk evolve with time,
a systematic study with varying these setups needs to
be made to make more definitive claims about roles of
FFC on BNSM dynamics. Neglecting neutrino-matter
interactions is also another concern in the present study,
which potentially leads to more complex dynamics of fla-
vor conversion. In fact, multiple EXZSs may emerge in
the complex fluid distributions. Addressing these issues
is the next goal of our future research.

Flavor-swap Flavor-swap
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Substantial change of neutrino radiation field:
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FIG. 4. ELN-XLN angular distributions for M2h. We focus
on the region of cos ✓⌫ > 0 (outgoing neutrinos in the radial
direction). In top and bottom panels, we show the result
at t = 0 and 0.8ms, respectively. The left and right panels
distinguish the spatial position: ✓ = 30� and 40� at r = 80km.

the flavor swap occurs around EXZS and then advect to
the spatial position. On the other hand, the neutrinos in
cos ✓⌫ ⇠ 1 is almost the same at t = 0ms, suggesting that
FFC is ine�cient for these neutrinos.

The trend of ELN-XLN angular distributions at ✓ =
40� displayed in the right bottom panel of Fig. 4 is al-
most opposite to the case with ✓ = 30�. Neutrinos in
cos ✓⌫ ⇠ 1, that experiences to pass through the EXZS,
has a strong flavor conversion, whereas those in the angu-
lar band at cos ✓⌫ ⇠ 0.6 remain ⌫e-dominant. This indi-
cates that the change of neutrino radiation field would be
assessed by how many neutrinos pass through the EXZS
during the travel to the position.

We should remark a caveat here. As shown in the bot-
tom panels of Fig. 4, there are ELN-XLN angular cross-
ings, albeit shallow, indicating that the distribution is
still in unstable state (see also [31, 32]). The suppression
of FFC may be an artifact due to the reduction of self-
interaction potential by ⇠. This issue can be addressed by
increasing ⇠, albeit requiring higher spatial resolutions.
This issue should be deferred to future work.

Finally, we quantify how large ⌫e and ⌫̄e radiation field
is changed due to FFC. One thing we need to mention
is that the degree of species-dependent flavor conversion
depends on the number of neutrino species (two or three);
hence, we show the result in M3h. As displayed in Fig. 5,
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gion. The change of ⌫e number density reaches ⇠ 50% at
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⌫ e. An important remark should be made
here. The above conclusion strongly depends on ⌫x ra-

diation field.
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⌫ e would be decreased everywhere if
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flux is substantially suppressed by nucleon scatterings.
We also note that the disappearance of ⌫x sphere, which
occurs when the matter density in the disk becomes low

(<⇠ 1013g/cm3), results in a substantial reduction of
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⌫ e.

Conclusions.—In this Letter, we discuss global features
of FFC in a geometry of BNSM remnant with HMNS,
based on QKE simulations with attenuating the oscil-
lation Hamiltonian. Our result suggests that e↵ects of
global advection lead to a substantial change of FFC dy-
namics. The most striking result in this study is that
FFC properties are qualitatively di↵erent between the
regions divided by a ELN-XLN Zero Surface (EXZS).
The surface evolves with time, indicating that neutrino
advection dictates its dynamics. When neutrinos pass
through the EXZS, the flavor swap can occur in the very
narrow region. This leads to a substantial change of ⌫e
and ⌫̄e number density.

Although we reveal that the EXZS is a key ingredient
to characterize FFC in BNSM system, there is very little
known about its property. It is worthy of note that such
a rapid transition of flavor conversion may be generic in
the case with Dirichlet boundary condition; the detail
will be reported in our forthcoming paper(s). We also
note that FFC dynamics hinges on species-dependent
neutrino energy spectrum and the geometry of neutrino
spheres. Since both HMNS and the disk evolve with time,
a systematic study with varying these setups needs to
be made to make more definitive claims about roles of
FFC on BNSM dynamics. Neglecting neutrino-matter
interactions is also another concern in the present study,
which potentially leads to more complex dynamics of fla-
vor conversion. In fact, multiple EXZSs may emerge in
the complex fluid distributions. Addressing these issues
is the next goal of our future research.

Note: Increase or decrease of 
electron-type neutrinos hinge on 
heavy-leptonic neutrinos

More detailed study is required!!
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Summary

Radiation-hydrodynamic simulations under classical treatments of neutrino 
kinetics have been matured in CCSN and BNSM community.

Collective neutrino oscillations, one of the quantum kinetics features of neutrinos, 
ubiquitously occur in CCSN and BNSM environments.

Fast neutrino-flavor conversion (FFC) potentially gives a huge impact on fluid-
dynamics, nucleosynthesis, and neutrino signal.

We developed a new GRQKNT code for time-dependent global simulations of 
neutrino quantum kinetics (QKE).

QKE simulations are done in CCSN and BNSM environments with GRQKNT code.

Global advection of neutrinos play important roles in FFC dynamics.


