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Understanding the pion is important


Plans to measure elastic form factor at JLAB and EIC





Quark distribution to be measured at COMPASS LOI


Lattice QCD calculations
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q(x) = xα(1 − x)β value of β(x, Q2)??
1

The EIC can allow a pion form factor measurement up to Q2 = 35 GeV2

EIC yellow report

Relate quark distribution to 


elastic form factor 



Drell-Yan (PRL 24,181) & West(PRL 24,1206) 1970

• Relate  of proton


• Proof applies to pion as well 


•

relate q(x) to F1(t) large x, t = − Δ2

lim
x→1

q(x) = (1 − x)nH lim
Δ2→∞

F1(Δ2) ∝
1

(Δ2)(nH+1)/2

 = number of partons in hadronnH

From model wave functions
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Quark counting rules (N & ) 
Farrar &Jackson PRL 35,1416 (’75), 43,246(’79)

π

lim
x→1

q(x, Q2) ∝ (1 − x)2nH−3+2|Δs|+Δγ

 minimum # of constituents of hadron,


  =diff between z components of spin quarks and hadrons,


 accounts for evolution from starting scale 

nH

Δs

Δγ ζ2
H

lim
Δ2→∞

FH(Δ2) ∝
1

(Δ2)nH−1

From counting propagators in Feynman diagrams
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Summary:  Drell-Yan West  & quark counting

Two sets of predictions for pion


Drell-Yan West q(x) ∼ (1 − x)2, F(Δ2) ∼ 1/Δ3

Quark counting q(x) ∼ (1 − x)2, F(Δ2) ∼ 1/Δ2

Our goal:  study the connection between 


 given current knowledge in 2023q(x) and F(Δ2)

4



Light-front analysis
• Hadronic wave functions depend on factorization scale 


• Several refs argue that there is a scale  at which hadron is 
made of dressed valence quarks that carry all of the hadron 
momentum. For pion  u and dbar each carry 1/2 of pion 
momentum


• From Phys. Rev. D 101, 054014 (2020), arXiv:1905.05208 [nucl-
th]. “The result of every calculation of pionic properties that 
respects Poincare covariance, and the Ward- Green-Takahashi 
identities along with the consequences of dynamical symmetry 
breaking inherent in the quark gap-equation has these features.”


•

ζ

ζH

q(x) =
1
π ∫

d2k⊥

x(1 − x)
|Φ(x, k⊥) |2 + ⋯

At ζπ, Φ(x, k⊥) → Φ(z ≡
k2

⊥ + M2

x(1 − x)
), M = constituent quark mass

From Terent’ev and Strikman-Frankfurt5
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Light-front analysis-II
q(x) =

1
π ∫

d2k⊥

x(1 − x)
|Φ(x, k⊥) |2 + ⋯

At ζπ Φ(x, k⊥) → Φ(z ≡
k2

⊥ + M2

x(1 − x)
), M = constituent quark mass

From Terent’ev and Strikman & Frankfurt
Change variables to  , neglect z +⋯

q(x) = ∫
∞

M2
x(1 − x)

dz |Φ(z) |2 ,

q(Large x) is related to high-momentum component of wave function

6

q(x) must be evolved to compare with DIS data

/10

Poincare invariance



Light-front analysis-III
F(Δ2) =

1
π ∫

1

0
dx∫

d2k⊥

x(1 − x)
Φ(

k2
⊥ + M2

x(1 − x)
)Φ(

(k⊥ + (1 − x)Δ)2 + M2

x(1 − x)
)

Start with power law (PL) |ΦPL(z) |2 →
K

(z)n+1
, qPL ∼ (1 − x)nQUARK COUNTING, DRELL-YAN WEST, AND THE PION … PHYSICAL REVIEW C 110, L042201 (2024)

pion wave function. Namely,

lim
x→1

∣∣∣∣!
(

M2

1 − x

)∣∣∣∣
2

= c(1 − x)2 f (1 − x), (9)

where c is a finite number and f (1 − x) is finite as x → 1.
Thus the high x behavior of q(x) tells us about specific fea-
tures of the pion wave function. Can one say more?

Form factors are matrix elements of a conserved current
and so are independent of the factorization scale [25], so that
one may evaluate the form factor using the constraint at ζH .
Then the form factor is given by the expression

F (#2) = 1
π

∫ 1

0
dx

∫
d2k⊥

x(1 − x)
!

(
k2
⊥ + M2

x(1 − x)

)

×!

(
(k⊥ + (1 − x)!)2 + M2

x(1 − x)

)
, (10)

where the plus component of the spacelike momentum trans-
fer to the proton is taken as zero, so that the momentum
transfer (!) is in a transverse (⊥) direction.

To see if there is a connection between F (#2) and q(x)
we use model wave functions to compute both quantities.
The connection between wave functions and q(x) is given by
Eq. (6).

It is convenient to use a flexible power law (PL) form:

|!PL(z)|2 → K
(z)n+1

, qPL ∼ (1 − x)n (11)

with n ! 1. This form does not build in the asymptotic be-
havior predicted by using perturbative QCD. However, the
applicability of perturbative QCD to exclusive processes at
nonasymptotic, experimentally realizable values of the mo-
mentum transfer has been questioned [15,16,26–28] for a
variety of reasons including lack of knowledge of the nonper-
turbative part of the wave function, convergence issues, higher
twist effects, and those of Sudakov suppression. Radyushkin
[16] wrote, “for accessible energies and momentum transfers
the soft (nonperturbative) contributions dominate over those
due to the hard quark rescattering subprocesses.” Many of
the problems in computing form factors are related to the
importance of the high-x region that Feynman argued [29]
was dominant. We also note that our current procedure is very
similar to that used in the seminal works of Drell-Yan and
West. The main difference is that tools are available to do
exact integration with results in closed form. Despite progress
in understanding nonperturbative aspects using lattice QCD
(see, e.g., [30]) and Dyson-Schwinger techniques (see, e.g.,
[7,31], we believe that it is worthwhile to examine models of
nonperturbative wave functions.

With n = 1, F (#2) ∼ 1/#3 with Drell-Yan West and
F ∼ 1/#2 with quark counting. These predictions can be
checked by doing the exact model calculation. We thus expect
the asymptotic form factor to behave as ∼1/#2, Eq. (4), if
quark counting is correct. We now check to see if the quark
counting relations are respected if Eq. (11) describes the wave
function.

Note that in the nonrelativistic limit that the integral ap-
pearing in Eq. (10) is dominated by values of x near 1/2, and
if #2 ≫ (M2) then FNR(#2) ∼ !(1/2#2) ∼ (1/#2)(n+1)/2 in

TABLE I. Asymptotic behavior of Fm. The two leading terms are
kept, and n = 2m − 1.

n lim#2→∞ Fm(#2)

1 6
( ln2 (#2 )−4 ln(#2 )+8

2#2 − 2(ln(#2 )+2)
#4

)

2 180
√

π

(
(#2−6) ln

(√
#2+

√
#2
4 +1

)

(#2 )5/2 + 16−5
√

#2+4
2#4

)

3 840
( 3(ln2 (#2 )−3 ln(#2 )+7)

#6 + 3 ln(#2 )−14
6#4

)

accord with Eq. (2). This result is similar to the nonrelativistic
arguments presented by Brodsky and Lepage [32]. However,
the region of x near unity is very important because the effects
of a large value of # are mitigated.

To understand this, let us compute the form factor using
Eq. (11) in Eq. (10) with m ≡ (n + 1)/2. Combining denom-
inators using the Feynman parametrization and integrating
over the transverse momentum variable leads to the result

Fm(#2) = CKm

∫ 1

0
dx

∫ 1

0
du

[x(1 − x)]2m−1[u(1 − u)]m−1

[1 + #2(1 − x)2u(1 − u)]2m−1
,

(12)

with #2 expressed in units of M2, and CKm = %(4m)%(m+1)
%(m)2%(2m) . A

brief look at the integrand of Eq. (12) shows why it is difficult
to determine the asymptotic behavior of F (#2). The value
of #2 can be taken to be large, but the multiplying factor,
(1 − x)2u(1 − u), can be very small. One must do the integral
first and then take #2 to be large. Closed form expressions for
Fm can be obtained for values of m between 1 and 3, and the
asymptotic forms of Fm for n = 1, 2, 3 are shown in Table I.

The results in Table I and Eq. (11) show that the Drell-Yan
West relations (1) and (2) are violated by the logarithms,
which are not related to those of perturbative QCD that
involve the strong coupling constant αS . If one uses the quark
counting relations Eqs. (3) and (4) with #γ = 0 from using
the hadronic scale, and n = 2ns, nH = ns + 1 = n/2 + 1,
then the powers of #2 do not match. In particular, if
n = 2 quark counting rules would say F ∼ 1/#2; instead we
observe that F ∼ ln #/#3. Moreover, the appearance of loga-
rithms in Table I shows that the approach to asymptotic limit is
extremely slow. Power law wave functions are not consistent
with quark counting rules, but nevertheless are relevant. This
is because terms like #2(1 − x)2u(1 − u) appear in the inte-
grals resulting from the evaluation of Feynman diagrams, and
the values of x and u approach unity when evaluating integrals.

Realistic form factors. The next step is to see if the power
law form has any phenomenological relevance. To this end,
we note that q(x) at ζ 2

H is described as a parameter-free
prediction of the pion valence-quark distribution function in
Ref. [7,31]:

q(x) = 375.32x2(1 − x)2[1 − 2.5088
√

x(1 − x)

+ 2.0250x(1 − x)]2,

≡
8∑

N=4

CN [x(1 − x)]N/2. (13)

L042201-3

DY & W
1

Δ2

1
Δ3

1
Δ4

Quark counting
1

Δ3

1
Δ4

1
Δ5

Why?

Fn(Δ2) ∝ ∫
1

0
dx∫

1

0
du

(x(1 − x))n(u(1 − u))(n−1)/2

(1 + Δ2(1 − x)2u(1 − u))n
End points!!!

No logs
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Realistic models-
Model1 Cui et al EPJA58,10 (’22), EPJC 80,,1064 (’20)

“parameter-free prediction valence-quark distribution”

q(x) =
8

∑
N=4

CN(x(1 − x))N/2, Φ(z) =
1

π

5

∑
n=3

An

zn/2
. z =

k2
⊥ + M2

x(1 − x)
An determined from CN

Model 2  Ding et al PRD101,054014 (’20) Both Craig Roberts group
Similar form, different coefficients

8

q(x) ∼ (1 − x)3.27

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

q[x]

Model 1

Model 2

Can get Φ(z) from q(x)



Results

•

Existing data 

4

The results in Table I and Eq. (11) show that the Drell-
Yan-West relations Eq. (1) and Eq. (2) are violated by
the logarithms, which are not related to those of per-
turbative QCD that involve the strong coupling constant
↵S . If one uses the quark counting relations Eq. (3),
Eq. (4) with �� = 0 from using the hadronic scale, and
n = 2ns, nH = ns +1 = n/2+ 1 the powers of �2 do not
match. In particular, if n = 2 quark counting rules would
say F ⇠ 1/�2 instead we observe that F ⇠ log�/�3.
Moreover, the appearance of logarithms in Table 1 shows
that the approach to asymptotic limit is extremely slow.
Power law wave functions are not consistent with quark
counting rules, but nevertheless are relevant. This is be-
cause terms like�2(1�x)2u(1�u) appear in the integrals
resulting from the evaluation of Feynman diagrams and
the values of x and u approach unity when evaluating
integrals.

REALISTIC FORM FACTORS

The next step is to see if the power law form has any
phenomenological relevance. To this end, we note that
q(x) at ⇣2

H
is described as a parameter-free prediction of

the pion valence-quark distribution function in Ref. [7,
31]:

q(x) = 375.32x2(1� x)2

[1� 2.5088
p
x(1� x) + 2.0250x(1� x)]2,

⌘
P8

N=4 CN (x(1� x))N/2
. (13)

This distribution is defined as Model 1. The correspond-
ing pion wave function can then be written in a more
general form than Eq. (11) as

�(z) =
1p
⇡

5X

n=3

An

zn/2
. (14)

Then, using Eq. (5)

q(x) = =
5X

n=3

8X

N=4

2

N
AnAN+2�n(x(1� x))N/2

. (15)

Then An is determined by equating Eq. (15) with
Eq. (13). The result is

q(x) =
5X

n=3

8X

N=4

eC(n,N + 2� n)(x(1� x))N/2
, (16)

with eC(3, 3) = C4,
eC(3, 4) = C5,

eC(3, 5) =
3C6 � (7/4)2C2

7/C8,
eC(4, 4) = (7/4)2C2

7/C8,
eC(4, 5) =

7/4C7,
eC(5, 5) = 4C8, and eC(n,m) = eC(m,n).

The form factor is obtained from Eq. (10) and is given
by

F (�2) =
P5

m,n=3
eC(n,m)Inm(�2) (17)

Inm ⌘ �n+m,N+2

B(n/2,m/2)

⇥
R 1
0 dx(x(1� x))N/2�1

R 1
0 du

u
n/2�1(1�u)m/2�1

(1��2(1�x)2u(1�u))(18)

with B the beta function. The results are shown in Fig. 1.
The units of �2 are converted to GeV2 by introducing a
mass scale. We useM = 134 MeV to reproduce measured
data.

FIG. 1. F (�2) Solid - Model 1, F (�2) of Eq. (10). Dashed
- Model 2, F̃ (�2) of Eq. (22). The data for �2  0.253GeV2

are from CERN Ref. [33]. The data for higher values are from
JLab [34].

10 20 30 40
Δ2 (GeV2)

0.2

0.4

0.6

Δ2F(GeV2)

FIG. 2. �2F (�2) in units of GeV2. Solid - Model 1, F (�2)
of Eq. (10). Dashed - Model 2, F̃ (�2) of Eq. (22). The pro-
jected error bars for the data points between �2 = 0.375 and
6 Ge V2 are from [35] and G. M. Huber (private communica-
tion). The projected error bars for the data points between
�2 = 8.50 and 15 GeV2. are from [36] and show what might
be possible at a 22 GeV facility at JLab. The projected error
bars for higher values of �2 are from G. M. Huber (private
communication) and [37]. In each case the values of F (�2)
are arbitrary.

An alternative model, Model 2 is presented in Ref. [20]:

q̃(x) = 213.32(x(1� x))2

⇥ (1� 2.9342
p
x(1� x) + 2.2911x(1� x)). (19)

This quark distribution can be rewritten in a form con-
sistent with �2(M2

/x(1� x)):

q̃(x) =
C

(⇤2 + M2

x(1�x) )
↵
. (20)

The constants are given by M
2

⇤2 = 0.0550309 and ↵ =
3.26654703. and C is for normalization. Note that the
end-point behavior of the two expressions Eq. (19) and

EIC projection

Garth Huber

Two models agree with existing data for low , disagree strongly at 
higher   to be measured in future experiments

Δ2

Δ2

lim
x→1

q(x) = (1 − x)n → F(Δ2) ∼
log(Δ2)

(Δ2)(n+1)/2

0.5 1.0 1.5 2.0 2.5
Δ2 (GeV2)

0.2

0.4

0.6

0.8

1.0

F(Δ2)
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Summary

• - increases interest in both


• New version of DY W - logs in numerator


• Pion electromagnetic form factor is not yet determined 

q(x) and F(Δ2) are connected
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