Nucleon mass in models (that I've worked on)

Gerald A Miller UW

Nucleon mass in models (that I've worked on)

Gerald A Miller UW

My models were used not used to calculate the mass of the nucleon! We computed various form factors in many papers New Talk

Nucleon mass in models (that I've worked on)

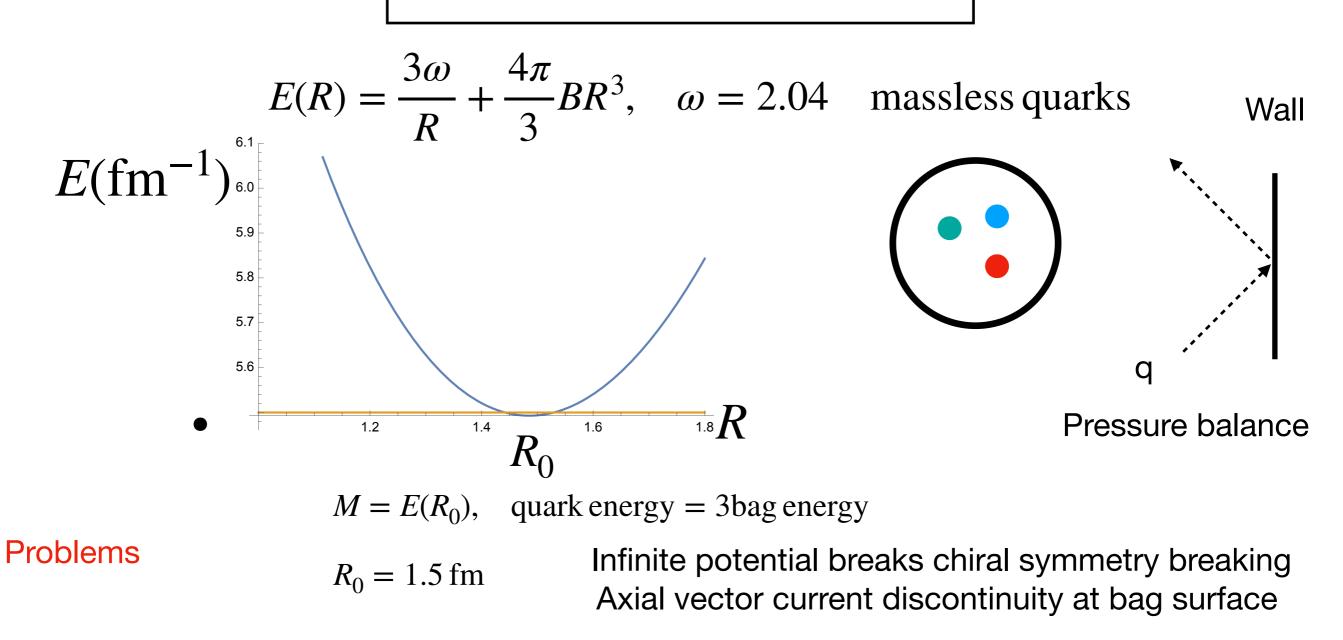
Outline

MIT and Cloudy Bag Models - $M = \langle H \rangle$

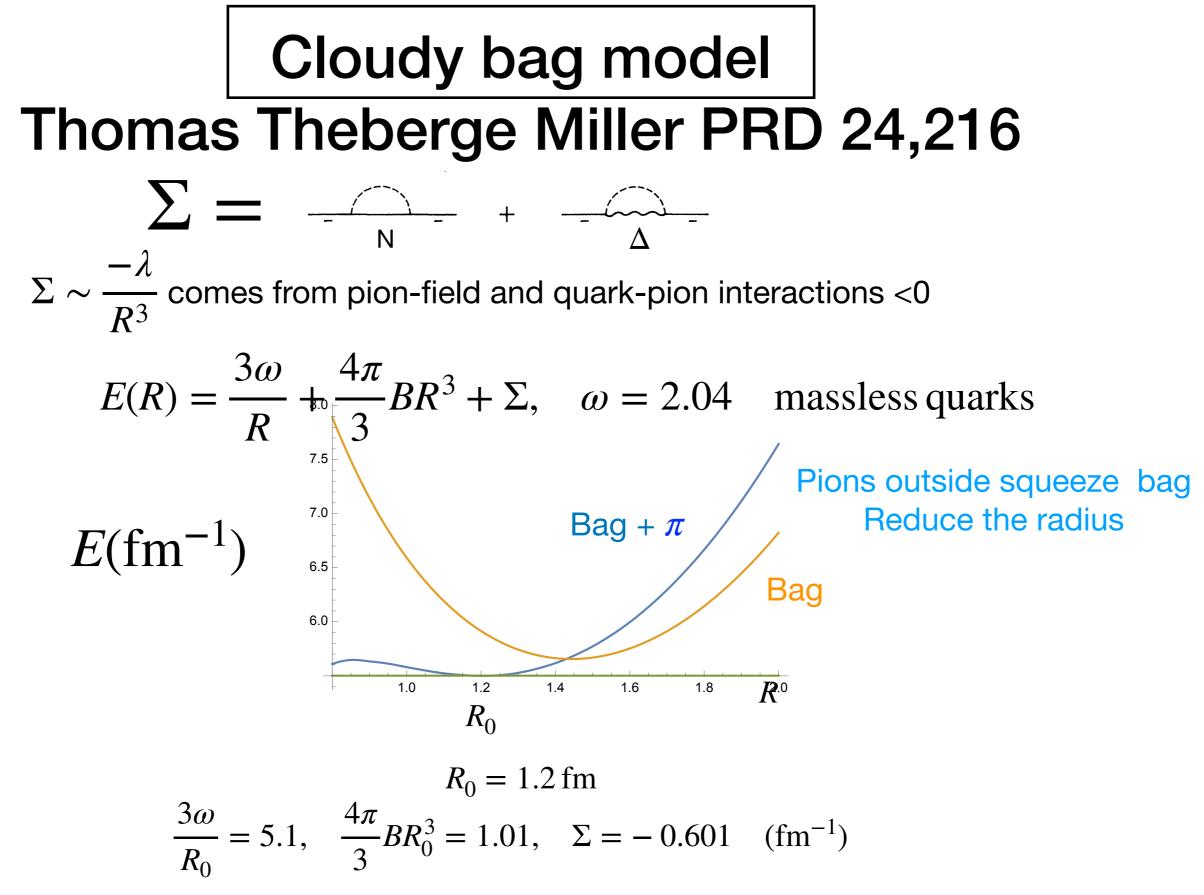
't Hooft model $M = \langle P^- \rangle$

Use of models- examples to display the possibilities & ideas to interpret lattice calculations

MIT bag model



Solution -pions carry axial vector current outside the bag



Now quark kinetic energy is 90 %, not 75 % of nucleon mass

Summary of bag models

- Mass =H comes from quark kinetic energy, Bag energy, pion energy
- Difficult to compute gravitational form factors because the bag is a sphere fixed in space, it is not a momentum eigenstate

<u>'t Hooft model</u>

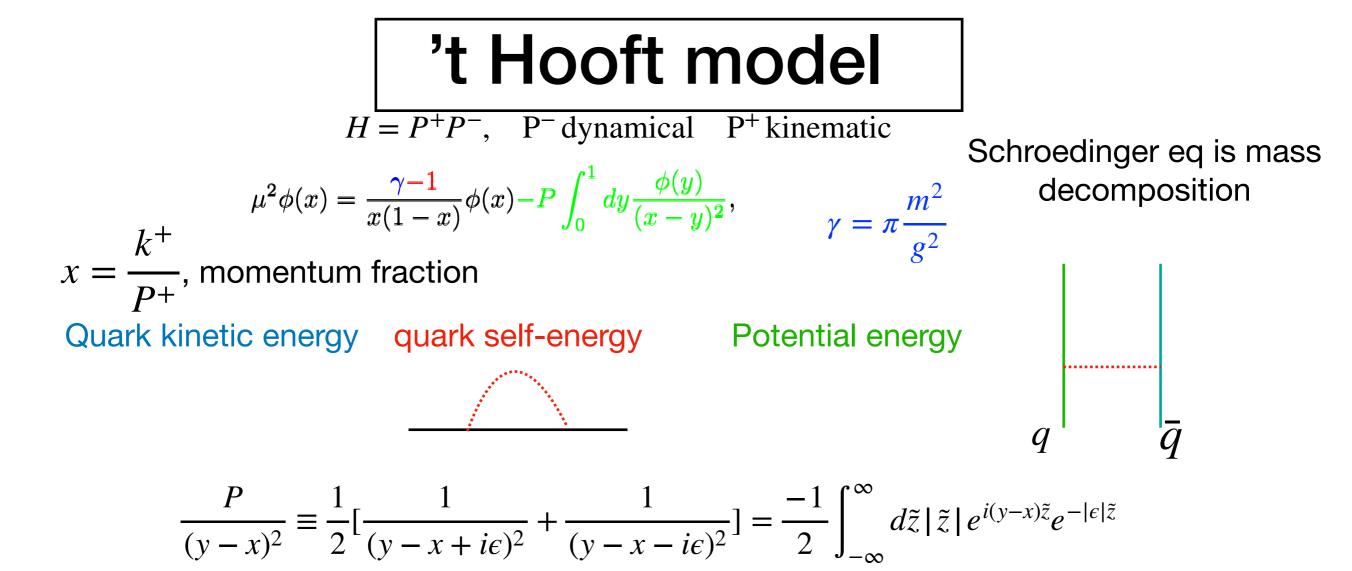
Gerard 't Hooft, "A Two-Dimensional Model for Mesons," Nucl. Phys. B **75**, 461–470 (1974).

- QCD in (1+1) space-time, Large N_c ,
- gauge : $A^+ = 0$, no gluon-gluon interactions
- Pro- Model is solvable, Con- (1+1), Large N_c $x_{..}p^{\mu} = x^+p^- + x^-p^+ = x_p_+ + x_p_-$ light – front $\pounds = -\frac{1}{2} \operatorname{Tr} (\partial_A_+)^2 - \bar{q}^a (\gamma \partial + m_{(a)} + g \gamma_A_+) q^a$. (7)

There is no ghost in this gauge. If we take x^+ as our time direction, then we notice that the field A_+ is not an independent dynamical variable because it has no time derivative in the Lagrangian. But it does provide for a (non-local) Coulomb force between the Fermions.

$$\partial_{-}\partial_{-}A_{+} = g\bar{q}\gamma_{-}q$$

Poisson's eq. in 1 dim-> linear potential



't Hooft Prin. Value is linear potential in coordinate space \tilde{z} is coordinate canonically conjugate to x: Miller & Brodsky PRC 102,(2020) 022201, 1912.08911 $\tilde{z} = x^- P^+$

Schroedinger equation can be re-expressed:

$$\mu^2 \phi(x) = \frac{\gamma}{x(1-x)} \phi(x) + P \int_0^1 dy \frac{\phi(x) - \phi(y)}{(x-y)^2}$$

Chiral limit: $\gamma = 0$, $\phi(x) = 1$, $\mu^2 = 0$ only analytic solution

$$\mu^{2}\phi(x) = \frac{\gamma}{x(1-x)}\phi(x) + P \int_{0}^{1} dy \frac{\phi(x) - \phi(y)}{(x-y)^{2}}$$
PRD 19, 3024
Numerically difficult to solve
For small masses
t Hoot postulated handle end-point singularity,
 $\phi(x) = x^{\beta}(1-x)^{\beta} \frac{\sqrt{\Gamma(4\beta+2)}}{\Gamma(2\beta+1)}$ constant: $\int \phi^{2}(x) dx = 1$
Integral $(x \to 0) \approx x^{\beta-1} [\pi\beta \cot \pi\beta - 1]$
Match $x^{\beta-1}$ terms $\rightarrow \beta = \sqrt{\frac{3}{\pi} \frac{m}{g}}$
Integrate $\mu^{2} = m_{\pi}^{2} = \gamma \frac{\int_{0}^{1} \frac{\phi(x)}{x(1-x)} dx}{\int_{0}^{1} \phi(x) dx}$
Uses full range of x
 $m_{\pi}^{2} = 2\sqrt{\frac{\pi}{3}}mg + 4m^{2}$

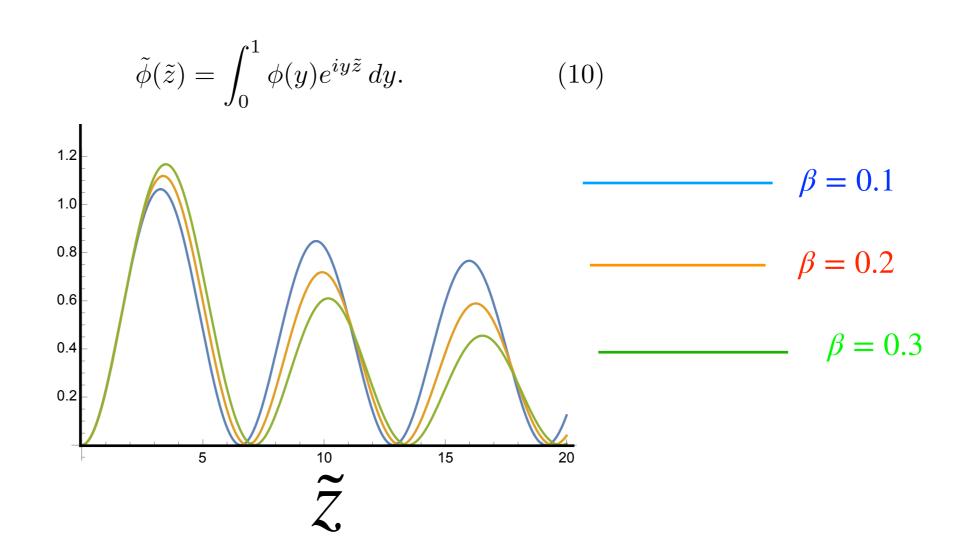
GMOR relation in 1+1 spacetime

Potential energy in coordinate space

$$V(\beta) \equiv \int_0^1 dx \int_0^1 dy \phi(x) \frac{P}{(x-y)^2} \phi(y)$$

= $\frac{1}{2} \int_{-\infty}^\infty \phi^*(\tilde{z}) |\tilde{z}| \tilde{\phi}(\tilde{z}) d\tilde{z},$ (9)

with



Get wave function is it

$$\phi(x) = x^{\beta}(1-x)^{\beta} \frac{\sqrt{\Gamma(4\beta+2)}}{\Gamma(2\beta+1)}$$

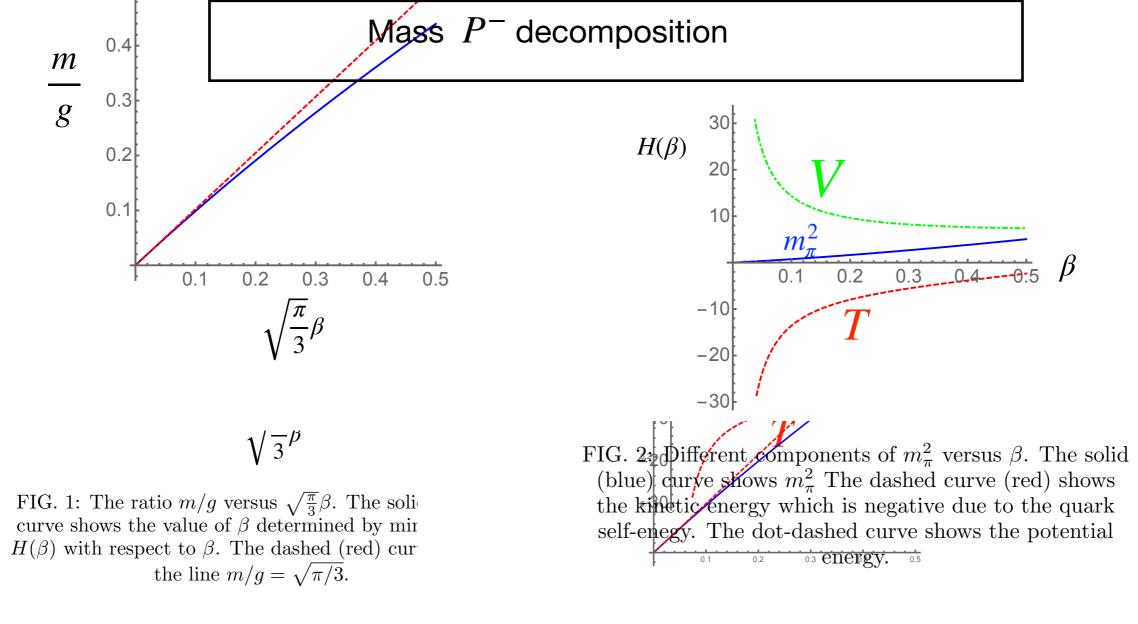
Logic -no nodes, good guess

Procedure - use above as variational wave function compute $H(\beta)$ and minimize

$$\mu^{2}\phi(x) = \frac{\gamma-1}{x(1-x)}\phi(x) - P \int_{0}^{1} dy \frac{\phi(y)}{(x-y)^{2}}, \qquad H(\beta) = \int_{0}^{1} dx\phi(x)H\phi(x) = (\gamma-1)(4+\frac{1}{\beta}) + V(\beta)$$

$$V(\beta) = \frac{1}{2} \int_{-\infty}^{\infty} \phi^{*}(\tilde{z}) |\tilde{z}| \tilde{\phi}(\tilde{z})d\tilde{z} = \pi^{2} 2^{-8\beta} \frac{\Gamma(2+4\beta)}{\beta\Gamma^{4}(1/2+\beta)} \rightarrow_{\beta\to\infty} 2\sqrt{2\pi}\sqrt{\beta}$$

$$H(\beta) \int_{1}^{18} \int_{1}^{16} \int_{1}^$$



Wave function ~ok for
$$m/g < 0.1$$

Summary- complete cancellation of potential and self energy terms in the chiral limit GMOR-type expression for small quark masses Potential energy increases with increasing suppression of $\phi(x)$ at end-points P^- decomposition is possible, relation to $T^{\mu\nu}$ to be done with Adam Freese