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My models were used not used to calculate the mass of the nucleon!
We computed various form factors in many papers
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Outline


MIT and Cloudy Bag Models - 


’t Hooft model 

M = ⟨H⟩

M = ⟨P−⟩

Use of models- examples to display the possibilities & ideas to interpret lattice calculations



MIT bag model
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BR3, ω = 2.04 massless quarks

R0
M = E(R0), quark energy = 3bag energy

R0 = 1.5 fm
Problems  Infinite potential breaks chiral symmetry breaking


Axial vector current discontinuity at bag surface

Solution -pions carry axial vector current outside the bag 
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where Z„' is the probability (less than one) that
the physical nucleon is a bare three-quark state.
To lowest order (f,„„'), the factor Z„may be ob-
tained by using (2.9) in Eq. (3.17) of Ref. 8. (The
quantity ZN is Z of that equation. ) We find

Z„(E) =
/
I 1

FIG. 1. Nucleon self-energy. In all the figures the
pion, nucleon, and 6 are represented by dashed, solid,
and wiggly lines, respectively.
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For future reference we also display Z„(E):

(3.4b)

The second and third terms of (3.4) arise from
Nr and 4r components of the wave function of
the physical nucleon, respectively. 'The quantity
Z„can also be given in terms of the nucleon self-
energy Z„(E) (Fig. 1),

96 f, ' [" q dqu'(q) (3.4c)

The suppression due to the wave-function-renor-
malization constant Z„ is mitigated by the inclusion
of the vertex correction V„(e). This quantity is
displayed, to order f,»', in Fig. 2. A straight-
forward set of manipulations gives the result

VN( ) 1 f~Ãht q dqQ (q) 32 f~» 'q dqg (q)
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The expressions (3.3)—(3.5) specify the re-
normalized AN coupling constant. Prior to ob-
taining the renormalized mN4 coupling constant
it is worthwhile to discuss the parameter c used
in obtaining the crossed Born graph of Fig. 3(a).
By considering the energy denominators of Fig.
3(b), one may show that for the calculation of
Fig. 2(a), V(e) must be evaluated at the point

(3.6)
where E is the energy of the incident and outgoing
pion.
The 4 is not an eigenstate of the Hamiltonian.

However, in quark models the 4 and N are mem-
bers of an SU(6) multiplet. In order to maintain
the SU(6) symmetry and treat the 6 and N in the
same manner, we must apply the renormalization
techniques of Ref. 1 to the 4 as well as the nucleon.
Thus we write in analogy with (3.3)

s V~(s)

The 6 wave-function-renormalization constant'
Z~ is given by

& Re Z~(E)
b (3.8)
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where Z~(E) is the pion contribution to the & self-
energy, Fig. 3. The evaluation of Z~(E) gives

+ g g + /( I/
(b)

FIG. 2. The ~N N vertex function. e is the energy
of the incident pion.

FIG. 3. Pion-nucleon crossed Born term. (a) Lowest
order. (b) With a vertex correction. The energy of the
virtual pion is co.
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Σ =
 comes from pion-field and quark-pion interactions <0Σ ∼

−λ
R3

E(R) =
3ω
R

+
4π
3

BR3 + Σ, ω = 2.04 massless quarks

R
R0

R0 = 1.2 fm
3ω
R0

= 5.1,
4π
3

BR3
0 = 1.01, Σ = − 0.601 (fm−1)

Now quark kinetic energy is 90 %, not 75 % of nucleon mass

E(fm−1)
Pions outside squeeze  bag
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Summary of bag models

• Mass =H comes from quark kinetic energy, Bag energy, 
pion energy


• Difficult to compute gravitational form factors because the 
bag is a sphere fixed in space, it is not a momentum 
eigenstate
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where 0F̃1 is the regularized confluent hypergeometric
function. We need the integral
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Thus H(b) / 1

� for small � and H(b) /
p
� for large �

so that a minimum as a function of � must appear.
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• QCD in (1+1) space-time, Large ,


• , no gluon-gluon interactions


• Pro- Model is solvable, Con- (1+1), Large 

Nc

gauge : A+ = 0

Nc
xμpμ = x+p− + x−p+ = x−p+ + x+p− light − front

6
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light cone coordinates. For upper indices: 

x_+ = 1 (X 1 + xO), (3.a) 

and for lower indices 

1 
P + - = ~ ( P l + P 0  ) '  

(3 .b) 
1 

A _ + = ~ ( A 1  + A 0 ) '  etc.. 

where 
= p 1 = _ p 0  

Pi ' P0 • 

Our summation convention will then be as follows, 

xl~p~ = x,Upl a = 
= x p .  (4) 

x+p + + x _ p  = x + p -  + x - p  + - - x + p _ + x  p + .  

The model becomes particularly simple if we impose the light-cone gauge condi- 
tion: 

A = A + = 0 .  (5 )  

In that gauge we have 

G+_ = - a  A + ,  (6) 

and 

£ = -½T r  (O A+) 2 - qa(3"3 + rn(a ) +g7  A+) qa . (7) 

There is no ghost in this gauge. If we take x + as our time direction, then we notice 
that the field A+ is not an independent dynamical variable because it has no time 
derivative in the Lagrangian. But it does provide for a (non-local) Coulomb force 
between the Fermions. 

The Feynman rules are given in fig. 1 (using the notation of  ref. [4]). 
The algebra for the 3' matrices is 

2 
3' =3'+ = 0  , 

3'+3'_ + 3'_3'+ = 2 . 

(8.a) 

(8 .b) 

Since the only vertex in the model is proportional to 7_ and 7 2 - -- 0, only that part 
of the quark propagator that is proportional to 3'+ will contribute. As a consequence 

∂−∂−A+ = gq̄γ−q
Poisson’s eq. in 1 dim-> linear potential 
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H = P+P−, P− dynamical P+ kinematic

NT @ UW-2??

The ’t Hooft model near the chiral limit

Adam Freese and Gerald A. Miller
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There has been a recent revival of interest in theo-
ries involving two-dimensional(one-space-one time) treat-
ments of QCD [? ? ? ? ]. This stems from the
need to include the e↵ects of non-vanishing quark masses
and also to enlarge the number of space-time variables
of light-front holographic QCD to four. In the original
treatments (see the review [? ]) the chiral limit is used
and the longitudinal light-front momentum fraction, x, is
frozen [? ], so that e↵ectively the only degrees of freedom
are light-front time and transverse position. The first ef-
fort aimed at including the e↵ects of mass was contained
in Ref. [? ].

For equal mass quarks the ’t Hooft equation is given
by

µ
2
�(x) =

��1

x(1� x)
�(x)�P

Z
1

0

dy
�(y)

(x� y)2
, (1)

with � ⌘ ⇡m2

g2 and the principal value defined [? ] as

P
f(x,y)
(x�y)2 ⌘ 1

2
[ f(x,y)
(x�y+i✏)2 + f(x,y)

(x�y�i✏)2 ] in the limit ✏ ! 0.

The hadronic mass-squared is given in units of g2

⇡ . The
’t Hooft model [? ], obtained in the large-N limit of
two-dimensional QCD, is used in [? ? ? ]. This is
the natural choice for a confining potential in one spatial
dimension. The three terms in Eq. (??) represent the
kinetic energy of the quarks, the quarks self-energy terms
and the potential energy. The current-quark mass is m

and the coupling constant is g.
light-cone gauge, such a potential appears automat-

ically as an instantaneous Coulomb-like interaction,
VtH(z̃) =

1

2
g
2|z̃|e�✏|z̃|, between quark currents [? ], with

z̃ as the longitudinal position operator [? ] that is canon-
ically conjugate to the longitudinal momentum variable
x. Taking the Fourier transform of VtH(z̃) using the
transformation hx|z̃i = e

�ixz̃
/
p
2⇡ and including e↵ects

of the quark self-energy via the term �(x) term of the
principle-value integral leads to the expression appearing
in Eq. (??). Note that in the ’t Hooft model, the masses
m1,2 are explicitly current quark masses. The ’t Hooft
model was extensively studied during the 1970’s; see the
review [? ]. One may rewrite the Hamiltonian equation
as

µ
2
�(x) =

�

x(1� x)
�(x)� P

Z
1

0

dy
�(x)� �(y)

(x� y)2
, (2)

’t Hooft postulated

�(x) = x
�(1� x)�

p
�(4� + 2)

�(2� + 1)
(3)

to be valid at the end-points and cancel the end-point sin-
gularities appearing in the kinetic energy term. The mul-
tiplicative factor insures that

R
�
2(x)dx = 1. The inte-

gral in Eq. (??) can be approximated as x��1[⇡� cot⇡��
1] for very small values of x. Then expanding Eq. (??)
for very small values of x yields

⇡m
2

g2
� 1 + ⇡� cot⇡� = 0 (4)

If m = 0 this equation is solved with �� > 0. For small
values of m � will be small. Expansion around 0 yields

� =
q

3

⇡
m
g .

The integral of Eq. (??) over x leads to the result

µ
2 =

R
1

0

�(x)
x(1�x)dxR
1

0
�(x)dx

(5)

and using Eq. (??) and the stated value of � gives for the
pion (lowest mass eigenstate)

m
2

⇡ = 2

r
⇡

3
mg + 4m2

, (6)

reminiscent of the GMOR relation. This result is ob-
tained using the guess Eq. (??) for all values of x. So the
goals here include verifying the above result as a func-
tion of the quark mass. We also want to see if Eq. (??)
represents the correct wave function.
The procedure is to use Eq. (??) as a variational trial

wave function and find the value of µ
2 by minimizing

with respect to �. Then

µ
2(�) = H(�)

= (� � 1)
R
1

0

�2
(x)

x(1�x)dx+
R
1

0
dx

R
1

0
dy�(x) P

(x�y)2�(y)(7)

Using Eq. (??) we find that
Z

1

0

�
2(x)

x(1� x)
dx = 4 +

1

�
(8)

The double integral appearing in Eq. (??) can be eval-
uated in closed form by going to the coordinate-space
representation.

V (�) ⌘
R
1

0
dx

R
1

0
dy�(x) P

(x�y)2�(y)

= 1

2

R1
�1 �

⇤(z̃)|z|�̃(z̃)dz̃, (9)

with

�̃(z̃) =

Z
1

0

�(y)eiyz̃ dy. (10)

Evaluation finds

γ = π
m2

g2

Quark kinetic energy quark self-energy Potential energy

P
(y − x)2

≡
1
2

[
1

(y − x + iϵ)2
+

1
(y − x − iϵ)2

] =
−1
2 ∫

∞

−∞
dz̃ | z̃ |ei(y−x)z̃e−|ϵ|z̃

’t Hooft Prin. Value is linear potential in coordinate space   is coordinate canonically 
conjugate to x: Miller & Brodsky PRC 102,(2020) 022201 , 1912.08911

z̃

Schroedinger equation can be re-expressed: 

μ2ϕ(x) =
γ

x(1 − x)
ϕ(x) + P∫

1

0
dy

ϕ(x) − ϕ(y)
(x − y)2

Chiral limit:    only analytic solutionγ = 0, ϕ(x) = 1, μ2 = 0

q q̄

Schroedinger eq is mass

decomposition
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There has been a recent revival of interest in theo-
ries involving two-dimensional(one-space-one time) treat-
ments of QCD [? ? ? ? ]. This stems from the
need to include the e↵ects of non-vanishing quark masses
and also to enlarge the number of space-time variables
of light-front holographic QCD to four. In the original
treatments (see the review [? ]) the chiral limit is used
and the longitudinal light-front momentum fraction, x, is
frozen [? ], so that e↵ectively the only degrees of freedom
are light-front time and transverse position. The first ef-
fort aimed at including the e↵ects of mass was contained
in Ref. [? ].

For equal mass quarks the ’t Hooft equation is given
by

µ
2
�(x) =

��1

x(1� x)
�(x)�P

Z
1

0

dy
�(y)

(x� y)2
, (1)

with � ⌘ ⇡m2

g2 and the principal value defined [? ] as

P
f(x,y)
(x�y)2 ⌘ 1

2
[ f(x,y)
(x�y+i✏)2 + f(x,y)

(x�y�i✏)2 ] in the limit ✏ ! 0.

The hadronic mass-squared is given in units of g2

⇡ . The
’t Hooft model [? ], obtained in the large-N limit of
two-dimensional QCD, is used in [? ? ? ]. This is
the natural choice for a confining potential in one spatial
dimension. The three terms in Eq. (??) represent the
kinetic energy of the quarks, the quarks self-energy terms
and the potential energy. The current-quark mass is m

and the coupling constant is g.
light-cone gauge, such a potential appears automat-

ically as an instantaneous Coulomb-like interaction,
VtH(z̃) =

1

2
g
2|z̃|e�✏|z̃|, between quark currents [? ], with

z̃ as the longitudinal position operator [? ] that is canon-
ically conjugate to the longitudinal momentum variable
x. Taking the Fourier transform of VtH(z̃) using the
transformation hx|z̃i = e

�ixz̃
/
p
2⇡ and including e↵ects

of the quark self-energy via the term �(x) term of the
principle-value integral leads to the expression appearing
in Eq. (??). Note that in the ’t Hooft model, the masses
m1,2 are explicitly current quark masses. The ’t Hooft
model was extensively studied during the 1970’s; see the
review [? ]. One may rewrite the Hamiltonian equation
as

µ
2
�(x) =

�

x(1� x)
�(x)� P

Z
1

0

dy
�(x)� �(y)

(x� y)2
, (2)

’t Hooft postulated

�(x) = x
�(1� x)�

p
�(4� + 2)

�(2� + 1)
(3)

to be valid at the end-points and cancel the end-point sin-
gularities appearing in the kinetic energy term. The mul-
tiplicative factor insures that

R
�
2(x)dx = 1. The inte-

gral in Eq. (??) can be approximated as x��1[⇡� cot⇡��
1] for very small values of x. Then expanding Eq. (??)
for very small values of x yields

⇡m
2

g2
� 1 + ⇡� cot⇡� = 0 (4)

If m = 0 this equation is solved with �� > 0. For small
values of m � will be small. Expansion around 0 yields

� =
q

3

⇡
m
g .

The integral of Eq. (??) over x leads to the result

µ
2 =

R
1

0

�(x)
x(1�x)dxR
1

0
�(x)dx

(5)

and using Eq. (??) and the stated value of � gives for the
pion (lowest mass eigenstate)

m
2

⇡ = 2

r
⇡

3
mg + 4m2

, (6)

reminiscent of the GMOR relation. This result is ob-
tained using the guess Eq. (??) for all values of x. So the
goals here include verifying the above result as a func-
tion of the quark mass. We also want to see if Eq. (??)
represents the correct wave function.
The procedure is to use Eq. (??) as a variational trial

wave function and find the value of µ
2 by minimizing

with respect to �. Then

µ
2(�) = H(�)

= (� � 1)
R
1

0

�2
(x)

x(1�x)dx+
R
1

0
dx

R
1

0
dy�(x) P

(x�y)2�(y)(7)

Using Eq. (??) we find that
Z

1

0

�
2(x)

x(1� x)
dx = 4 +

1

�
(8)

The double integral appearing in Eq. (??) can be eval-
uated in closed form by going to the coordinate-space
representation.

V (�) ⌘
R
1

0
dx

R
1

0
dy�(x) P

(x�y)2�(y)

= 1

2

R1
�1 �

⇤(z̃)|z|�̃(z̃)dz̃, (9)

with

�̃(z̃) =

Z
1

0

�(y)eiyz̃ dy. (10)

Evaluation finds

, momentum fractionx =
k+

P+

z̃ = x−P+z̃ = x−P+
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μ2ϕ(x) =
γ

x(1 − x)
ϕ(x)+P∫

1

0
dy

ϕ(x) − ϕ(y)
(x − y)2

t Hooft postulated

ϕ(x) = xβ(1 − x)β
Γ(4β + 2)

Γ(2β + 1)

handle end-point singularity,


constant: ∫ ϕ2(x)dx = 1

Integral (x → 0) ≈ xβ−1[πβ cot πβ − 1]

Match  xβ−1 terms → β =
3
π

m
g

Integrate  μ2 = m2
π = γ

∫ 1
0

ϕ(x)
x(1 − x) dx

∫ 1
0

ϕ(x)dx

m2
π = 2

π
3

mg + 4m2

GMOR relation in 1+1 spacetime

PRD 19, 3024 

Numerically difficult to solve


For small masses 

Uses full range of x

? How accurate



Potential energy in coordinate space
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There has been a recent revival of interest in theo-
ries involving two-dimensional(one-space-one time) treat-
ments of QCD [1–4]. This stems from the need to include
the e↵ects of non-vanishing quark masses and also to en-
large the number of space-time variables of light-front
holographic QCD to four. In the original treatments (see
the review [5]) the chiral limit is used and the longitu-
dinal light-front momentum fraction, x, is frozen [6], so
that e↵ectively the only degrees of freedom are light-front
time and transverse position. The first e↵ort aimed at in-
cluding the e↵ects of mass was contained in Ref. [7].

For equal mass quarks the ’t Hooft equation is given
by

µ
2
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x(1� x)
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Z
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, (1)

with � ⌘ ⇡m2

g2 and the principal value defined [14] as

P
f(x,y)
(x�y)2 ⌘ 1

2
[ f(x,y)
(x�y+i✏)2 + f(x,y)

(x�y�i✏)2 ] in the limit ✏ ! 0.

The hadronic mass-squared is given in units of g2

⇡ . The
’t Hooft model [14], obtained in the large-N limit of two-
dimensional QCD, is used in [3, 4, 7]. This is the natural
choice for a confining potential in one spatial dimension.
The three terms in Eq. (1) represent the kinetic energy
of the quarks, the quarks self-energy terms and the po-
tential energy. The current-quark mass is m and the
coupling constant is g.

light-cone gauge, such a potential appears automat-
ically as an instantaneous Coulomb-like interaction,
VtH(z̃) =

1

2
g
2|z̃|e�✏|z̃|, between quark currents [13], with

z̃ as the longitudinal position operator [8] that is canoni-
cally conjugate to the longitudinal momentum variable
x. Taking the Fourier transform of VtH(z̃) using the
transformation hx|z̃i = e

�ixz̃
/
p
2⇡ and including e↵ects

of the quark self-energy via the term �(x) term of the
principle-value integral leads to the expression appearing
in Eq. (??). Note that in the ’t Hooft model, the masses
m1,2 are explicitly current quark masses. The ’t Hooft
model was extensively studied during the 1970’s; see the
review [15]. One may rewrite the Hamiltonian equation
as

µ
2
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’t Hooft postulated
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(3)

to be valid at the end-points and cancel the end-point sin-
gularities appearing in the kinetic energy term. The mul-
tiplicative factor insures that

R
�
2(x)dx = 1. The inte-

gral in Eq. (2) can be approximated as x��1[⇡� cot⇡��1]

for very small values of x. Then expanding Eq. (2) for
very small values of x yields

⇡m
2

g2
� 1 + ⇡� cot⇡� = 0 (4)

If m = 0 this equation is solved with �� > 0. For small
values of m � will be small. Expansion around 0 yields

� =
q

3

⇡
m
g .

The integral of Eq. (2) over x leads to the result
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and using Eq. (3) and the stated value of � gives for the
pion (lowest mass eigenstate)

m
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r
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3
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, (6)

reminiscent of the GMOR relation. This result is ob-
tained using the guess Eq. (3) for all values of x. So the
goals here include verifying the above result as a func-
tion of the quark mass. We also want to see if Eq. (3)
represents the correct wave function.
The procedure is to use Eq. (3) as a variational trial

wave function and find the value of µ
2 by minimizing

with respect to �. Then
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Using Eq. (3) we find that
Z
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The double integral appearing in Eq. (7) can be eval-
uated in closed form by going to the coordinate-space
representation.
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with
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Evaluation finds
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FIG. 1: The ratio m/g versus
p

⇡
3
�. The solid (blue)

curve shows the value of � determined by minimizing
H(�) with respect to �. The dashed (red) curve shows

the line m/g =
p
⇡/3.
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The value of � is determined as a function of the quark
mass by minimizing H(�) with respect to �. The result,

shown in Fig. 1, is that the relation � =
q

3

⇡
m
g holds for

values of m
g as large as about 0.1.

One may decompose the various contributions to m
2

⇡
as a sum of the kinetic energy and potential energy. See
Fig. 2. The kinetic energy includes also the quark self-
energy and is negative. The positive potential potential
energy cancels the negative kinetic energy exactly in the
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chiral limit and overcomes it as the quark masses increase
their value.
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Mass   decomposition P−

Wave function ~ok for m /g < 0.1

Summary- complete cancellation of potential and self energy terms in the chiral limit

GMOR-type expression for small quark masses


Potential energy increases with increasing suppression of  at end-points

 decomposition is possible, relation to  to be done with Adam Freese

ϕ(x)
P− Tμν


