Two aspects of the three-body systems

Mikhail Mikhasenko

Excellence Cluster ORIGINS, Munich, Germany
Joint Physics Analysis Center

March $24^{\text {nd }}, 2023$
Accessing and Understanding the QCD Spectra, INT, Seattle
(1) Three-body decay
(2) Ladders and Resonances
(3) $T_{c c}^{+}$model in the LHCb analysis
(4) Analytic continuation
(5) Effective range expansion

Three-body decay

Three-body decay

Dalitz plot variables

- Subchannel resonances are bands.
- Angular distribution along the bands determined by angular momenta.

Partial-waves vs Isobar representation

Isobar representation

$$
\begin{aligned}
F\left(\sigma_{1}, \sigma_{2}\right) & =F^{(1)}\left(\sigma_{1}, \sigma_{2}\right)+F^{(2)}\left(\sigma_{1}, \sigma_{2}\right)+F^{(3)}\left(\sigma_{1}, \sigma_{2}\right) \\
& =\sum_{l}^{-0} \sqrt{2} \sqrt{2 I+1} P_{l}\left(z_{1}\right) a_{l}^{(1)}\left(\sigma_{1}\right)+\sum_{l}^{\text {few }} \sqrt{2 I+1} P_{l}\left(z_{2}\right) a_{l}^{(2)}\left(\sigma_{2}\right)+\sum_{l}^{\text {few }} \sqrt{2 I+1} P_{l}\left(z_{3}\right) a_{l}^{(3)}\left(\sigma_{3}\right) .
\end{aligned}
$$

Simple model: $\sim \sigma^{-0}=a_{l}^{(i)}\left(\sigma_{1}\right) \rightarrow c^{(i)} \mathrm{BW}\left(\sigma_{1}\right)=\sim \sigma^{\circ}$.

Partial-waves vs Isobar representation

Isobar representation

$$
\begin{aligned}
F\left(\sigma_{1}, \sigma_{2}\right) & =F^{(1)}\left(\sigma_{1}, \sigma_{2}\right)+F^{(2)}\left(\sigma_{1}, \sigma_{2}\right)+F^{(3)}\left(\sigma_{1}, \sigma_{2}\right) \\
& =\sum_{l}^{0_{2}^{2}}+\sqrt{3}+\sqrt{2 I+1} P_{l}\left(z_{1}\right) a_{l}^{(1)}\left(\sigma_{1}\right)+\sum_{l}^{\text {few }} \sqrt{2 I+1} P_{l}\left(z_{2}\right) a_{l}^{(2)}\left(\sigma_{2}\right)+\sum_{l}^{\text {few }} \sqrt{2 I+1} P_{l}\left(z_{3}\right) a_{l}^{(3)}\left(\sigma_{3}\right) .
\end{aligned}
$$

Simple model: $\sim \sigma^{-\infty}=a_{1}^{(i)}\left(\sigma_{1}\right) \rightarrow c^{(i)} \mathrm{BW}\left(\sigma_{1}\right)=\sim C^{a}$.

Partial-wave representation

$$
\mathcal{\sim}=F\left(\sigma_{1}, \sigma_{2}\right)=\sum_{l}^{\infty} \sqrt{2 l+1} P_{l}\left(z_{1}\right) f_{l}^{(1)}\left(\sigma_{1}\right)
$$

Why would someone do this? - theoretical constant to $f^{(1)}\left(\sigma_{1}\right)$ is straightforward.

Two-body unitarity and Khuri-Treiman model

Example of $f_{0}^{(1)}\left(\sigma_{1}\right)$ constraints:

$$
f_{0}^{(1)}\left(\sigma_{1}\right)=\underbrace{a_{0}^{(1)}\left(\sigma_{1}\right)}_{\text {same channel }}+\underbrace{\int_{-1}^{1} \frac{d z_{1}}{2}\left(\sum_{l} \sqrt{2 l+1} P_{l}\left(z_{2}\right) a_{l}^{(2)}\left(\sigma_{2}\right)+\sum_{l} \sqrt{2 l+1} P_{l}\left(z_{3}\right) a_{l}^{(3)}\left(\sigma_{3}\right)\right.}_{\text {cross-channel(c.-c.) projections }})
$$

Unitarity of $f_{0}^{(1)}\left(\sigma_{1}\right)$ - same RHC as $2 \rightarrow 2$ scattering amplitude, $\mathrm{BW}_{0}^{(1)}\left(\sigma_{1}\right)$ \Rightarrow consistency relation the direct term and the cross-channel projections $\Rightarrow \mathrm{a}_{1}^{(1)}\left(\sigma_{1}\right)$ obtains corrections from one seen in $2 \rightarrow 2$.

KT model: analytic continuation of two-body unitarity

(the loop is a dispersive integral)

Diagramatic representation

Isobar representation with $\mathrm{a}_{1}^{(i)}\left(\sigma_{i}\right)=\hat{\mathrm{a}}_{l}^{(i)}\left(\sigma_{i}\right) \mathrm{BW}_{l}^{(i)}\left(\sigma_{i}\right)$

The amplitude prefactor is not constant: $\mathrm{a}_{l}^{(i)}\left(\sigma_{i}\right)=c_{l}^{j} \mathrm{BW}_{l}^{(i)}\left(\sigma_{i}\right)+\ldots$

$$
\begin{aligned}
& \sim \sigma^{F=}=n e^{0}+ \\
& +\cdots \cos ^{0}+\cdots \cos ^{0}+
\end{aligned}
$$

$$
\begin{aligned}
& +\cdots \underbrace{\circ}
\end{aligned}
$$

Systematic investigation of the FSI

[D. Stamen, T. Isken, B. Kubis, M. Mikhasenko, M. Niehus, arXiv:2212.11767]

- $X \rightarrow 3 \pi$
- Identify $J^{P C}$ sectors with ρ-dominated interaction:
- $I^{G} J^{P C}=0^{-} 1^{--}(\omega, \phi): \rho^{-} \pi^{+}+\rho^{0} \pi^{0}+\rho^{+} \pi^{-}$
- $I^{G} J^{P C}=1^{-} 1^{-+}\left(\pi_{1}^{+}\right): \rho^{0} \pi^{+}-\pi^{+} \rho^{0}$
- $I^{G} J^{P C}=1^{-} 2^{++}\left(a_{2}^{+}\right): \rho^{0} \pi^{+}+\pi^{+} \rho^{0}$
- $I^{G} J^{P C}=0^{-} 0^{--} \quad\left(\omega_{0}\right): \rho^{-} \pi^{+}+\rho^{0} \pi^{0}+\rho^{+} \pi^{-}$
- One subtraction (normalization) \Rightarrow parameter-free distribution

Many efforts in the past:
$\eta \rightarrow 3 \pi$: [Sebastian et al. (2011)], [P.Guo et al., JPAC (2015)], [Albaladejo, Moussallam (2017)] $\eta^{\prime} \rightarrow \eta \pi \pi$: [lsken, Kubis (2017)] $\omega / \phi \rightarrow 3 \pi$: [Niecknig, Kubis (2012)], [Danilkin et al., JPAC (2012)] $a_{1} \rightarrow 3 \pi$: [Albaladejo et. al, JPAC (2020)]
$D \rightarrow K \pi \pi:$ [Niecknig, Kubis (2015)], [Moussallam (2023)]

Lineshape modifications

- Rescattering leads to skewness
- Phase shift get the largest impact

Strength of the effect

- Continuous ambiguities (zero modes)
\Rightarrow compare the Dalitz plots
- Comparison of two functions using KL divergence (likelihood difference on a finite sample)

$$
d_{\mathrm{KL}}=\int_{\text {Dalitz }} f^{\mathrm{KT}} \log \frac{f^{\mathrm{KT}}}{f_{\text {Omnes }}}
$$

- Rescattering model is truth
- Test of Naive (Omnes) model
\Rightarrow of $\Delta \mathcal{L}>0$ depending of sample size

Strength of the effect

- Continuous ambiguities (zero modes)
\Rightarrow compare the Dalitz plots
- Comparison of two functions using KL divergence
(likelihood difference on a finite sample)

$$
d_{K L}=\int_{\text {Dalitz }} f^{K T} \log \frac{f^{K T}}{f^{\mathrm{Kmnes}}}
$$

- Rescattering model is truth
- Test of Naive (Omnes) model
\Rightarrow of $\Delta \mathcal{L}>0$ depending of sample size

Strength of the effect

- Continuous ambiguities (zero modes)
\Rightarrow compare the Dalitz plots
- Comparison of two functions using KL divergence (likelihood difference on a finite sample)

$$
d_{K L}=\int_{\text {Dalitz }} f^{K T} \log \frac{f^{K T}}{f O \text { mnes }}
$$

- Rescattering model is truth
- Test of Naive (Omnes) model
\Rightarrow of $\Delta \mathcal{L}>0$ depending of sample size

Strength of the effect

- Continuous ambiguities (zero modes)
\Rightarrow compare the Dalitz plots
- Comparison of two functions using KL divergence (likelihood difference on a finite sample)

$$
d_{\mathrm{KL}}=\int_{\text {Dalitz }} f^{\mathrm{KT}} \log \frac{f^{\mathrm{KT}}}{f_{\text {Omnes }}}
$$

- Rescattering model is truth
- Test of Naive (Omnes) model
\Rightarrow of $\Delta \mathcal{L}>0$ depending of sample size

Searching for 3σ effect

Likelihood comparison of the KT and Omnes

- The structures (bumps and dips) are related to the geometry of resonances on the Dalitz plot
- high m_{X} : elasticity breaks

"Ladders and Resonances" Three-body formalism

Three-body resonances

- Many resonances dominantly decay to three-particle final state (e.g. $a_{1}(1260) \rightarrow 3 \pi, X(3872) \rightarrow D^{0} \bar{D}^{0} \pi^{0}, T_{c c}^{+}(3872) \rightarrow D^{0} D^{0} \pi^{+}$, $\left.\Lambda_{c / b}^{*} \rightarrow \Lambda_{c / b} \pi \pi\right)$
- Reaction amplitude need to include three-body effects (e.g. three-body threshold, dynamics of OPE, triangle singularity)
- Three-body unitarity [Fleming(1964)/Holman(1965)/Amado(1973)]:

$$
\mathcal{T}-\mathcal{T}^{\dagger}=\mathcal{T}^{\dagger} \tau \mathcal{T}+\mathcal{T}^{\dagger} \tau^{\dagger} \mathcal{D} \tau \mathcal{T}+\mathcal{D} \tau \mathcal{T}+\mathcal{T}^{\dagger} \tau^{\dagger} \mathcal{D}+\mathcal{D}
$$

- the \mathcal{D} is an imaginary part of the OPE
it is non-zero in the physical region: $\left(\sigma_{1}, \sigma_{2}\right) \in$ Dalitz
- the τ indicates the phase space the particle-pair mass
- the $\tau^{\dagger} \mathcal{D} \tau$ is an integral over the Dalitz
[Mai et al., EPJA 53, 177 (2017)]
[Jackura et al. (JPAC), EPJC 79, 56 (2019)]
[MM et al. (JPAC), JHEP 08 (2019) 080]

Ladders and resonances [MM eatal (JPAC), HEF Po8 (2019) 880]

$$
\mathcal{T}=\mathcal{T}_{\text {short range }}+\mathcal{T}_{\text {includes } \mathrm{OPE}}
$$

- $\mathcal{T}_{\text {includes OPE }}$ has a short log cut due to real-pion exchange
- Splitting is not unique: $\mathcal{T}_{\text {includes OPE }}$ must include contact term

Is the \mathcal{T} what we are interested in?

- OPE process is an integral part of the three-to-three scattering, however,
- OPE is a "background" for the resonance pole

$$
\mathcal{T} \xrightarrow{s \rightarrow s_{\text {pole }}} \frac{g^{2}}{s_{\text {pole }}-s}+\mathcal{B}+\ldots
$$

- Any production amplitude $2 \rightarrow 3$ neither include \mathcal{B}. It is convoluted with the source.

Denominator and self-energy

Two-body resonance

$$
\hat{\mathcal{T}}_{2}(s)=\frac{g^{2}}{m^{2}-s-i g^{2} \Phi_{2}(s)} \rightarrow \frac{1}{\left(m^{2}-s\right) / g^{2}-\Sigma_{2}(s)}
$$

- Self-energy: $\operatorname{ig}^{2} \Phi_{2}(s) \rightarrow \Sigma_{2}(s)$, Chew-Mandelstam to ensure analyticity.
- \mathcal{K}-matrix: $g^{2} /\left(m^{2}-s\right)$ is uncontrolled real part

Three-body resonance

$$
\hat{\mathcal{T}}_{R}(s)=\frac{1}{\left(m^{2}-s\right) / g^{2}-\Sigma(s)}=\frac{1}{\mathcal{K}_{1}^{-1}(s)-\Sigma(s)}
$$

- Dispersion relation for the self-energy:

$$
\Sigma(s)=\frac{s}{2 \pi} \int_{s_{\text {th }}}^{\infty} \frac{\mathrm{d} s^{\prime}}{s^{\prime}\left(s^{\prime}-s\right)} \int_{\text {Dalitz }\left(s^{\prime}\right)}\left|\hat{\mathcal{A}}_{R \rightarrow 1,2,3}\left(s^{\prime}, \sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right|^{2} \mathrm{~d} \Phi_{3}^{\prime}
$$

- The $\left|\hat{\mathcal{A}}_{R \rightarrow 1,2,3}\left(s, \sigma_{1}, \sigma_{2}\right)\right|^{2}$ is observable (+FSI) Dalitz-plot distribution

Iterative solution

Bethe-Salpeter / Blankenbeckler-Sugar / Lippmann-Schwinger / B-matrix (Mai/JPAC) approaches

$$
\mathcal{T}=\mathcal{V}+\mathcal{V} \tau \mathcal{T}, \quad \mathcal{V}=\mathcal{V}_{0}+\mathcal{V}_{1}
$$

- Integral equation (system of eqs) that yields the unitary solution if \mathcal{V} includes OPE, \mathcal{V}_{0}.
- The real part of \mathcal{V} is unconstrained by unitarity (\mathcal{K}-matrix).
- Incorporates all three-body effects:
- Three-body unitarity cut
- Dynamics of the OPE
- Triangle singularities
- Analyticity of \mathcal{T} is not ensured
? Spurious left-hand singularities
? First-sheet wooly cut(©Aitchison)

Relation to BS equations

Two-potential decomposition [Nakano, PRC 26 (1982) 1123], [MM et al. JHEP 08 (2019) 080]

1. Potential has two terms (\mathcal{V}_{0} includes OPE):

$$
\mathcal{V}=\mathcal{V}_{1}+\mathcal{V}_{0}
$$

2. Obtain \mathcal{T}_{0} :

$$
\mathcal{T}_{0}=\mathcal{V}_{0}+\mathcal{V}_{0} \tau \mathcal{T}_{0}, \quad \text { (the ladder: long-range) }
$$

3. Find a solution in the form $\left(\mathcal{T}_{0}+\right.$ something $)$

$$
\mathcal{T}=\mathcal{T}_{0}+\left(1+\mathcal{T}_{0} \tau\right) \hat{\mathcal{T}}\left(1+\tau \mathcal{T}_{0}\right)
$$

4. e.g. by solving,

$$
\hat{\mathcal{T}}=\mathcal{V}_{0}+\mathcal{V}_{0}\left(\tau+\tau \mathcal{T}_{0} \tau\right) \hat{\mathcal{T}}, \quad \text { (resonance: short-range) }
$$

5*. can use algebraic inversion for $\hat{\mathcal{T}}$, ala K-matrix, $\hat{\mathcal{T}}-\hat{\mathcal{T}}^{\dagger}=\hat{\mathcal{T}}^{\dagger} X \hat{\mathcal{T}}$

$$
\begin{aligned}
X & =i \tau^{\dagger} \frac{1}{\rho_{3}} \tau+\tau \mathcal{T}_{0} \tau-\tau^{\dagger} \mathcal{T}_{0}^{\dagger} \tau^{\dagger} \\
& =\left(1+\tau^{\dagger} \mathcal{T}_{0}^{\dagger}\right)\left[i \tau^{\dagger} \frac{1}{\rho_{3}} \tau+\tau^{\dagger} \mathcal{D} \tau\right]\left(1+\mathcal{T}_{0} \tau\right)
\end{aligned}
$$

Physical meaning of the terms immetal. (JPAC), JHEP o8 (2009) O80]

$$
\left|\hat{\mathcal{A}}_{R \rightarrow 1,2,3}\right|^{2}=\underbrace{\left(1+\tau^{\dagger} \mathcal{T}_{0}^{\dagger}\right)}_{\text {initial-state interaction }} \overbrace{\left[\tau^{\dagger} \frac{1}{\rho_{3}} \tau+\tau^{\dagger} \mathcal{D} \tau\right]}^{\left|\hat{\mathcal{A}}_{R \rightarrow 1,2,3}^{\text {(naive }}\right|^{2}} \underbrace{\left(1+\mathcal{T}_{0} \tau\right)}_{\text {final-state interaction }}
$$

Relation to KT

- Khuri-Treiman framework: two-body unitarity continued to the decay domain
- Gives the rescattering effect, systematically accounts for triangle diagrams

$$
\mathcal{F}_{\text {decay }}=\underbrace{\left(1+\mathcal{T}_{K T} \tau\right)}_{\text {final-state interaction }} \hat{C}
$$

- Originally, s is a fixed parameter, however,
- $\mathcal{T}_{\mathrm{K} \boldsymbol{T}}$ is a valid construct for \mathcal{T}_{0} [Aitchison(1986), Pasquier(1968)]

The $\left|\hat{\mathcal{A}}_{R \rightarrow 1,2,3}\left(s, \sigma_{1}, \sigma_{2}\right)\right|^{2}$ is observable (+FSI) Dalitz-plot distribution

"Ladders and resonances" proposal for the 3b unitarity:

(1) Dispersion relation for the self-energy:

$$
\Sigma(s)=\frac{s}{2 \pi} \int_{s_{\text {it }}}^{\infty} \frac{\mathrm{d} s^{\prime}}{s^{\prime}\left(s^{\prime}-s\right)} \int_{\text {Dalitz }\left(s^{\prime}\right)}\left|\hat{\mathcal{A}}_{R \rightarrow 1,2,3}\left(s^{\prime}, \sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right|^{2} \mathrm{~d} \Phi_{3}^{\prime}
$$

(2) Dalitz plot $\mathcal{A}_{R \rightarrow 1,2,3}\left(s^{\prime}, \sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)$ is corrected for rescattering (e.g. KT): resonances of "modified" lineshape

Application to $T_{c c}^{+}$

$T_{c c}^{+}$decay amplitude [LHCb, Nature Physics (2022) \& Nature Communicatitions, 13, 3351]

Model assumptions:

- $J^{P}=1^{+}$: S-wave decay to $D^{*} D$
- $T_{c c}^{+}$is an isoscalar: $\left|T_{c c}^{+}\right\rangle_{l=0}=\left\{\left|D^{* 0} D^{+}\right\rangle-\left|D^{*+} D^{0}\right\rangle\right\} / \sqrt{2}$
- No isospin violation in couplings to $D^{*+} D^{0}$ and $D^{* 0} D^{+}$

$T_{c c}^{+}$self-energy and hadronic reaction amplitude

 [LHCb, Nature Physics (2022) \& Nature Communicatitions, 13, 3351]Dynamic amplitude of $D^{*} D \rightarrow D^{*} D$ scattering:
$T_{2 \times 2}(s)=\frac{K}{1-\Sigma K}=\frac{K\left(m^{2}-s\right)}{m^{2}-s-i g^{2}\left(\rho_{\text {tot }}(s)+i \xi(s)\right)}$

$$
\operatorname{Im}\left[\binom{g}{-g}^{\dagger} \Sigma(s)\binom{g}{-g}\right]=\rho(s)
$$

where K is the isoscalar potential:

$$
K=\frac{1}{m^{2}-s}\left(\begin{array}{rr}
g \cdot g & -g \cdot g \\
-g \cdot g & g \cdot g
\end{array}\right),
$$

and Σ is the loop function:

$$
\begin{aligned}
\Sigma(s) & =\left[D^{*} D \rightarrow D D \pi(\gamma) \rightarrow D^{*} D\right] \\
& =[\text { neong }+ \text { ne to } n] .
\end{aligned}
$$

D* decays are accounted for.

Model parameters: $|g|^{2}$ and m^{2} - bare mass and coupling

Fit to the spectrum

Unitarized model

- The signal shape does not depend on $|g|$ for $|g| \rightarrow \infty$.
- The lower limit: $|g|>7.7(6.2) \mathrm{GeV}$ at 90(95)\% CL
- δm_{U} is the only parameter

Parameter	Value
N	186 ± 24
δm_{U}	$-359 \pm 40 \mathrm{keV} / c^{2}$
$\|g\|$	$3 \times 10^{4} \mathrm{GeV}$ (fixed)

No direct sensitivity to the width, the value is driven by the model

True mass spectrum

The resolution removed

- The narrow resonance peak below the lowest threshold
- Long tail with cusps at the the thresholds

$$
T(s)=\frac{\text { production }}{\text { rescattering }(s \mid \delta m, g)}
$$

The obtained analytic "formula" for matrix element enables us:

- Obtain mass and width - pole position à la [MM et al. (JPAC), PRD 98 (2018) 096021]
- Compute scattering parameters

Analytic continuation

Details on analytic continuation [mM etal. (JPAC), PRD 98 (2018) 096021]

$$
\hat{\mathcal{T}}^{-1}=\frac{m^{2}-s}{g^{2}}-\Sigma(s)
$$

- $\Sigma(s)$ is a dispersion integral of three-body integral

Function $\Sigma(s)$ on the unphysical sheet

$$
\Sigma_{\| I}\left(s_{\text {complex }}\right)=\underbrace{\Sigma_{1}\left(s_{\text {complex }}\right)}_{\text {dispersion integral (easy) }}+\underbrace{2 i \rho\left(s_{\text {complex }}\right)}_{\text {Dalitz integral (tough) }}
$$

The $T_{c c}^{+}$Dalitz complex

$$
\int_{\text {Dalitz }}\left[\mathcal{F}_{D^{*}}\left(\sigma_{2}\right)+\mathcal{F}_{D^{*}}\left(\sigma_{3}\right)\right] \cdot\left[\mathcal{F}_{D^{*}}^{*}\left(\sigma_{2}\right)+\mathcal{F}_{D^{*}}^{*}\left(\sigma_{3}\right)\right] \mathrm{d} \sigma_{2} \mathrm{~d} \sigma_{3}
$$

- Conjugation implies changing the sheet, $\mathcal{F} \rightarrow \mathcal{F}^{\prime}, \mathcal{F}^{*} \rightarrow \mathcal{F}^{\prime \prime}$,
- $\mathcal{F}_{D^{*}}\left(\sigma_{2}\right) \mathcal{F}_{D^{*}}^{*}\left(\sigma_{2}\right)$ is easy - no singularity in σ_{3}
- $\mathcal{F}_{D^{*}}^{*}\left(\sigma_{2}\right) \mathcal{F}_{D^{*}}\left(\sigma_{3}\right)$ is little tricky
- pole below in σ_{2},
- pole above in σ_{3}

Fundamental resonance parameters

Mass and width - position of the complex pole of the reaction amplitude

- Analytic continuation is non-trivial due to three-body decays [mm et al. (JPAC), PRD 98 (2018) 096021]

The pole parameters:

$$
\begin{aligned}
\delta m_{\text {pole }} & =-360 \pm 40_{-0}^{+4} \mathrm{keV}, \\
\Gamma_{\text {pole }} & =48 \pm 2_{-14}^{+0} \mathrm{keV} .
\end{aligned}
$$

Scattering length and effective range

Expansion of the phase shift

$$
k \cot \delta(k)=\frac{1}{a}+r \frac{k^{2}}{2}+O\left(a^{3} k^{4}\right) .
$$

Equivalently, $\quad T^{-1}=N\left(\frac{1}{a}+r \frac{k^{2}}{2}+O\left(a^{3} k^{4}\right)-i k\right)$.

For 3b scattering $\left(D^{0} D^{*+}\right)$

sheet I	$m_{D^{*+}}+m_{D^{0}}$	
$T_{c c}^{+}$	$\sqrt{S_{b_{i}^{\prime}}}$	
sheet II		

Is it possible to make a proper definition of the a^{-1} and r ?
(1) Match the analytic structure of T,
(2) Make convergent series

Scattering length and effective range

Expansion of the phase shift

$$
k \cot \delta(k)=\frac{1}{a}+r \frac{k^{2}}{2}+O\left(a^{3} k^{4}\right) .
$$

Equivalently, $\quad T^{-1}=N\left(\frac{1}{a}+r \frac{k^{2}}{2}+O\left(a^{3} k^{4}\right)-i k\right)$.

For 3b scattering $\left(D^{0} D^{*+}\right)$

sheet I	$m_{D^{*+}}+m_{D^{0}}^{\sqrt{\sqrt{s}}}$
$T_{c c}^{+}$ sheet II	

Is it possible to make a proper definition of the a^{-1} and r ?
(1) Match the analytic structure of T,
(2) Make convergent series

1 - yes, $k\left(s, m_{D^{0}}, m_{D^{++}}-i \Gamma_{D^{++}} / 2\right)$,
2 - yes(?)

The regular function is not linear

$$
T^{-1}(s)=N(R(s)-i k), \quad R(s)=\frac{1}{a}+r \frac{k^{2}}{2}+O\left(a^{3} k^{4}\right)
$$

- ik is the singular part that defines the discontinuity
- Normalization N is found by matching discontinuity on left and right
- $R(s)$ is the regular part at the complex $s_{b . p}$
- Expansion is done using the Cauchy integrals

Nominal (LHCb) model:

$$
r_{D D^{*}}<-4.4 \mathrm{fm}
$$

From comparison of the models:

$$
\begin{aligned}
\Delta r_{D^{00} D^{+}} & =-3.73+0.30 i \mathrm{fm}, \\
\Delta r_{\mathrm{ope}} & =-0.94-0.28 \mathrm{ifm} .
\end{aligned}
$$

- Use the limit case, $g \rightarrow \infty$, to get upper limit, $r_{D D^{*}}<r_{\text {limit }}$

Model	$1 / \Re a^{-1}[\mathrm{fm}]$	$r[\mathrm{fm}]$
full	-6.0	$-4.37+0.47 i$
full excl. $D^{* 0}$	-7.3	$-0.64+0.17 i$
$\pi^{+} D^{0} D^{0}$ with two D^{*+}	-7.3	$-0.79+0.27 i$
$\pi^{+} D^{0} D^{0}$ with one D^{*+}	-7.6	$0.15-0.01 i$
$D^{*+} D^{0}$ complex mass	-7.6	$0.16-0.01 i$

Nearby Triangle Singularity

The Triangle Singularity is a logarithmic branch related to the pion-exchange.

- Located at the unphysical sheet, hidden by $D^{0} D^{*+}$ branch point

$\operatorname{Re} \mathrm{E}$

Nearby Triangle Singularity

The Triangle Singularity is a logarithmic branch related to the pion-exchange.

- Located at the unphysical sheet, hidden by $D^{0} D^{*+}$ branch point

Can I fit scattering parameters?

Often used approach is to fit T^{-1} by expansion series $N\left(a^{-1}+r k^{2} / 2-i k\right)$.

- Result strongly depends on the range of the fit

- Difference of T^{-1} and $N\left(a^{-1}+r k^{2} / 2-i k\right)$
- Can much two function only in small range $<0.1 \mathrm{MeV}$

Summary

Three-body rescattering on Dalitz, and three-body resonance dynamics are closely connected

- [arXiv:2212.11767]: systematic studies of FSI in 3π
- [arXiv:2203.04622]: analytic continuation of $T_{c c}^{+}$amplitude, effective range discussion

Summary

Three-body rescattering on Dalitz, and three-body resonance dynamics are closely connected

- [arXiv:2212.11767]: systematic studies of FSI in 3π
- [arXiv:2203.04622]: analytic continuation of $T_{c c}^{+}$amplitude, effective range discussion

Backup

Interefence ring

The structures (bumps and dips) are related to the geometry of resonances on the Dalitz plot

- One non-obvious is the interference ring

Effective range and Weinberg compositeness

 [LHCb, arXiv:2109.01056]

$$
\begin{aligned}
& \quad \mathcal{A}_{\mathrm{NR}}^{-1}=\frac{1}{a}+r \frac{k^{2}}{2}-i k+O\left(k^{4}\right), \\
& \frac{2}{|g|^{2}} \mathcal{A}_{\mathrm{U}}^{-1}=-\left[\xi(s)-\xi\left(m_{\mathrm{U}}^{2}\right)\right]+2 \frac{m_{\mathrm{U}}^{2}-s}{|g|^{2}}-i \varrho_{\mathrm{tot}} . \\
& \text { Matching: }
\end{aligned}
$$

- $r=16 w /|g|^{2}$,
where w is a normalization factor between ρ and k
- w excludes the contribution of the second threshold
- does not have the $1 / \sqrt{\delta}$ term
- $T_{c c}^{+}: a=(-7.16 \pm 0.51)+i(1.85 \pm 0.28) f m$
- $T_{c c}^{+}$: r is negative in the model: $0<-r<11.9(16.9) \mathrm{fm}$ at $90(95) \% \mathrm{CL}$
- $T_{c c}^{+}: 1-Z>0.48(0.42)$. $T_{c c}^{+}$is consistent with the molecule

Comparison to the deuteron

Deuteron [Garcon, Van Orden(2001)]
Tetraquark $T_{c c}^{+}$[LНcb, arxiv:2109.01056]

[compact cc core]

[ū̄̄ cloud]

- Presumably molecule
- $1-Z \approx 1$
- $R_{\text {charge }}=2.1 \mathrm{fm}$
- $R_{\text {matter }}=1.9 \mathrm{fm}$
- $a=-5.42 \mathrm{fm}$
- $r=1.75 \mathrm{fm}$
- Expected to be atomic
- $1-Z \geq 0.48$ at $90 \% \mathrm{CL}$
- $R_{\text {charge }}=$??
- $R_{\text {matter }}=$??
- $a=-7.16 \mathrm{fm}$
- $r>-11.9 \mathrm{fm}$ at $90 \% \mathrm{CL}$

