The double-pole nature of the $\Lambda(1405)$ from Lattice QCD

Daniel Mohler

Technische Universität Darmstadt

Seattle, 24. March, 2023

The double-pole nature of the $\Lambda(1405)$

E DQA

People

• Diverse subgroup of people doing spectroscopy using CLS ensembles:

- DESY Zeuthen \rightarrow Bochum: John Bulava
- BNL: Andrew Hanlon
- Intel: Ben Hörz
- North Carolina: Amy Nicholson, Joseph Moscoso
- TU Darmstadt/GSI: Daniel Mohler, Barbara Cid Mora
- CMU: Colin Morningstar, Sarah Skinner
- MIT: Fernando Romero-López
- LBNL: André Walker-Loud
- All results are still preliminary, but many analysis details are settled

Lattice QCD and quark-model puzzles

- Various kind of exotic/unconventional states (examples)
 - Mesons: light scalar resonances, $D_{s0}^*(2317)$, $D_{s1}(2460)$ and b-quark cousins, XYZ states, hybrid mesons
 - Baryons: Roper resonance; $\Lambda(1405)$, Pentaquark states
 - Glueballs, ...
- Hadron-hadron scattering: Different challenges
 - Need for all-to-all propagators (at least timeslice-to-timeslice) for meson-meson and meson-baryon scattering
 - Noise problem particularly severe for calculations involving baryons
 - Cost of contractions/correlation functions much larger for systems with baryons
- $\Lambda(1405)$: Difficult but likely feasible with current methods

Baryon bound-states and resonances: Ancient history

- Spectra resulted from 3-quark interpolators only mostly no indications of multiparticle levels
- Sensible for
 - refining methods
 - getting an idea about the number of states
 - spectra at very heavy quark masses
 - some narrow states (i.e. high spin)
- We need to make clear what they were used for!

Baryon bound-states and resonances: Ancient history

- Spectra resulted from 3-quark interpolators only mostly no indications of multiparticle levels
- Sensible for
 - refining methods
 - getting an idea about the number of states
 - spectra at very heavy quark masses
 - some narrow states (i.e. high spin)
- We need to make clear what they were used for!

CLS gauge field ensembles

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

plot style by Jakob Simeth, RQCD

Important lattice systematics from

- Taking the *continuum limit*: $a(g,m) \rightarrow 0$
- Taking the *infinite volume limit*: $L \to \infty$
- Calculation at (or extrapolation to) physical quark masses

CLS gauge field ensembles

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

Important lattice systematics from

- Taking the *continuum limit*: $a(g,m) \rightarrow 0$
- Want to exploit (power law) finite volume effects (keeping exponential effects small)
- Calculation at (or extrapolation to) physical quark masses

Daniel Mohler (TU Darmstadt)

plot style by Jakob Simeth, RQCD

Progress from an old idea: Lüscher's finite-volume method

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

Basic observation: Finite-volume, multi-particle energies are shifted with regard to the free energy levels due to the interaction

$$E = E(p_1) + E(p_2) + \Delta_E$$

- Energy shifts encode scattering amplitude(s)
- Original method: Elastic scattering in the rest-frame in multiple spatial volumes L^3
- Coupled 2-hadron channels well understood
- 2 ↔ 1 and 2 ↔ 2 transitions well understood (example ππ → πγ*)
- Significant progress for 3-particle scattering Please refer to the other talks!

> < = > = = < < <

An old puzzle: $\Lambda(1405), J^P = \frac{1}{2}^-$

• PDG (4 star resonance)

$$M_{\Lambda} = 1405^{+1.3}_{-1.0} MeV \qquad \qquad \Gamma_{\Lambda} = 50.5 \pm 2.0$$

(Some) quark models struggled to accommodate this state.

- However
 - Unitarized χ PT + Model input yields 2 poles with $\Re \approx 1400$ MeV \rightarrow Now new PDG state
 - CLAS observes different line shapes for $\Sigma^{-}\pi^{+}$, $\Sigma^{+}\pi^{-}$ and $\Sigma^{0}\pi^{0}$ Interference between I = 0 and I = 1 amplitudes is the likely reason
 - Even the $\Sigma^0 \pi^0$ is badly described by a single Breit-Wigner
 - CLAS data consistent with popular 2-pole picture
 - No satisfactory lattice results (although claims exist)
- Relevant channels: $\Sigma \pi$, $N\bar{K}$ (and maybe $\Lambda \eta$); simulation in isospin limit
- Goal: Explore coupled channel problem and extract scattering amplitudes from the low-lying energy spectrum

くロット (四) (モット (ヨット (日))

$\Lambda(1405)$ – Experimental developments

• Angular analysis of the process $\gamma + p \rightarrow K^+ + \Sigma + \pi$ by CLAS strongly favors the assignment of quantum numbers $J^P = \frac{1}{2}^-$

Moriya et al., PRC 87 035206 (2013)

• K^-p scattering length determined by the SIDDHARTHA collaboration

Bazzi et al., PLB 704 (2011) 113

• A glimpse of the future: Preliminary analysis at GlueX

Wickramaarachchi et al., arXiv:2209.06230

Excited state energies and the variational method

Matrix of correlators projected to fixed momentum (will assume 0)

$$C(t)_{ij} = \sum_{n} e^{-tE_n} \left\langle 0|O_i|n\right\rangle \left\langle n|O_j^{\dagger}|0\right\rangle$$

Solve the generalized eigenvalue problem:

$$C(t)\vec{\psi}^{(k)} = \lambda^{(k)}(t)C(t_0)\vec{\psi}^{(k)}$$
$$\lambda^{(k)}(t) \propto e^{-tE_k} \left(1 + \mathcal{O}\left(e^{-t\Delta E_k}\right)\right)$$

At large time separation: only a single state in each eigenvalue. Eigenvectors can serve as a fingerprint.

```
Michael Nucl. Phys. B259, 58 (1985)
Lüscher and Wolff Nucl. Phys. B339, 222 (1990)
Blossier et al. JHEP 04, 094 (2009)
```

くロット (過) (ヨマ (ヨ) (日) (日)

The "Distillation" method

Peardon et al. PRD 80, 054506 (2009) Morningstar et al. PRD 83, 114505 (2011)

• Idea: Construct separable quark smearing operator using low modes of the 3D lattice Laplacian Spectral decomposition for an $N \times N$ matrix:

$$f(A) = \sum_{k=1}^{N} f(\lambda^{(k)}) v^{(k)} v^{(k)\dagger}.$$

With $f(\nabla^2) = \Theta(\sigma_s^2 + \nabla^2)$ (Laplacian-Heaviside (LapH) smearing):

$$q_s \equiv \sum_{k=1}^N \Theta(\sigma_s^2 + \lambda^{(k)}) v^{(k)} v^{(k)\dagger} q = \sum_{k=1}^{N_v} v^{(k)} v^{(k)\dagger} q.$$

- Advantages: momentum projection at source; large interpolator freedom, small storage
- Disadvantages: expensive; unfavorable volume scaling
- Stochastic approach (partly) eliminates bad volume scaling

Daniel Mohler (TU Darmstadt)

The double-pole nature of the $\Lambda(1405)$

Ensemble and group theory

Current data on CLS Ensemble D200

<i>a</i> [fm]	$T \times L^3$	m_{π} [MeV]	$m_K [{ m MeV}]$	$m_{\pi}L$	N_{cnfg}
0.0633(4)(6)	128×64^3	280	460	4.3	2000

Lattice irreducible representations for a given J^P

see Morningstar et al. arXiv:1303.6816

J^P	[000]	[00n]	[0nn]	[nnn]	
$\frac{1}{2}^{+}$	G_{1g}	G_1	G	G	$\Lambda, \Lambda(1600)$
$\frac{1}{2}^{-}$	G_{1u}	G_1	G	G	$\Lambda(1405), \Lambda(1670)$
$\frac{3}{2}^{+}$	H_g	G_1, G_2	2G	F_1, F_2, G	$\Lambda(1690)$
$\frac{3}{2}^{-}$	H_u	G_1, G_2	2G	F_1, F_2, G	$\Lambda(1520), \Lambda(1690)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

Specific setup on D200

- Combined basis of simple 3-quark structures and 2 hadron interpolators with the lowest few momentum combinations in each irrep
- Distillation setup:
 - $n_{ev} = 448$ eigenmodes of the Lattice Laplacian
 - Quark lines connecting source and sink: Noise dilution scheme with (*TF*, *SF*, *LI*16) and 6 noises
 - Lines starting end ending on the same time slice: Noise dilution scheme with (*TI8*, *SF*, *LI*16) and 2 noises
 - Four source time slices
 - Lattice Laplacian constructed on stout smeared links with $(\rho,n)=(0.1,36)$

Extracting the spectrum (examples)

- We used various methods/cross checks
- Geometric series fit: $C(t) = \frac{Ae^{-E_0 t}}{1 Be^{-\Delta E t}}$
- Two students with two slightly different analysis methods

Daniel Mohler (TU Darmstadt)

EL OQA

Finite volume spectra (preliminary)

- Full symbols will be used in our $\Lambda(1405)$ analysis
- Amplitude analysis uses ratios to extract energy differences with regard to non-interacting levels
- Blue squares indicate results from our preferred amplitude fit. 2 . 212 00

Daniel Mohler (TU Darmstadt)

The double-pole nature of the $\Lambda(1405)$

A family of simple parameterizations

Blatt-Biederharn parameterization

$$\tilde{K}^{-1} = \begin{pmatrix} \cos \epsilon & \sin \epsilon \\ -\sin \epsilon & \cos \epsilon \end{pmatrix} \begin{pmatrix} \frac{k}{M_{\pi}} \cot \delta_1 & 0 \\ 0 & \frac{k}{M_{\pi}} \cot \delta_2 \end{pmatrix} \begin{pmatrix} \cos \epsilon & -\sin \epsilon \\ \sin \epsilon & \cos \epsilon \end{pmatrix} +$$

Each quantity can be parameterized by an effective range expansion (ERE):

$$\frac{k}{M_{\pi}} \cot \delta_1 = \sqrt{s} (A_1 + B_1 \Delta_{NK} + ...), \quad \Delta_{NK} = \frac{s - (M_N + M_K)^2}{(M_N + M_K)^2}$$
$$\frac{k}{M_{\pi}} \cot \delta_2 = \sqrt{s} (A_2 + B_2 \Delta_{\pi\Sigma} + ...), \quad \Delta_{\pi\Sigma} = \frac{s - (M_{\pi} + M_{\Sigma})^2}{(M_{\pi} + M_{\Sigma})^2}$$

$$\epsilon = \epsilon_0 + \epsilon_1 \Delta_{\pi \Sigma}$$

 $\Delta_{\pi\Sigma}$ measures the distance from the $\pi\Sigma$ threshold

くちゃ ふゆ そうや くじゃ ふしゃ くちゃ

Our preferred amplitude and resulting poles

- Sub-threshold levels pose strong constraints on the amplitude
- Limited data and therefore limited possibility to vary parameterizations (suggestions welcome)

Daniel Mohler (TU Darmstadt)

The double-pole nature of the $\Lambda(1405)$

Seattle, 24. March, 2023 16/21

Some Variations of the used amplitude

- Results from varying the terms in the parameterization/ from omitting the highest data point
- Some simpler options, including single Flatté checked (not displayed)
- We also explored simple constraints for higher partial waves (negligible effect in range used)

Daniel Mohler (TU Darmstadt)

The double-pole nature of the $\Lambda(1405)$

Seattle, 24. March, 2023 17/21

Same thing different: Phases and inelasticity

• Alternative way of showing our results: 2 phases and inelasticity η

Pole positions and expectations from the literature

	Pole II (sheet)	Pole I (sheet)
three parameters fit with \sqrt{s}	E = 6.747(21) (+, -)	E = 7.083(22) - 0.116(35)i(-, +)
w/o highest energy level	E = 6.747(19) (+, -)	E = 7.071(19) - 0.086(35)i(-, +)
three params + B_1	E = 6.745(22) (+, -)	E = 7.088(25) - 0.117(37)i(-, +)
three params + B_2	E = 6.747(17) (+, -)	E = 7.057(23) - 0.084(38)i(-, +)
three parameters fit w/o \sqrt{s}	E = 6.749(21) (+, -)	E = 7.089(24) - 0.125(38)i(-, +)

- Poles labeled as (\pm, \pm) depending on the signs of $(k_{KN}, k_{\pi\Sigma})$
- Rough conversion to physical units yields

 Pole I
 1460(20) - i24(7)MeV

 Pole II
 1390(20)MeV

• Examples from the PDG review

			_
approach	pole 1 [MeV]	pole 2 $[MeV]$	_
Refs. [14, 15], NI	$LO \qquad 1424^{+7}_{-23} - i \ 26^{+3}_{-14}$	$1381^{+18}_{-6} - i \ 81^{+19}_{-8}$	_
Ref. [17], Fit II	$1421^{+3}_{-2} - i \ 19^{+8}_{-5}$	$1388^{+9}_{-9} - i \ 114^{+24}_{-25}$	
Ref. [18], solutio	n #2 $1434^{+2}_{-2} - i \ 10^{+2}_{-1}$	$1330^{+4}_{-5} - i \ 56^{+17}_{-11}$	
Ref. [18], solutio	n #4 $1429_{-7}^{+\bar{8}} - i \ 12_{-3}^{+\bar{2}}$	$1325^{+15}_{-15} - i \ 90^{+12}_{-18}$	19
Daniel Mohler (TU Darmstadt)	The double-pole nature of the $\Lambda(1405)$	Seattle, 24. March, 2023	19/21

Expected quark-mass dependence

Molina, Döring, PRD 94 056010 (2016)

• Qualitative agreement with regard to expected behavior

Daniel Mohler (TU Darmstadt)

The double-pole nature of the $\Lambda(1405)$

Seattle, 24. March, 2023 20/21

Conclusions and Outlook

- First coupled-channel LQCD calculation in the baryon sector
- Suitable K-matrix parameterizations suggest two poles at our m_π
- Masses remarkably similar to physical situation in Unitarized χ PT Consequence of Tr(M) = const.?
- We would like to explore the quark-mass dependence.
- We would like to calculate more comprehensive spectra.
- More lattice data from additional volumes?
- Other channels with strangeness?
- Inconvenient things: discretization effects, chiral extrapolation, better parameterizations
- To be provocative: Any Lattice QCD calculation at a single lattice spacing is just a lattice model!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

Backup slides

Daniel Mohler (TU Darmstadt)

The double-pole nature of the $\Lambda(1405)$

< A