State of the Art and Future Prospects of Modeling Neutrinos in NS Mergers

Jonah M. Miller, in collaboration with: K. Lund, G. McLaughlin, M. Mumpower,

And Many More...

Los Alamos National Laboratory

Astrophysical Neutrinos and the Origin of the Elements

- This Document cleared for unlimited release with LA-UR-23-28342
- The submitted materials have been authored by an employee or employees of Triad National Security, LLC (Triad) under contract with the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). Accordingly, the U.S. Government retains an irrevocable, nonexclusive, royalty- free license to publish, translate, reproduce, use, or dispose of the published form of the work and to authorize others to do the same for U.S. Government purposes."

Neutron Star Mergers: A 2+ Component Model

Co-design summer school, 2016

Courtesy of J. Lippuner

Courtesy of J. Lippuner

Opacity

M2H/UC Santa Cruz and Carnegie Observatories/Ryan Foley

The Makings of a Kilonova

- Duration/relevant time scales
- Methods

Collapsars: An r-Process Parallel

- Collapse of rapidly rotating massive star
- Accretion disk that forms:
 - potential engine of long gamma ray bursts
 - potential site of r-process
- See:
 - Siegel, Barnes, Metzger, Nature 569, 241 (2019)
 - **JMM** et al., ApJ **902**, 66 (2020)
 - Much recent work. Just et al., Gottlieb et al., Barnes + Metzger, ...
 - Coleman Dean's talk this afternoon

Neutrino Transport Matters!

JMM, B. R. Ryan, J. C. Dolence. ApJS 241 30 (2019)

Neutrino Transport Matters!

JMM, B. R. Ryan, J. C. Dolence. ApJS 241 30 (2019)

The Relevant Conservation Laws

• Neutrino Transport Equation

$$\frac{D}{d\lambda} \left(\frac{h^3 I_{\epsilon,f}}{\epsilon^3} \right) = \left(\frac{h^2 \eta_{\epsilon,f}}{\epsilon^2} \right) - \left(\frac{\epsilon \chi_{\epsilon,f}}{h} \right) \left(\frac{h^3 I_{\epsilon,f}}{\epsilon^3} \right)$$

• Momentum and Internal Energy Conservation

 $\partial_t \left[\sqrt{-g} \left(T^t_{\ \nu} + \rho_0 u^t \delta^t_{\nu} \right) \right] + \partial_i \left[\sqrt{-g} \left(T^i_{\ \nu} + \rho_0 u^i \delta^t_{\nu} \right) \right] = \sqrt{-g} \left(T^\kappa_{\ \lambda} \Gamma^\lambda_{\nu\kappa} + G_{\nu} \right)$

• Electron Number

$$\partial_t \left(\sqrt{-g} \rho_0 Y_e u^t \right) + \partial_i \left(\sqrt{-g} \rho_0 Y_e u^i \right) = \sqrt{-g} G_{ye}$$

• Spacetime (actually much more complicated)

$$\begin{aligned} &(\partial_t - \mathcal{L}_\beta)\gamma_{ij} &= -2\alpha K_{ij} \\ &(\partial_t - \mathcal{L}_\beta)K_{ij} &= R_{ij} + \dots + 4\pi \left[(S - \rho)\gamma_{ij} - 2S_{ij} \right] \end{aligned}$$

• And baryon number and magnetic flux conservation...

Why is Transport Hard?

• Fluid Equations:

- Variables, e.g., ρ , depend on 3 spatial dimensions and time: $\sim \frac{1}{\Delta t} \frac{1}{\Delta x} \frac{1}{\Delta y} \frac{1}{\Delta z} \sim \left(\frac{1}{\Delta x}\right)^4$
- Boltzmann/Transport equation:
 - Variables, e.g., f, depend on 3 spatial dimensions, 3 momentum dimensions, and time.
 - Where am I and where am I going?

$$\sim \left(\frac{1}{\Delta t}\right) \left(\frac{1}{\Delta x}\right)^3 \left(\frac{1}{\delta p_x}\right)^3 \\ \sim \left(\frac{1}{\Delta x}\right)^7$$

Туре	Processes	Corrections/Approximations
Abs./Emis. on Neutrons	$ \begin{array}{c} \nu_e + n \leftrightarrow e^- + p \\ \nu_\mu + n \leftrightarrow \mu^- + p \end{array} $	Blocking/Stimulated Abs. Weak Magnetism Recoil
Abs./Emis. on Protons	$ \bar{\nu}_e + p \leftrightarrow e^+ + n \bar{\nu}_\mu + p \leftrightarrow \mu^+ + n $	Blocking/Stimulated Abs. Weak Magnetism Recoil
Abs./Emis. on Ions	$\nu_e A \leftrightarrow A' e^-$	Blocking/Stimulated Abs. Recoil
Electron Capture on Ions	$e^- + A \leftrightarrow A' + \nu_e$	Blocking/Stimulated Abs. Recoil
$e^+ - e^-$ Annihilation	$e^+e^- \leftrightarrow \nu_i \bar{\nu}_i$	single-v Blocking Recoil
$n_i \text{-} n_i$ Brehmsstrahlung	$n_i^1 + n_i^2 \rightarrow n_i^3 + n_i^4 + \nu_i \bar{\nu}_i$	single-v Blocking Recoil
Proton scattering	$\nu_i + p \leftrightarrow \nu_i + p$	elastic/inelastic
Neutron scattering	$\nu_i + n \leftrightarrow \nu_i + n$	elastic/inealstic
Heavy ion scattering	$\nu_i + A \leftrightarrow \nu_i + A$	ion-ion correlation electron polarization form-factor

• And this is ignoring Neutrino oscillations!

Burrows, Reddy, Thompson, NPA 177, 356, (2006)

Transport Limits

- Characterized by optical depth τ s.t. $I_{\nu} = I_{\nu}(s_0)e^{-\tau(s_0,s)}$
 - Effective "scattering optical depth" also matters

How Much Does Transport Matter for disks?

- Interactions scaling/nucleon:
 - T^6 typical in disks. Can be as sharp as T^8 !

Technique: Leakage and Cooling

- Apply source terms but don't model radiation field
- Leakage corrects source terms by trying to account for re-absorption
- Requires calculation of optical depth
- Relatively simple to implement, potentially faster

Technique: Diffusion + Moments

- Evolve *conserved* quantities of radiation field
 - Zeroth moment only: Conserve energy. Radiation field obeys diffusion equation
 - Zeroth + First moments; Conserve momentum too. Radiation field obeys "fluid" equations
- Information *lost* by dropping higher-order terms. System must be "closed."

Foucart, MNRAS 475 3 (2018)

Technique: Particles + Monte Carlo

•
$$f = \sum_{i=1}^{N} w_i \delta^3(x - x_i) \delta^3(p - p_i) \delta(t - t_i)$$

- Error scales as $1/\sqrt{N}$, no matter number of dimensions!
- Evolve particle paths deterministically $\frac{d^2x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = 0$
- Sample emission/absorption/scattering probabilistically $p(\text{scatt}) \sim \sigma(k^{\mu}, p_{e}^{\nu})$
- Typicall struggles with large optical depths. But much recent progress. See, e.g., Foucart et al., PRD 107, 103055 (2023)

JMM, B. R. Ryan, J. C. Dolence. ApJS 241 30 (2019)

Exquisite Access to the Radiation Field

JMM et al. PRD 100 023008 (2019)

Cool Science to Do

• Model a suite of exotic post-BHNS merger disks

Curtis, **JMM**, et al., ApJS 945 L13 (2023)

A Zoo of Possible Disks!

S. Curtis, **JMM**, et al., ApJL 945

V. Urrutia-Hurtado, In Prep

Beyond State of the Art: Short Characteristics

- Discretize full botlzmann on a grid. Typically in spherical coordinates (in momentum space).
- "Classic" discretization is finite differences S_N
- Finite volumes discretization (right)
- Finite elements discretization (see Maitraya Bhattacharyya this afternoon)

White et al., arXiv:2302.04283

Nagakura, arXiv:2306.10108

- Separation of scales severely limiting: cm length scale for oscillations.
- Concerted effort in the community to treat phenomena anyway, both microscopically and through increasingly sophisticated approximations at macro scale.
- See lots of great talks tomorrow.

Beyond the State of the Art: Hybrid Methods

- Moment method closed with full transport solution or analytic solution, depending on region of interest
- Combines advantages of both approximate and exact methods, at cost of particles
- See, e.g., Foucart, MNRAS **475** 3 (2018)

Ryan and Dolence, ApJ 891 118, (2020).

Growth of Computing Power

Performance Development

Top500 List

Parthenon: Unlocking GPU Cycles

Top500 List

Grete, **JMM**, et al., ArXiv:2202.12309

Tools built on top of Parthenon

• Athena-PK, turbulence

• Riot, triple point

INT 28 / 32

Next Generation of Full-Transport Disks in Phoebus

- Graduate student at MSU: Brandon Barker
- Current capabilities:
 - Curvilinear coordinates
 - nuclear EOS
 - Monte Carlo transport
 - GPUs
- Soon to be ready:
 - Adaptive mesh refinement

Supernovae in Phoebus

- Graduate Student: Mariam Gogilashvili
- Connecting pen-and-paper model (FEC) to simulations: Gogilashvili and Murphy, MNRAS **515** 2, (2022)

- Parthenon: https://github.com/parthenon-hpc-lab/parthenon
- Phoebus: https://github.com/lanl/phoebus
- ν bhlight: https://github.com/lanl/nubhlight
- singularity-eos: https://github.com/lanl/singularity-eos
- singularity-opac: https://github.com/lanl/singularity-opac
- Spiner: https://github.com/lanl/spiner

- Neutron star mergers definitively a source of r-process elements
- Mapping merger parameters to observables has many uncertainties and degeneracies. Neutrinos are key!
- Transport is hard: real transport has been computationally intractable until very recently.
- We've hit a phase transition. Better computers and better numerical methods have converged and model fidelity is improving very rapidly.
- The future is (neutrino) bright!

The August 2017 Disk

J. Miller (LANL)

Electron Fraction of the Outflow

JMM et al. PRD **100** 023008 (2019)

J. Miller (LANL)

JMM et al. PRD 100 023008 (2019)

Spectra

Accretion Rates

Accretion Rates

Transport Techniques

• Full Boltzmann Solvers

- Mesh-based methods, also called Short Characteristics
 - Discrete ordinates, also called S_N
 - Finite Elements
 - Finite Volumes
 - Finite Differences
 - Sparse grids
- Mesh-free, also called Long Characteristics
 - Ray tracing
 - Monte Carlo

- Approximate methods
 - Cooling functions
 - Leakage
 - Flux-limited Diffusion
 - Analytic moment closures
- Hybrid methods
 - Moment methods with flexible closures
 - Diffusion + leakage, etc.