Core Collapse Supernova Neutrinos: Progress, Challenges, and Opportunities

Anthony Mezzacappa Department of Physics and Astronomy University of Tennessee, Knoxville

Astrophysical Neutrinos and the Origin of the Elements Institute for Nuclear Theory Seattle, WA July 24 – 28, 2023

Ingredients of a Neutrino-Driven Core Collapse Supernova Explosion

Progress to Date

The efficacy of the neutrino shock reheating/delayed shock mechanism has now been demonstrated by all leading groups across progenitor characteristics (mass, rotation, and metallicity). Nonetheless, significant challenges remain. For recent reviews, see:

- Janka, Melson, and Summa, Ann. Rev. Nucl. Part. Sci. 66 341 (2016)
- Mueller, Liv. Rev. Comp. Astr. 6:3 (2020)
- AM, Endeve, Messer, and Bruenn, Liv. Rev. Comp. Astr. 6:4 (2020)
- Burrows and Vartanyan, Nature 589, 29 (2021)

Among the first two 3D sophisticated CCSN <u>explosion</u> models, which ushered in <u>contemporary CCSN modeling and theory.</u> w/ Melson et al. Ap.J. Lett. **801**, L24 (2015)

Chimera Models First 3D Chimera Model: Lentz et al. Ap.J Lett. 807 L31 (2015)

Progenitor Mass (Solar Masses)	Metallicity	Rotation	B Fields	Progenitor Family/High-Density EOS	Explosion/ Shock Radius (km)	Post-bounce Time (ms)/ Explosion Energy (B)
9.6	Zero	Ν	Ν	Woosley and Heger (2015)/LS220	Y/9467	467/0.167
15	Solar	Ν	N	Woosley and Heger (2007)/LS220	Y/1600	750+/?
25	Zero	Ν	N	Heger and Woosley (2010)/LS220	Y/2200	500+/?

Lentz et al. (2023ab), in preparation AM, Marronetti, Landfield, Lentz, et al. PRD **107**, 043008 (2023) Challenges

To date, only one three-dimensional, general relativistic, spectral-two-moment model with an extensive suite of up-to-date weak interactions and an allowed EOS has been published:) Kuroda Ap.J. 906, 128 (2021).

Effective Potential vs. General Relativity

Mueller, Janka, and Marek 2012 Ap.J. 756, 84

with and without Rotation and Magnetic Fields

20 M_{\odot} (WH07) $\Omega_0 = 1 \text{ rad s}^{-1}$ $B = 10^{12} \text{ G}$

Quantum Kinetics: It's still all about the angular distributions!

Length and Time Scales Severe

- length scale is O(1 cm) and typical CCSN radial resolution is $O(100 \text{ m}) \text{differ by } O(10^4)$
- time scale is O(1 ns) and typical CCSN temporal resolution is $O(1 \mu s) \text{differ by } O(10^3)$

How do we couple this quantum evolution to the classical evolution?

•

Dasgupta, Mirizzi, and Sen, JCAP 1702, 019 (2017)

The Anatomy of a Core Collapse Supernova Neutrino "Light Curve"

Opportunities

Opportunities: Electron Neutrino Burst

Wallace, Burrows, and Dolence, Ap.J. 817, 182 (2016)

4 kpc

7 kpc

10 kpc

20

Hyper-K, IH

4 kpc

7 kpc

10 kpc

-5

0

Time Since Peak ν_e Luminosity (ms)

5

Opportunities: Accretion Phase

reconstructed if D \lesssim 5 kpc for Hyper-K (D \lesssim 10 kpc for IceCube)."

Lin et al. PRD 101 123028 (2020)

AM, Marronetti, Landfield, Lentz, et al. PRD, **107**, 048003 (2023)

Fischer et al. 2021 104 103012 (2021)

Impact of Exotica: Axions

 $\pi^- + p \longrightarrow n + a$

 $N + N \rightarrow N + N + a$

TABLE I. Summary of the different supernova simulations including the references to the various treatments for the calculation of the axion emissivity.

Label	$N + N \rightarrow N + N + a$	$\pi^- + p \rightarrow n + a$
Ref. run (Appendix)		
aNN	Vacuum one- π exchange, $m_{\pi} = 0$ [41,43,66]	
aNN^*	Improvements according to Ref. [32]	
$aNN^* + a\pi$	Improvements according to Ref. [32]	Rates according to Ref. [45] with $\Sigma_{\pi} = 0$
$aNN^* + a\pi^*$	Improvements according to Ref. [32]	Rates according to Ref. [45], with Σ_{π} according to Ref. [17]

[32] P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martínez-Pinedo, and A. Mirizzi, Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung, J. Cosmol. Astropart. Phys. 10 (2019) 016.Erratum, J. Cosmol. Astropart. Phys. 05 (2020) E01.

Impact of Exotica: Quark – Hadron Phase Transitions

Electron Antineutrino Burst

Muon and Tau Neutrino and Antineutrino Bursts

A Poster Child for Multi-Messenger Astronomy?

The Road Ahead

UT–ORNL Supernova Code Lines

Bronson Messer