Beyond the Standard Proton

for 'Parton Distributions and Nucleon Structure, 2022', at the Institute for Nuclear Theory, Seattle

James Moore, University of Cambridge (on behalf of the 'Physics Beyond the Standard Proton' group)

European Research Council

Established by the European Commission

PBSP: Physics Beyond the Standard Proton

- The PBSP group is based at the University of Cambridge, and is headed by Maria Ubiali; the project is ERC-funded.
- The aim is to investigate interplay between BSM physics and proton structure - the subject of the rest of this talk!
- The team members are:
 - Postdocs: Zahari Kassabov, Maeve Madigan, Luca Mantani
 - PhD students: Shayan Iranipour (former), Elie Hammou, **James Moore**, Manuel Morales, Cameron Voisey (former)

European Research Council Established by the European Commission

1. Introduction: Joint fits of PDFs and BSM parameters

2. Simultaneous fits of PDFs and SMEFT Wilson coefficients

3. The dark side of the proton

4. Conclusions

3

1. - Introduction: Joint fits of PDFs and BSM parameters

Fitting PDFs and physical parameters

factorisation formula; schematically, we have:

• Predictions are functions of:

(ii) **PDF parameters** θ , e.g. the weights of a neural network parametrising the initial-scale PDFs (in the NNPDF framework).

• **Theory predictions** for collider experiments are obtained from the standard

$$FK(c) \otimes PDF(\theta)$$
Iution kernel +
initial-scale PDF
cross-section

(i) 'physics' parameters c, e.g. $\alpha_S(m_Z)$, m_W , Wilson coefficients if we use the **SMEFT**, masses and couplings of new particles in specific **BSM models**;

Fitting PDFs and physical parameters

PDF parameter fits

• Fix physics parameters $c = \bar{c}$:

$T(\overline{c}, \theta) = \mathsf{FK}(\overline{c}) \otimes \mathsf{PDF}(\theta)$

- Optimal PDF parameters θ^* then have an implicit dependence on initial physics parameter choice: $PDF(\theta^*) \equiv PDF(\theta^*(\overline{c}))$.
- E.g. NNPDF4.0 fit, Ball et al., 2109.02653.

Typically, the 'physics' parameter fits and PDF parameter fits don't talk.

'Physics' parameter fits

• Fix PDF parameters $\theta = \overline{\theta}$:

$T(c,\overline{\theta}) = \mathsf{FK}(c) \otimes \mathsf{PDF}(\overline{\theta})$

- Optimal 'physics' parameters c^* then have an implicit dependence on PDF choice: $c^* = c^*(\overline{\theta}).$
- E.g. SMEFiT, Ethier et al., 2105.00006.

Fitting PDFs and physical parameters

This could lead to inconsistencies.

PDF parameter fits

 $\mathsf{PDF}(\theta^*) \equiv \mathsf{PDF}(\theta^*(\overline{c}))$

- Fitted PDFs can depend implicitly on fixed physical parameters used in the fit.

 - **Physics that isn't really there**!

'Physics' parameter fits $c^* \equiv c^*(\overline{\theta})$

Bounds on physical parameters can depend implicitly on the fixed PDF set used in the fit.

For example, if we fit PDFs assuming all Wilson coefficients in the SMEFT are zero, but then use those PDFs in a fit of SMEFT Wilson coefficients, our resulting bounds might be misleading. The same applies to SM parameters.

• In the case of BSM models, we could even miss New Physics, or see New

Key question for this talk:

To what extent do bounds on BSM parameters change if they are fitted simultaneously with PDF parameters? Is a consistent treatment important?

2. - Simultaneous fits of PDFs and SMEFT Wilson coefficients

Simultaneous SM fits

- This is not a new problem! It's been known for a while that simultaneous fits of SM parameters alongside PDFs can be **important** in many cases. In particular, PDF parameters have a strong correlation with the value of $\alpha_{S}(m_{Z})$ (see e.g. Forte, Kassabov, 2001.04986).
- method, 1802.03398. In a nutshell:
 - 1. A grid of benchmark $\alpha_{S}(m_{Z})$ points is selected.
 - correlated appropriately so as to be comparable for different values of $\alpha_{S}(m_{Z})$.
 - are found.

• The standard method for simultaneous extraction of $\alpha_S(m_Z)$ and PDFs is the **correlated replica**

2. A **PDF fit** is performed at each benchmark point, with $\alpha_S(m_Z)$ set to the appropriate value for both **PDF evolution** and **convolution with the partonic cross-section**. The PDF replicas are

3. χ^2 parabolas for each set of correlated replicas are produced, and hence bounds on $\alpha_S(m_Z)$

Simultaneous SMEFT fits

- between **PDFs** and **Wilson coefficients in the SMEFT**.
- There are **four main works** in this direction:
 - 3. PBSP team + Greljo and Rojo, 2104.02723. Parton 1. Carrazza et al., 1905.05215. Can New Physics distributions in the SMEFT from high-energy Drell-Yan Hide Inside the Proton? tails.

A proof-of-concept study, performing a simultaneous extraction of 4 four-fermion SMEFT operators together with PDFs, using DIS-only data.

2. Liu, Sun, Gao, 2201.06586. Machine learning of log-likelihood functions in global analysis of parton distributions.

A methodological study; simultaneous SMEFT/ PDF extraction is noted as a possible application, and one SMEFT four-fermion operator is fitted using DIS-only data.

• More recently, however, it has been shown that there can be a **non-negligible** interplay

- A phenomenological study, demonstrating the impact of a simultaneous SMEFT/PDF fit in the context of the oblique W, Y parameters using current and projected Drell-Yan data.

11

- 4. CMS, 2111.10431. Measurement and QCD analysis of double-differential inclusive jet cross sections in protonproton collisions at $\sqrt{s} = 13$ TeV.
- A proof-of-concept study in the SMEFT case, involving a simultaneous extraction of PDFs, $\alpha_{S}(m_{Z})$, the top pole mass and one SMEFT Wilson coefficient.

Parton distributions in the SMEFT from highenergy Drell-Yan tails

- In particular, in the paper 2104.02723 from the PBSP team (+ Greljo, Rojo), we find that in the context of the **oblique**
 - W, Y parameters, a simultaneous fit of PDFs and the SMEFT parameters using current data has a small impact on the bounds.
- The methodology used is similar to the 'scan' methodology described for the $\alpha_{\rm S}(m_{\rm Z})$ fit, but replicas are not correlated, we simply take the χ^2 of a PDF fit at each **benchmark point** in Wilson coefficient space to **construct bounds**.

Parton distributions in the SMEFT from highenergy Drell-Yan tails

- On the other hand, when we use projected HL-LHC data, the impact of a simultaneous fit versus a fixed PDF fit becomes enormous!
- Without a simultaneous fit, we find that the size of the bounds is significantly underestimated - this could lead to claims of discovering New Physics when it isn't necessarily there.

New simultaneous SMEFT fits in the top sector

interest. The 'scan' methodology scales terribly though...

• Therefore, in our top study, we use a **new, efficient methodology** proposed in Iranipour, Ubiali, 2201.07240.

 Our DY study motivates more serious studies of PDF-SMEFT interplay; our next target is the **top sector.** The top sector provides a great playground in the search for New Physics, and has been used in multiple EFT analyses, including SMEFiT (2105.00006) and FitMaker (2012.02779), for example.

 Unfortunately, in a serious top fit, we need to include many more SMEFT operators: a total of 16 SMEFT operators contribute to the observables of

New simultaneous SMEFT fits in the top sector

- In the NNPDF4.0 framework, PDFs are modelled by **neural networks**. The neural network PDFs are convolved with the **PDF** evolution kernel and the partonic cross**section** to produce theory predictions, which are compared to data.
- In brief, the idea of the new method is to **add** the convolution step to the neural network itself, with the physical parameters added as weights of neural network edges.
- In principle any **polynomial** dependence on physical parameters can be captured through the use of non-trainable edges.
- An **arbitrary number** of physical parameters can be fitted at basically **no extra cost**!

New simultaneous SMEFT fits in the top sector

and gq luminosities - watch this space for more results!

• **Preliminary results** show that a simultaneous top fit versus a fixed PDF top fit can have significant impact on the gluon PDF, and in turn the gg

3. - The dark side of the proton

Light new physics and PDFs

- So far, we've focussed on joint PDF-SMEFT determinations. However, whilst the SMEFT is a great tool in searching for New Physics, it does not capture new weakly-coupled, light particles. Proton structure could also be affected by these new degrees of freedom!
- In this case, we could still see the impact on proton structure by including the new particles as **constituents of the proton**.
- assuming that new coloured particles alter our SM view of proton structure.

• The idea is not too far-fetched! The inclusion of new **coloured** particles, e.g. gluinos, has already been studied by Berger et al. in 0406143 (from 2005) and 1010.4315 (from 2010). Strong constraints can be derived

Light new physics and PDFs

- particle too?
- quarks via the effective interaction Lagrangian:

 $\mathscr{L}_{int} =$

- Low-energy experimental probes already strongly constrain $m_R < 2$ GeV.
- **mixing** effects become important; so for us: $m_B \in [2,80]$ GeV.

• Idea: now PDFs are known very precisely, and their uncertainties will continue to reduce in the near future with the HL-LHC, could we do the same for a colourless

• In McCullough, **Moore**, Ubiali, 2203.12628, we studied the impact of using a **toy dark** matter candidate, namely a light leptophobic dark photon B which couples to

$$\frac{1}{3}g_B \overline{q} \gamma^\mu B_\mu q$$

• We also treat this as an effective theory, valid up to the mass of the Z, where **kinetic**

DGLAP in the presence of dark photons

- Now, to include the dark photon as a constituent of the proton, we mimic the earliest studies into **photon PDFs** (namely MRST 0411040, from 2004), using the following procedure:
 - Compute the dark photon splitting functions, and add them to **DGLAP evolution**.
 - Starting from an **appropriate initial-scale ansatz**, and a 2. reference PDF set, evolve using the modified DGLAP equations. Since we assume $m_B > 2$ GeV, greater than the standard initial scale 1.65 GeV, we **always generate the** dark photon from zero similar to a heavy quark. We choose the state-of-the-art NNPDF3.1 LUXQED set as our reference set (this will soon be replaced by NNPDF4.0 LUXQED).
 - Compare resulting PDF set predictions with reference SM 3. predictions to see **impact of inclusion of a dark photon**.

$$P_{qq}(x) = \frac{1+x^2}{9(1-x)_+} + \frac{1}{6}\delta(1-x) \qquad P_{Bq}(x) = \frac{1}{9}\left(\frac{1+x^2}{9(1-x)_+} + \frac{1}{6}\delta(1-x)\right) = \frac{1}{9}\left(\frac{1+x^2}{9(1-x)_+} + \frac{1}{6}\delta(1-x)\right)$$

DGLAP in the presence of dark photons

- the literature for this model), we see that we must also include:
 - NNLO QCD effects, $\alpha_s^3 \sim 0.001$
 - we use the LUXQED PDF from the NNPDF3.1 QED baseline)
 - QED-QCD mixing, $\alpha \alpha_S \sim 0.001$
- These contributions are well-known and already implemented in the APFEL public evolution code, which we modify in our work.

• All four splitting functions are multiplied by $\alpha_B = g_B^2/4\pi$ in the DGLAP equations. Assuming a dark coupling of order $\alpha_R \sim 0.001$ (reasonable in

- LO QED effects, $\alpha \sim 0.01$ (this implies that we must use a **photon PDF**;

- We can now study the impact of including a dark photon in DGLAP evolution on PDFs and parton luminosities, and hence on theoretical predictions for collider processes.
- E.g. including a dark photon modifies the singlet PDF, as shown on the right. Light blue bands correspond to projected PDF uncertainty at the HL-LHC (see 1810.03639).
- The region that is most modified suggests that some values of the dark mass and coupling might lead to PDF sets which perform too poorly on Drell-Yan sets, relative to the baseline.

couplings!

• The most important luminosity channel for DY is $q\bar{q}$; here, there is **tension** with projected HL-LHC uncertainties for some values of the mass and

- Results we have seen so far suggest that we can definitely hope to will shrink as predicted.
- We obtain **projected bounds** as follows:
 - 1. Construct a large ensemble of 'dark' PDF sets, one for each point for a grid in dark parameter space (we use 32 points, so 32 PDF sets).
 - 2. Construct predictions for a specific DY observable for each PDF set and compute the χ^2 -statistic.
 - bounds.

constrain the dark photon's mass and coupling using DY data, provided we work with HL-LHC projections and assume that PDF uncertainties

3. Compare to the reference fit's χ^2 -statistic, and hence obtain projected

- The specific HL-LHC observable we choose to use is neutral current Drell-Yan Tails, 2104.02723.
- scenarios:
 - Optimistic: Total integrated luminosity 6 ab^{-1} (both CMS and ATLAS) available), with five-fold reduction in systematics.
 - Conservative: Total integrated luminosity 3 ab^{-1} (only CMS or ATLAS is available), with two-fold reduction in systematics.

Drell-Yan at a centre-of-mass-energy $\sqrt{s} = 14$ TeV, in 12 bins of lepton invariant pair-mass. The projected data we use is a small modification of that produced for Parton Distributions in the SMEFT from High-Energy

• Two sets of projected data are used, corresponding to the following two

Comparison of (projected) bounds

 m_B

4. - Conclusions

Conclusions

important in future analyses (especially as we enter Run III).

• Members of the **PBSP team** have already produced two works in the 2104.02723 showing the need for simultaneous extraction; (ii) a fitting. We aim to continue with a more ambitious top-sector fit.

Simultaneous determination of PDFs and BSM parameters, will be very

direction of simultaneous PDF-SMEFT fits: (i) a **phenomenological study** methodology (SimuNET, 2201.07240) capable of fast simultaneous

• There are interesting directions outside the SMEFT, e.g. studying light, weakly-coupled particles inside the proton, like our dark photon study.

Thanks for listening! Quick questions before discussion?

