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Progress



Progress to Date
The efficacy of the neutrino shock reheating/delayed shock mechanism has now been demonstrated by all leading groups across progenitor 
characteristics (mass, rotation, and metallicity). Nonetheless, significant challenges remain. For recent reviews, see:

• Janka, Melson, and Summa, Ann. Rev. Nucl. Part. Sci. 66 341 (2016)
• Mueller, Liv. Rev. Comp. Astr. 6:3 (2020)
• AM, Endeve, Messer, and Bruenn, Liv. Rev. Comp. Astr. 6:4 (2020)
• Burrows and Vartanyan, Nature 589, 29 (2021)

Progenitor Mass 
(Solar Masses)

Metallicity Rotation B Fields Progenitor Family/High-Density EOS Explosion/
Shock Radius (km)

Post-bounce Time (ms)/
Explosion Energy (B)

9.6 Zero N N Woosley and Heger (2015)/LS220 Y/9467 467/0.167

15 Solar N N Woosley and Heger (2007)/LS220 Y/1600 750+/?

25 Zero N N Heger and Woosley (2010)/LS220 Y/2200 500+/?

Chimera Models First 3D Chimera Model: Lentz et al. Ap.J Lett. 807 L31 (2015)

Among the first two 3D sophisticated CCSN 
explosion models, which ushered in 
contemporary CCSN modeling and theory.
w/ Melson et al. Ap.J. Lett. 801, L24 (2015)

Lentz et al. (2023ab), in preparation
AM, Marronetti, Landfield, Lentz, et al. PRD 107, 043008 (2023)
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state tables that satisfy these conservative constraints. We also
display the results for other interactions (Klähn et al. 2006;
Maslov et al. 2016) commonly used in astrophysics and heavy-
ion physics, among which a nontrivial number are found to
violate the bound. We emphasize that realistic uncertainties in
the relevant parameters ξ0, n0, E0, Kn, and Qn do not affect
these conclusions in any significant fashion.

Furthermore, the lower limit on the symmetry energy,
implied by the UG constraint for u<1, has implications for
the surface energy of nuclei, the location of the crust–core
boundary, and the radii and moments of inertia of neutron stars.
We show herein that this lower limit will establish maxima to
the surface symmetry energy parameter SS and minima to
neutron-star radii and moments of inertia. Curiously, although
our conjecture EPNM>EUG essentially determines a minimum
for the symmetry energy, it also implies a maximum limiting
behavior for u�1. This has implications for the threshold
density for the onset of rapid neutrino cooling due to the
nucleon Urca process and, thus, for neutron-star cooling.

To investigate these applications of the UG bound, we
require a better parameterization of S than that given by the
expansion of Equation (11), which fails in the limits of both
small and large u. Instead, we model the symmetric matter and
symmetry energy using these expressions:

E T u a u b u c u d u 38SNM
2 3 4 3 5 3 2= + ¢ + ¢ + ¢ + ¢[ ] ( )

and

S u T u au bu cu du2 1 .
39

2 3 2 3 4 3 5 3 2= - + + + +( ) [( ) ]
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The parameters are fit to properties of matter at saturation
density (u=1):
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Because the value of Q0 is quite uncertain we use d′=0,
which implies Q0=−432.3 MeV for the typical values
E0=−16MeV, K0=220MeV, and n0=0.16 fm−3. This
value matches the means of the values of Q Qn sym- for the
interactions displayed in Figures 6 and 7 for L∼50MeV.
In this section, we always make use of this parametrization

for the symmetry energy. While this parametrization allows the
use of any reasonable value for the empirical parameters and
thus does not automatically lead to any correlations between
these parameters, this does not necessarily imply the absence of

Figure 9. UG bounds on symmetry energy parameters. The thick lines show the bound Equation (24) using the conservative parameter set of Equation (25). Excluded
regions are shown by shading. Left panel: Experimental constraints are from Lattimer & Lim (2013) and Lattimer & Steiner (2014), supplemented by isobaric analog
states and isovector skin (IAS+ΔR) results from Danielewicz et al. (2017). The thick dashed curve shows the analytic bound from Equation (32). Right panel: Filled
circles show the point S L,0

LB
0( ) at the tangent density ut=1 and the point where ut=1/2. Triangles show values for interactions commonly used in tabulated

equations of state for astrophysical simulations (notation and data from Fischer et al. 2014), and open squares (from Klähn et al. 2006) and the inverted triangle (from
Maslov et al. 2016) show those of other frequently used interactions. The shaded regions TKHS, GCR, and HS show the parameter ranges inferred from the PNM
calculations of Tews et al. (2013), Gandolfi et al. (2012), and Hebeler et al. (2010), respectively.
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Fig. 3. Summary of important neutrino reactions in a supernova core and/or nascent neutron star [4–6].
The symbol ν can mean any type of neutrino, A represents an atomic nucleus, and N means neutron (n)
or proton (p).

High mass accretion rates therefore tend to damp the shock expansion while neutrino-energy deposi-
tion behind the shock2, which depends on the product Lν

〈
ε2
ν

〉
, can drive shock expansion. This issue

will be elaborated on further below.
In order to successfully launch a supernova explosion, some mechanism is necessary by which

the stalled shock can be revived. Such a mechanism needs to tap the huge reservoir of gravitational
binding energy that is released during the formation of a neutron star. During the infall of the stellar
core, the energy is first converted to internal energy by hydrodynamic forces (i.e., compression and
the viscous dissipation of kinetic energy in matter decelerated in the accretion shock). The degeneracy
and thermal energy of electrons and nucleons thus stored in the proto-neutron star is subsequently
radiated away by neutrinos over a timescale of many seconds.

Deep in the highly degenerate neutron-star interior, electron neutrinos, νe, are first produced by
electron captures on protons. On their diffusive propagation towards the neutrinosphere, these elec-
tron neutrinos lose some of their energy in absorption–reemission processes as well as in scattering
reactions with electrons and free neutrons and protons (Fig. 3). This effect, together with the gravi-
tational settling and compression of the outer layers of the proto-neutron star, initially leads to rising
temperatures before, after some seconds, cooling sets in. Since the degeneracy is partially lifted in
the hot proto-neutron star mantle, the secondary production of electron antineutrinos, ν̄e, by positron
captures on neutrons becomes possible. Neutrino–antineutrino pairs of all three flavors are created
by thermal processes, i.e., nucleon–nucleon bremsstrahlung and electron–positron annihilation. Pure
neutrino reactions (Fig. 3) also contribute to the shaping of the emitted spectra of muon and tau neu-
trinos and antineutrinos (νµ, ν̄µ, ντ , ν̄τ ) [3], which are not produced by fast beta reactions and thus
are less tightly coupled to the stellar medium.

Even a small fraction of the huge energy reservoir of several 1053 ergs carried away by neutrinos
is already sufficient to account for the canonical explosion energy of a core-collapse supernova,
which ranges between some 1050 erg to around 1051 erg. It may appear astonishing that the explosion
selects an energy scale that is 2–3 orders of magnitude lower than the reservoir of available energy.

2 The energy transfer by neutrinos scales linearly with the neutrino luminosity and the average interaction
cross section. The latter increases roughly with the luminosity-averaged square of the neutrino energy.
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Different from τ neutrinos, but analogously to νe and ν̄e,
νμ and ν̄μ participate in β reactions,

νl þ n ⇄ pþ l−; ð1Þ

ν̄l þ p ⇄ nþ lþ; ð2Þ

with their charged leptons l (standing for e or μ) when a
significant population of thermally excited μ− and μþ

appears [11]. Beta equilibrium for both flavors implies
the usual relation

Δμ≡ μn − μp ¼ μl − μνl ð3Þ

between the chemical potentials (including particle rest-
mass energies) of neutrons, protons, charged leptons, and
the corresponding neutrinos. Since the highly degenerate
Fermi sea of e− partially converts to μ−, and since initially
the trapped muon number is zero, an excess of μ− over μþ is
compensated by an opposite excess of ν̄μ over νμ.
Therefore, the diffusive flux of ν̄μ will dominate that of
νμ, leading to a gradual buildup of muon number. The
easier escape of ν̄μ compared to νμ is aided by the lower
neutral-current scattering cross section for ν̄μ mentioned
above and by the higher opacity for β reactions of νμ
compared to ν̄μ in analogy to the electron flavor. The
accumulation of net muon number in the proto-NS, i.e., the
process of muonization that leads to an excess of μ− over
μþ in the final NS, is facilitated by the reactions of Eqs. (1)
and (2). Also, other interactions that couple the e-lepton
and μ-lepton sectors (Table I) enhance the muonization rate
and thus increase both the νμ and ν̄μ fluxes.
Muonization might play a non-neglible role during all

stages of the SN postbounce (PB) evolution and NS as well
as black-hole (BH) formation. In the following, we discuss
its effects on the initiation of SN explosions by neutrino-
energy deposition.
Numerical modeling.—Our SN simulations were per-

formed with the PROMETHEUS-VERTEX neutrino-hydrody-
namics code [15,16] with an approximate treatment of
general relativistic gravity by the effective gravitational
potential of case A of Ref. [17]. The PROMETHEUS hydro-
dynamics module solves the equations of nonrelativistic
hydrodynamics (continuity equations for mass, momentum,
energy, lepton number, and nuclear composition) with an
explicit, directionally split, higher-order Godunov scheme
[18]. The transport module VERTEX integrates the energy-
dependent evolution equations of energy andmomentum for

all six neutrino species (νe, ν̄e, νμ, ν̄μ, ντ, ν̄τ) in the comoving
frame of the stellar fluid to orderv=c (v is the fluid velocity, c
the speed of light), including corrections due to general
relativistic redshift and time dilation. The closure is provided
by an Eddington factor based on the solution of a model-
Boltzmann equation, iterated for convergencewith the set of
two-moment equations [15]. Neutrino transport in multidi-
mensional simulations employs the ray-by-ray plus approxi-
mation [16].
We upgraded the PROMETHEUS-VERTEX code for includ-

ing all effects of μ− and μþ in the hydrodynamics and
equation of state (EOS) of the stellar plasma, the effective
relativistic gravity potential, and in the neutrino transport.
This implies the solution of conservation equations for
electron and muon lepton number:

∂ðρYlÞ
∂t þ∇ðρYlvÞ ¼ Ql ð4Þ

(here, relativistic corrections are omitted for simplicity).
Yl ¼ Yl− − Ylþ is the net number of charged leptons per
nucleon, ρ the baryon-mass density, and Ql the source rate
that is associated with all processes emitting and absorbing
νl and ν̄l. The EOS depends on Ye and Yμ; i.e., P ¼
Pðρ; T; Ye; Yμ; fYkgk¼1;…;Nnuc

Þ and ω ¼ ωðρ; T; Ye; Yμ;
fYkgk¼1;…;Nnuc

Þ for pressure P and specific energy density
ω (T is the medium temperature, Nnuc the number of
nuclear species). Analogously to e− and eþ, μ− and μþ

provide an additive contribution to P and ω and are treated
as ideal Fermi gases of arbitrary degeneracy and arbitrary
degree of relativity. In nuclear statistical equilibrium (NSE)
the mass fractions of nuclei and nucleons Yk are determined
by the Saha equations and, hence, Yk ¼ Ykðρ; T; Ye; YμÞ
holds; otherwise they follow from evolution equations
similar to Eq. (4) with Ql being replaced by source terms
for nuclear reaction rates. With ρ, ω, Ye, and Yμ given as
solutions of the hydrodynamics and Yk (k ¼ 1;…; Nnuc)
being determined either by NSE or Eq. (4), T and the
chemical potentials μe, μμ, μn, μp, and μk for all k can be
determined under the constraint of charge neutrality,P

kZkYk ¼ Ye þ Yμ, with Zk being the nuclear charge
number of species k.
Accounting for the presence of muons and the differences

of the ν and ν̄ scattering cross sections with nucleons due to
nucleon recoil and weak magnetism [13], we generalized the
neutrino-transport module VERTEX to an energy-dependent
six-species treatment, tracking νe, ν̄e, νμ, ν̄μ, ντ, and ν̄τ
individually. Besides our “standard” set of neutrino reaction
rates listed in Table 1 of Ref. [19], we also implemented all
relevant neutrino interactions with μ− and μþ as listed in
Table I. The detailed kinematics (energy and momentum
exchange between reaction partners) were fully taken into
account, describing charged leptons as arbitrarily relativistic
and arbitrarily degenerate fermions and nucleons as non-
relativistic fermions.Neutral and charged-current interactions

TABLE I. Neutrino reactions with muons.

νþ μ− ⇄ ν0 þ μ− 0 νþ μþ ⇄ ν0 þ μþ0

νμ þ e− ⇄ νe þ μ− ν̄μ þ eþ ⇄ ν̄e þ μþ

νμ þ ν̄e þ e− ⇄ μ− ν̄μ þ νe þ eþ ⇄ μþ

ν̄e þ e− ⇄ ν̄μ þ μ− νe þ eþ ⇄ νμ þ μþ

νμ þ n ⇄ pþ μ− ν̄μ þ p ⇄ nþ μþ
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where
Nµ(x) =

∫
fL µ

µ̂ p
µ̂πm =

∫
f pµπm (23)

is the particle 4-current density and

πm = 1
E(p)

∣∣∣ det
[∂p
∂u

]∣∣∣du1̂2̂3̂ (24)

is the invariant momentum-space 3-volume expressed in terms of the spherical
momentum-space coordinates: uî = (E = ‖p‖/c, µ ≡ cos θp,φp). But in light of the
fact that the Boltzmann equation is not expressed in manifestly conservative form it is
not obvious how we arrive at Eq. (22) by integrating over momentum space. We desire
to reexpress the Boltzmann equation in terms of spacetime and momentum-space
divergences so that it is manifestly conservative with respect to an integration over a
spacetime region, a momentum-space region, or both—i.e., a phase-space region.

Of course, the generalized Stokes’ Theorem, Eq. (14), is an expression of manifest
conservation, equating the change in a quantity within a volume of phase space in
terms of a surface term involving its flux on the volume’s boundary. The key insight
by Cardall and Mezzacappa (2003) was to recognize that the total exterior derivative
d( f ω) in Eq. (14) can instead be expressed as

d( f ω) = N [ f ]Ω, (25)

where

N [ f ] ≡ 1√−g
∂

∂xµ
(√−gL µ

µ̂ pµ̂ f
)

−E(p)
∥∥∥∥det

[
∂p
∂u

]∥∥∥∥
−1 ∂

∂uî

(
1

E(p)

∥∥∥∥det
[
∂p
∂u

]∥∥∥∥Γ
ĵ
ν̂ρ̂ pν̂ pρ̂

∂uî

∂ p ĵ
f

)

.

(26)

Substituting Eq. (25) in Eq. (14) and using Eq. (19), we arrive at

1√−g
∂

∂xµ
(√−gL µ

µ̂ pµ̂ f
)

−E(p)
∥∥∥∥det

[
∂p
∂u

]∥∥∥∥
−1 ∂

∂uî

(
1

E(p)

∥∥∥∥det
[∂p
∂u

]∥∥∥∥Γ
ĵ
ν̂ρ̂ pν̂ pρ̂

∂uî

∂ p ĵ
f

)

= C [ f ], (27)

which is the manifestly conservative formulation of the Boltzmann equation. It is now
obvious that upon integration over momentum space, for example, the momentum
derivative terms on the left-hand side of the Boltzmann equation in Eq. (27) will give
rise only to surface terms. The counterpart equation for 4-momentum conservation
can be derived in the same way (Cardall and Mezzacappa 2003) and is given by

123

Future

Now

To date, only one three-dimensional, general relativistic, spectral-two-moment model with an extensive suite of up-to-date weak interactions and an allowed 
EOS has been published:) Kuroda Ap.J. 906, 128 (2021).

Need:

Instead:

  

Requires a closure prescription.

𝑲 𝒛, 𝑡 = .𝑓 𝑡, 𝒛, 𝜔 ℓ⊗ ℓ𝑑𝜔

𝒌 =
1
2 [ 1 − 𝜒 I + 3𝜒 − 1 𝒉⊗ 𝒉]

𝒌 =
𝜥
𝛪 ; 	𝒉 = 𝑯/ 𝑯

Eddington Factor

𝑲 = 𝑲(𝐼, 𝑯):
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Figure 1. Mass–radius relations of the equations of state LS180 (blue) and LS220 (red) for the gravitational mass (left panel) and the baryonic mass (right panel). Solid
lines display the case of cold neutron stars (T = 0), while curves for the case of a hot proto-neutron star with a constant entropy of s = 1.5 kb nucleon−1 are shown
as dashed lines. The black horizontal line in the left panel corresponds to a mass of 1.97 M" as measured by Demorest et al. (2010) for the pulsar J1614-2230. The
gravitational masses for neutron stars with baryonic masses of 1.36 M" and 1.58 M" are indicated both for T = 0 (solid blue horizontal lines) or s = 1.5 kb nucleon−1

(dashed blue horizontal lines) in the left panel (figures provided by A. Bauswein.)
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Figure 2. Average shock radius and proto-neutron star (PNS) radius (defined
by a fiducial density of 1011 g cm−3) for the 2D models G15 (GR, full rates,
black thick solid line), S15 (GR, reduced rates, blue, thick, dash-dotted), M15
(pseudo-Newtonian, full rates, red, thick, dashed), and M15 (purely Newtonian,
black, thick, dotted). 1D models corresponding to G15, M15, and S15 are also
shown as thin lines for comparison. Note that the shock is located considerably
further out in S15-1D than in G15-1D and M15-1D. This is a consequence
of the strong sensitivity of the shock position rsh to the PNS radius, rPNS, for
a stationary spherical accretion flow (rsh ∝ r

8/3
PNS, see, e.g., Equation (1) of

Marek & Janka 2009). The larger PNS radius in S15-1D can in turn be traced to
less efficient cooling by µ/τ neutrinos and higher temperatures in the density
region 1012–1013 g cm−3. Different PNS radii (caused by PNS convection; see
Appendix C in Buras et al. 2006a) are also responsible for the larger shock
radii in the 2D models G15 and M15 compared to G15-1D and M15-1D at
early times, when multi-dimensional effects in the gain region do not yet play a
significant role. (The data for M15-1D have been provided by L. Hüdepohl.)

4.1.2. Explosion Energy

We can compute a diagnostic “explosion energy” by inte-
grating over the material with positive binding energy ebind at a
certain time. Since this energy does not account for subsequent
nuclear recombination, burning, and the gravitational binding
energy of the outer layers of the star, this quantity does not pro-
vide a direct measure for the final supernova explosion energy.
In the GR case, we define ebind in terms of the lapse function
α, the rest-mass density ρ, the specific internal energy ε, the
pressure P, and the Lorentz factor W as follows:

ebind = α(ρ(c2 + ε + P/ρ)W 2 − P ) − ρWc2. (2)

In order to maintain consistency with previous studies (Buras
et al. 2006a; Marek & Janka 2009; Bruenn et al. 2009), we
exclude rest-mass contributions to the specific internal energy
ε. It can easily be verified that Equation (2) correctly reduces to

ebind → ρ(ε + ρv2/2 + Φ) (3)

in the Newtonian limit (where Φ is the gravitational potential).2
The diagnostic explosion energy is then computed by integrating
over the region where ebind is positive,

Eexpl =
∫

ebind>0

ebind dṼ . (4)

Here, dṼ is the three-volume element for the curved space–time
metric (and not the flat-space volume element).

The time evolution of Eexpl is plotted in the right panel
of Figure 5, which shows that material behind the shock
first becomes nominally unbound 200 ms after bounce for
model G11. This corresponds to the time when the shock
first expands beyond ∼400 km, allowing the temperature to
drop sufficiently for nucleon recombination to α-particles to
set in. The diagnostic explosion energy slowly increases rather
unsteadily at an average rate of 6×1049 erg s−1, and then seems
to level off around 3.5×1049 erg after 600 ms post-bounce with

2 Precisely speaking, we have α → 1 + Φ/c2 and W → 1 + v2/2 in the
Newtonian limit, and obtain the Newtonian expression as an approximation to
O(ε/c2, P/ρc2, v2/c2, Φ/c2).
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with and without Rotation and Magnetic Fields
asymmetry appearing during our simulation time, i.e., the early
postbounce phase of t apb few 100 ms, is unlikely due to the
parity-violation effects of weak interactions, but mostly due to
MHD effects. In our previous study (Kuroda et al. 2020),
which did not take into account the parity-violation effects, the
north–south asymmetry was also found. In the literature, we
introduced a combination of the m=1 rotational instability
and the MHD kink instability as one possible explanation of the
north–south asymmetry. By comparing the degree of the
asymmetry between this and previous studies, we recognize
that there is no significant difference, especially in the initial
postbounce phase of t 100pb ms, during which the parity-
violation effects are particularly strong (explained in
Section 5.2). More precisely, the corresponding normalized
mode amplitudes of the spherical polar expansion of the shock
surface Aℓm read ∼0.05% in both studies for (ℓ m, )=(1, 0).
We thus consider that the parity-violation effects play a
subdominant role, at least in the early postbounce phase, in
forming the shock morphology.

On the equatorial plane, a clear m=1 nonaxisymmetric
structure becomes prominent (see mini panels (c)). Along the
equatorial plane, both continuous mass accretion, with low
entropy s 5 kB baryon−1, and ejection, with relatively high
~s k10 B baryon−1, simultaneously take place. Furthermore,

from mini panel (c) in the bottom-right panel, we find the gas
pressure being dominant in most of the regions, i.e., the
magnetic field does not play a leading role in the shock
expansion. We thus argue that the shock expansion is
significantly aided by rotation in the equatorial region (see
Nakamura et al. 2014; Takiwaki et al. 2016; Summa et al. 2018
for the rotation-supported 3D CCSN models and also Kuroda
et al. 2020 with a magnetic field).

We also calculate a supplement model R1B13, which adopts
a one order of magnitude larger initial magnetic field, to focus
on its possibly more emphasized parity-violation effects. Thus,
we leave its detailed explanation of (magneto)hydrodynamics
to Appendix B. Roughly speaking, this model also exhibits a
very energetic shock expansion immediately after bounce.
However, the magnetic field structure and the entropy structure
within the shocked region are significantly different from those
in model R1B12. They do not show a simple bipolar-like
structure compared to those in model R1B12, but a slightly
complicated structure.

Figure 2 presents the time evolution of the shock radius
Rshock in the top panel and of the diagnostic explosion energy
Eexp in the bottom, where we use the same definition for Eexp as
Kuroda et al. (2020). In the top panel, we plot the maximum
(thick line) and averaged shock radii (thin) for all models. We
multiply the lines of Rshock for model R0B00 (black lines) by
10 to show them more clearly. We find that the model R0B00,
which assumes neither rotation nor magnetic field initially,
does not exhibit shock revival during our simulation time of
∼500ms after bounce. This is consistent with our previous
study, Kuroda et al. (2020). We thus argue that the up-to-date
neutrino opacities do not drastically change the explosion
dynamics. Therefore, in the bottom panel, we omit the line for
model R0B00 because its explosion energy is essentially zero.

The time evolution of shock radii presents a rapidly
expanding shock surface in model R1B13 immediately after
bounce (red lines). The maximum shock radius reaches
R=1000km at ~t 70pb ms. During the same period, Eexp
increases drastically initially, reaches its maximum ∼6×1050

erg at ~t 20pb ms, and declines afterward. The contribution of
each energy to the total diagnostic explosion energy at =t 20pb
ms is as follows: the magnetic energy ∼1051 erg, the internal
energy ∼4×1050 erg, the radial kinetic energy ∼2×1050

erg, and the rotational kinetic energy ∼2×1050 erg. The
prompt explosion is thus mainly supported by the magnetic
field. The decline seen in Eexp after ~t 20pb ms is mostly due
to the decrease of the magnetic energy in the unbound region,
while in model R1B12 (blue lines) the shock front shows a
mild expansion initially ( t 120pb ms) and subsequently
becomes faster than that of model R1B13. Its averaged shock
radius (thin blue line) exceeds that of model R1B13 at

~t 310pb ms. The explosion energy Eexp in model R1B12
increases at ~t 100pb ms and then plateaus around the value of
∼1050 erg. The shock and explosion energy evolution in
models R1B12 and R0B00 are quantitatively in good
agreement with our previous report (Kuroda et al. 2020),
which employed the same initial condition except the neutrino
opacity set.
We next explain the different explosion dynamics seen in the

two magnetized models, particularly focusing on the reason
why the initially less magnetized model R1B12 eventually
shows a more energetic explosion. Figure 3 depicts the mass
inflow (  <M 0) and outflow rates (  >M 0) by the solid lines
and the total mass accretion rate by the dashed–dotted line. The
color represents either model R1B13 (red) or R1B12 (blue).
The rate is measured at R=100km so that we can encompass
the base of the MHD outflow located at R∼a few 10km. In
model R1B12 (blue lines), the absolute values of both the mass
inflow and outflow rates are significantly larger than those of
model R1B13 (red). Especially after t 40pb ms, the mass
inflow rate in model R1B12 shows a larger value of ~ -M1 s 1

from the one in R1B13. At the same time, a large amount of
mass ejection also takes place in model R1B12, resulting in a
moderate difference between the total mass accretion rates of
the two models (dashed–dotted lines). The smaller mass inflow
rate in model R1B13 is a consequence of the stronger explosion

Figure 2. Top: time evolution of maximum (thick lines) and averaged shock
radii (thin) for all models. To show more clearly the lines of model R0B00, we
multiply them by 10. Bottom: we plot the diagnostic explosion energy. Because
Eexp of model R0B00 is essentially zero, we omit plotting it.
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interval of ∼180ms. Model R1B12 is thus considered to be
entering the shock runaway phase directly after bounce.

Its explosion morphology exhibits a clear bipolar-like
structure with a slight asymmetry with respect to the equatorial
plane. From the bottom mini panels (a) and (b), the expansion
toward the positive z-axis is more energetic than that in the
negative direction. The bipolar structure consists of high-
entropy ejecta, and the entropy increases with time. The
forefront of the bipolar jet shows the highest entropy of
~s k15 B baryon−1 at ~t 183pb ms, while the vicinity at the

base of jets shows the highest value exceeding ~s k20 B
baryon−1 at ~t 367pb ms (yellowish region in the top-right

panel). Furthermore, the jet barycenter shows a clear displace-
ment from the rotational axis, like a helical structure seen in the
top-left panel, indicating the appearance of the kink instability
(e.g., Begelman 1998). This is consistent with previous full 3D
MHD CCSN simulations (Mösta et al. 2014; Kuroda et al.
2020). From the bottom-right panel, we see that the magnetic
pressure dominates over the gas pressure inside the outflow
(red region), indicating that the MR-driven explosion occurs in
this model.
Regarding the north–south asymmetry seen in the explosion

morphology, one might expect that it could be caused by the
parity-violation effects. We, however, consider that the

Figure 1. Top: the volume-rendered entropy for model R1B12 at two different time slices =t 183pb ms (left panel) and 367ms (right). The white vertical line
indicates the length scale and is also parallel to the rotational axis (z-axis). Note that the entropy range differs in each panel. Bottom: we depict 2D contours of the
entropy (left) and plasma β (right) in logarithmic scale at the final simulation time of =t 316pb ms. There are three mini panels in the bottom panels. Each mini panel
shows a 2D slice on the y=0 (mini panel (a)), x=0 (b), and z=0 (c) planes.
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Quantum Kinetics: It’s still all about the angular distributions!

𝑅" 𝑅# 𝑅$%&'
flavor mixing due to

neutrino forward scattering
on electrons

MSW

flavor mixing due to 
neutrino forward scattering

on neutrinos

flavor mixing due to 
fast flavor instability

JCAP02(2017)019

Figure 1. Schematic geometry of the model and flavor-dependent zenith-angle distributions of neu-
trino fluxes. The 3 ellipses are schematic polar plots of the normalized angular distributions of the ⌫e

(blue), ⌫̄e (red), and ⌫x (green) fluxes at the point where the arrows originate.

in the weak interaction basis, where � =
p

2GFne. Finally, the e↵ective Hamiltonian due to
⌫ � ⌫ interactions is given by

⌦⌫⌫ =
p

2GF

Z
d3q

(2⇡)3
(%q � %̄q)(1 � vp · vq) , (2.4)

where the term (1�vp ·vq) leads to multi-angle e↵ects [12], i.e., neutrinos moving on di↵erent
trajectories experience di↵erent potentials.

The last term on right-hand-side in eq. (2.1) represents a collisional term acting on
neutrino flavor evolution if they are still undergoing collisions with matter or amongst them-
selves. Collisions occur at a rate proportional to G2

F . In the context of both MSW and
collective flavor conversions, the collisional term is expected to be negligible, as the con-
versions occur far from the neutrinosphere, where neutrinos are free-streaming. However,
the situation is less clear for fast conversions. A back-of-the-envelope calculation, using a
nucleon density nB = ⇢nuc/mN ⇡ 1.8 ⇥ 1038 cm�3 and the neutrino-nucleon scattering cross-
section � ⇠ G2

FE2
⇠ 10�42 cm�2 for E⌫ ⇠ 10 MeV, suggests that the scattering rate is

� = �nB ⇠ 107 s�1. We will find fast conversions can occur with a larger rate ⇠ 108 s�1

and therefore neglect the collisional e↵ects as a first approximation. We leave a dedicated
investigation of this to a future work.

Even after neglecting the collisions, a self-consistent solution of the flavor evolution
requires solving the complete space-time-dependent problem described by eq. (2.1). First
attempts at solution, by Fourier transforming eq. (2.1) along some of the space or time
directions, have been recently presented in [29–35]. However, with the tools available at
present, solving the full seven-dimensional problem remains a formidable challenge.

Interestingly, a major simplification suggests itself if one is interested in studying flavor
conversions only at small distances from the SN core. Most of the neutrinos are emitted
around a radius O(10) km from the center of the SN. For phenomena that take place very
close to this emission region, the curvature of the neutrinosphere is not relevant. We therefore
model the source region as a di↵use flat infinite plane, as shown in figure 1.

– 4 –

• Duan, H., Fuller, G. M., & Qian, Y.-Z. 2010, ARNPS 60, 569
• Tamborra I. and Shalgar S. ARNPS 

2021 71, 165

well understoodnot as well understood

Dasgupta, Mirizzi, and Sen, JCAP 1702, 019 (2017)

Length and Time Scales Severe
• length scale is O(1 cm) and typical CCSN radial resolution is O(100 m) – differ by O(10!)
• time scale is O(1 ns) and typical CCSN temporal resolution is O(1 𝜇s) – differ by O(10")

How do we couple this quantum evolution to the classical evolution?

Do we know the QKE? 

• Mean field versus many-body approaches (Volpe, arXiv: 2301.11814)?
• Moments approaches?



The Anatomy of a Core Collapse Supernova Neutrino “Light Curve”
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Will we get the right amplitudes?

Will we get the right accretion phase duration?
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Opportunities



remove shortcomings of the widely used independent par-
ticle model in which electron captures are suppressed by
Pauli blocking for nuclei with N ! 40 [23]. This typically
happens at a density of some 1010 g cm"3 above which
electron captures on free protons govern the evolution of
the electron fraction. The improved rates for core collapse
are based on shell model Monte Carlo calculations of
nuclear properties at finite temperatures, complemented
with a random phase approximation for the electron cap-
ture rates of a wide sample of nuclei in the mass range
between A # 65 and A # 112 with abundances given by
nuclear statistical equilibrium [25]. In supernova simula-
tions with these improved rates electron captures by nuclei
dominate over capture on free protons, and interesting

changes were found during core collapse, bounce, and
postbounce evolution [25,26]. In the panels of the middle
columns of Figs. 1 and 2 one can see the corresponding
differences in the neutrino emission properties for simula-
tions of a 15 M$ and a 25 M$ progenitor with the new
capture rates according to Langanke, Martı́nez-Pinedo, and
Sampaio (LMS) [27] in comparison to runs with the tradi-
tional rate treatment. Despite of the visible variations with
the rate treatment, however, the spread of results for differ-
ent progenitors does not widen and again the core proper-
ties seem to converge during collapse by a self-regulation
of electron captures. It is unlikely that this result will
change when incoherent neutrino scattering off nuclei is
included in the models. The effects of this process during
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FIG. 1 (color online). Luminosities as functions of time for !e (top), !!e (middle), and heavy-lepton neutrinos (bottom). In the left
column results for different progenitor stars between 11:2 M$ and 25 M$ (left column; the progenitor mass is indicated by the number
after the first letter of the model name [21]) are shown, in the middle column for simulations with the new treatment of electron
captures by nuclei during stellar core collapse according to LMS (solid and dotted lines corresponding to the right pair of curves)
compared to the traditional description (lines corresponding to the left pair of curves) in case of a 15 M$ and a 25 M$ star. The right
column shows results for three different nuclear equations of state applied to the collapse of a 15 M$ progenitor (see text for more
details). The luminosities are given for an observer at rest, evaluated at a radius of 400 km with a corresponding time retardation of
about 1 ms. Time is normalized to the moment of shock formation defined by the instant when the entropy behind the shock first
exceeds a value of 3 kB per nucleon.
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Opportunities: Electron Neutrino Burst
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Weak Progenitor
Mass Dependence

EOS DependenceSome Model 
Dependence

As a specific example of a calculation, Figure 6 shows the
results of one of the 5×104 realizations of a CCSN detection
in Hyper-K for each of the distances 4, 7, and 10 kpc for the
15Me LSEOS progenitor model.

After the simulated observations are assembled, Equation (1)
is then fit to the resultant number luminosity histograms (with
error bars) using the curve_fit() function of SciPy.
curve_fit() implements the Levenberg–Marquardt algo-
rithm to fit data to a function with arbitrary parameters. The
function we fit is derived from Equation (4), as follows. First,
the energy luminosity spectrum is converted to number
luminosity spectrum, dL dEn

n n,
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dE E
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Equation (13) can be substituted into Equation (4) to obtain
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where L n
n is given by Equation (1), the superscript n specifies

the use of number luminosity instead of energy luminosity, p
represents the parameter values being used in Equation (1) or
Equation (2), dN′/dEν is the normalized number spectrum, and
the other symbols have the same meanings as in Equation (4).
To use Equation (14), the distance to the SN must be known. If

the SN is visible, an independent measurement of D can be
made. If the SN is obscured, the distance will likely have to be
estimated from the neutrino signal. In our analysis, we assume
knowledge of the distance. In this analysis, we have the
advantage of knowing the energy spectrum from our models,
and that is the spectrum that is used in Equation (14) for our
analysis. An actual detection might entail the measurement of
the energy spectrum of the neutrinosand will likely have an
additional function and parameterization that will be used to fit
the spectrum. We do not perform such a full analysis in this
work, but in principle it would be straightforward. Figures 4
and 5 show that the energy distribution and average energy do
not vary appreciably over the duration of the breakout burst, so
even something as simple as assuming a constant spectrum
through the breakout burst would be reasonable. Therefore,
measurements of the spectrum could be integrated over the
time of the breakout burst to provide higher statistics in
measuring the energy spectrum than measuring a time-
dependent energy spectrum. For a given detector (which has
multiple detection channels), Equation (14) can be applied to
all the interaction channels and the results summed together.
The equation we give to the curve_fit() function to fit the
simulated data is Equation (14), while the parameters that are
being used in the fitting algorithm are those of the intrinsic
number luminosity. The Levenberg–Marquardt algorithm
requires an initial guess for the parameters, for which we
provide the values from Table 4.
After the best-fit fitting parameters are calculated, the

physical parameters are derived from the fit. We emphasize
again that it is not the fitting parametersbut rather the physical
parameters that are important to our analysis. For the main
breakout burst peak, the physical parameters calculated arethe
maximum number luminosity of breakout burst (L n

,maxen ), the
time of maximum luminosity (tmax), the width of the peak (w),
the rise time (trise,1/2), and the fall time (tfall,1/2).

6. RESULTS

We first discuss the results obtained without neutrino
oscillations taken into account, followed by the results
expected based on the neutrino oscillation scenarios due to
the NH and IH. For the purpose of this analysis, we take one
model (15Me, LSEOS) as an example. Throughout this section
(and this work), we use the 95% uncertainties as the basis for
our discussion.

6.1. Results without Neutrino Oscillations

We first consider the case of no neutrino oscillations. While
this is not likely to be the case, it provides a good baseline for
quantifying the capabilities of neutrino detectors in measuring
the properties of the νe breakout burst. This is for two reasons.
The first is that the no-oscillation case represents the case with
the largest detectable νe flux,since the νμ,τ’s to which the νe’s
oscillate, either partially (in the IH) or entirely (in the NH),
have systematically smaller interaction cross sections than do
νe’s in the detectors of our analysis. The second reason is that
any oscillations of νμ,τ’s to νe’s or ,n̄m t’s to ēn ’s openinteraction
cross sections to these species that are larger than those they
otherwise could access, and so the e xn̄ n+ background levels
increase. Thus, the no-oscillation case represents the maximum

Figure 6. Example realization of detection rates in the no-oscillation case with
1σ error bars for CCSN neutrino detections in Hyper-K at distances of 4, 7, and
10 kpc, binned in 1ms time bins. This figure not only shows the overall
increase in signal expected in Hyper-K as the distance to the SN decreasesbut
also gives a general sense of how the expected noise and error bars in each time
bin depend on D.
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of the properties of the νe breakout burst in the NH case. The
preshock neutronization peak in the NH case is unlikely to be
discernible owing to the expected noise.

Based on Figures 14 and 15, the peak will not be discernible
in the NH case for either Super-K or JUNO at any of the
distances in that figure (4, 7, and 10 kpc). The preshock
neutronization peak is also indiscernible in the NH owing to the
expected noise.

40Ar detectors have as their detection channels CC absorp-
tion of νe’s and ēn ’s on the 40Ar nuclei and electron scattering.
Since, for the NH, all the original νe flux becomes νμ,τ’s, the
signal in 40Ar detectors is dominated by the νμ,τ’s that have
become νe’s. The signal of the original νe flux is lost to this
dominating νμ,τ background. This can be seen in Figure 15,
which shows, in the NH case, the expected count rate in DUNE
for all neutrino types and for SNe at distances of 4, 7, and
10 kpc. Neither the νe breakout burst peak nor the preshock

neutronization peak can be made out against the e xn̄ n+
backgrounds.

6.3. Results from Inverse Hierarchy Neutrino Oscillations

In the IH hierarchy case, ∼30% of the original νe flux
remains intact. This makes it easier to detect the νe breakout
burst against the e xn̄ n+ backgrounds than in the NH case. For
Gd-doped water-Cherenkov and scintillation detectors (in
which signals from IBDs and oxygen/carbon NC scatterings
can be subtracted), a clear peak should be discernible in an
appropriately close SN (with “appropriately close” depending
on the size of the detector). Figure 16 shows, in the IH case, the
expected count rate in Hyper-K and Super-K for all neutrino
types, with backgrounds from IBDs and oxygen NC scattering
events subtracted, for SNe at distances of 4, 7, and 10 kpc.
Figure 17 shows the same for JUNO and DUNE, except that

Figure 14. For Hyper-K (left) and Super-K (right), the expected light curve for SNe at 4, 7, and 10 kpc, incorporating the neutrino oscillations expected in the case of
the NH. Detections of neutrinos of all flavors are taken into account, with IBDs and NC scattering off of oxygen subtracted, and (for JUNO) IBDs and NC scattering
off of carbon subtracted. Each time bin shows the mean count rate in that time bin over 104 realizations, and the error bars show the standard deviation based on the
same 104 realizations.

Figure 15. Similar to Figure 14, but for JUNO (left) and DUNE (right). For JUNO, IBDs and NC scatterings off of carbon have been subtracted. For DUNE, no
signals from any detection channel have been subtracted.
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DUNE has no neutrino signal subtracted and JUNO has
neutrinos detected via IBDs and carbon NC scattering events
subtracted. For all four detectors, a cleaner peak is seen in the
IH case than in the NH case (NH case shown in Figures 14 and
15). For Hyper-K, a clear detection of the νe breakout burst
peak in the IH case should be possible at 4 kpc, is marginally
possible at 7 kpc, and is unlikely at 10 kpc. The preshock
neutronization peak is not likely to be discernible in Hyper-K at
any of these distances in the IH case.

For Super-K and JUNO, Figures 16 and 17 show that the νe
peak may be discernible in the IH case for an SN at 4 kpcbut is
not likely to be discernible at 7 or 10 kpc. The preshock
neutronization peak is not discernible at any of these distances
in the IH case.

It is the 40Ar detectors that show the greatest improvement in
measuring the νe signal in the IH case over the NH case. Since
the cross section for νe absorption on 40Ar is so large relative to
the other cross sections considered in this work, the partial
maintenance of the original νe flux makes a big difference in
the detectability of the νe signal in these detectors. Figure 17

shows, in the IH case, the expected count rate in DUNE for all
neutrinotypes, for SNe at distances of 4, 7, and 10 kpc. In the
IH case, the νe breakout burst peak should be discernible at
4 kpc, is marginally discernible at 7 kpc, and is not likely to be
discernible at 10 kpc. The pre-breakout neutronization peak is
not discernible at any of these distances.
Because the IH case allows for certain detectors to have a

discernible peak, in principle it is also possible for the
properties of the νe breakout burst peak to be measured in
the IH case for those SN distances that provide discernible
peaks. We apply the same analysis outlined in Section 5 and
used in the no-oscillation case to calculate the accuracy with
which the properties of the breakout burst can be measured by
those detectors that have the (distance-dependent) ability to
measure a clear peak in luminosity in the IH case. These
detectors include all the detectors focused on in this work,
minus IceCube. In doing this, we make no attempt to correct
for the e xn̄ n+ backgrounds. We do take into account the
partial oscillation of the νe flux into νμ,τ. Since the rising
e xn̄ n+ backgrounds dominatethe tail of the peak, we focus

Figure 16. Similar to Figure 14, but using the neutrino oscillations expected for the IH instead of the NH.

Figure 17. Similar to Figure 15, but using the neutrino oscillations expected for the IH instead of the NH.
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now shows a stronger signal than the first because the
observer is no longer in the worst direction.

The SASI sloshing and spiral motions imply that observ-
ers in opposite directions obtain almost the same signal
modulation with opposite phase. To illustrate the depen-
dence on the observer direction we provide a movie on the
time-evolution of the IceCube rate in the Supplemental
Material [52]. As a static visualization, we show, in
Fig. 2, the relative amplitude of the IceCube detection
rate during the first SASI episode. To define this amplitude
we first note that the signal rate, averaged over all direc-
tions, hardly shows any modulation at all. In a given
direction we define the relative time-dependent rate and
consider its root mean square deviation for the first SASI
episode (½t1; t2" ¼ ½120; 250" ms),

! $
!Z t2

t1

dt
"
R% hRi
hRi

#
2
$
1=2

: (1)

Despite the spiral mass motions during this SASI episode
and the corresponding, considerable time variability of the
emission asymmetry, the time integrated analysis still
reveals a dominant sloshing direction, which produces
two signal ‘‘hot spots’’ in two opposite directions, sur-
rounded by directions with much smaller modulations.

Other progenitors.—Figure 3 shows the IceCube rate for
the other progenitors (11.2 and 20M&) in optimal observing
directions. For the heavier case, a strong SASI develops after
140ms.Again, a global SASI spiralmode largely confined to
a plane appears, lasting until '300 ms, close to the end of
our simulation. The signal modulations are even more pro-
nounced than for the 27M& progenitor and the SASI phase
lasts slightly longer. In contrast, the 11:2M& model exhibits
dominant activity by neutrino-driven convective overturn in
the postshock layer (manifesting itself in a highly time-
variable pattern of rising high-entropy bubbles and cooler
down flows) without any clear signs of large-amplitude
coherent SASI motions. In this case, only very small, short-
time signal fluctuations are visible for a chosen observer
direction as a consequence of nonstationary, chaotically
changing accretion anisotropies (similar to the cases ana-
lyzed in Refs. [21,30]), although significant directional dif-
ferences of the !"e signal can exist [47]. The detection rate is
also much smaller because of a lower luminosity.

Shot noise.—The main limitations to observing signal
modulations are random fluctuations in the detected neutrino

time sequence. In the third panel of Fig. 1, we show the
IceCube !"e signal in 5ms bins, including a randomshot noise
realization. The signal is roughly 700 ms%1 near maximum,
plus 1:48( 103 ms%1 background, i.e., roughly 1:1( 104

events per bin, causing a '3% random fluctuation of the
signal itself where the average background is subtracted.We
also show the IceCube signal in the absence of a SN, i.e., the
background fluctuations alone. For a SN at 20 kpc, roughly
the edge of the expected galactic SN distance distribution
[53,54], the signal is still visible to the naked eye, although
the bin-to-bin fluctuation is now roughly 10%.
In the bottom panel of Fig. 1, we show the analogous

signal for Hyper-K, which has no background and, thus,
yields roughly 900 events/bin. Its 3% bin-to-bin random
fluctuation is almost identical to IceCube. Doubling the
distance reduces the signal by four, but as there is no dark
current, the fluctuations grow to about 7%; i.e., at this
distance Hyper-K is superior. We conclude that if the
observer is located in an optimal direction, SASI can be
detected throughout the galaxy.
A serious strategy to filter such signal modulations from

the noise in less obvious cases is beyond the scope of our
work. However, we also illustrate the signal in terms of its
Fourier power spectrum, following Ref. [20]. We select the
time interval of 100–300 ms, where SASI develops for our
progenitors.With the adopted signal duration of# ¼ 200 ms,
the spacing of the discrete Fourier frequencies is $f ¼
1=# ¼ 5 Hz.We use aHannwindow function on our interval
to reduce edge effects in the Fourier transform. Theminimum
requirement for signal detection is that the Fourier spectrum
sticks above background. The average power spectrum of a
random signal sequence does not depend on frequency.
Therefore, the IceCube dark current is a natural baseline
andwe use its power to normalize the signal power spectrum.
Figure 4 shows the power spectrum of the IceCube event

rate for our three SN models thus normalized. A clear peak
exists at '80 Hz for the two heavier progenitors where
strong SASI appears. The modulation frequency is deter-
mined by the variations of the accretion flow that occur with
the oscillation period of the SASImode. The corresponding
SASI (fundamental) frequency fSASI depends roughly on
the neutron star radius RNS and shock radius RS [10],

FIG. 2 (color online). Relative amplitude of the !"e rate modu-
lation [see Eq. (1)] on a sky-plot of observer directions during
the first SASI episode (120–250 ms) of the 27M& model. FIG. 3 (color online). IceCube rate for optimal observing

directions for the 11.2 and 20M& models at 10 kpc, as in the
top panel of Fig. 1.
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The RBR+ description assumes the neutrino momentum
distribution to be axisymmetric around the radial direction
everywhere, implying that the neutrino fluxes are radial.
The detectable energy-dependent neutrino emission from
the hemisphere facing an observer is determined with a
post-processing procedure that includes projection and
limb-darkening effects [30]. We will use the 27M! model
as our benchmark case because its properties have been
published [15]. Details of the other two simulations will be
provided elsewhere [47]. All simulations used artificial
random density perturbations of 0.1% amplitude on the
whole numerical grid to seed the growth of hydrodynamic
instabilities. None of the models had exploded at the end of
the computation runs.

Detector signal.—In the largest operating detectors,
IceCube and Super-K, neutrinos are primarily detected
by inverse beta decay, !!e þ p ! nþ eþ, through
Cherenkov radiation of the positron. We represent the
neutrino emission spectra in the form of Gamma distribu-
tions [48,49]. We estimate the neutrino signal following the
IceCube Collaboration [37], accounting for a #13% dead-
time effect for background reduction. We use a cross
section that includes recoil effects and other corrections
[50], overall reducing the detection rate by 30% relative to
earlier studies [20,21,51]. On the other hand, we increase
the rate by 6% to account for detection channels other than
inverse beta decay [37].

We assume an average background of 0:286 ms$1 for
each of the 5160 optical modules, i.e., an overall back-
ground rate of Rbkgd ¼ 1:48& 103 ms$1, comparable to

the signal rate for a SN at 10 kpc. The IceCube data
acquisition system has been upgraded since the publication
of Ref. [37] so that the full neutrino time sequence will be
available instead of time bins.

IceCube will register in total around 106 events above
background for a SN at 10 kpc, to be compared with around
104 events for Super-K (fiducial mass 32 kton); i.e.,
IceCube has superior statistics. On the other hand, the
future Hyper-K will have a fiducial mass of 740 kton,
providing a background-free signal of roughly 1=3 the
IceCube rate. Therefore, Hyper-K can have superior signal
statistics, depending on SN distance. In addition, it has
event-by-event energy information, which we do not use
for our simple comparison.

Signal modulation in the 27M! model.—To get a first
impression of the neutrino signal modulation, we consider
our published 27M! model [15], meanwhile simulated
until #550 ms. This model shows clear SASI activity at
120–260 ms. At #220 ms, a SASI spiral mode sets in and
remains largely confined to an almost stable plane, which
is not aligned with the polar grid of the simulation. We
select an observer in this plane in a favorable direction
and show the expected IceCube signal in the top panel of
Fig. 1. One case assumes the signal to be caused by
antineutrinos emitted as !!e at the source; i.e., we ignore
flavor conversions. The other case takes into account

complete flavor conversion so that the signal is caused by
!!x, i.e., a combination of !!" and !!#. Both cases reveal

large signal modulations with a clear periodicity.
The first SASI episode ends abruptly with the accretion

of the Si=SiO interface, followed by large-scale convection
with much smaller and less periodic signal modulations
(see also Figs. 1, 2, and 6 of Ref. [15]). After about 410 ms,
SASI activity begins again until the end of our simulation.
The signal modulation is now weaker, partly owing to a
lower SASI amplitude and partly to the chosen observer
direction being no longer optimal.
The second panel of Fig. 1 is for a direction orthogonal

to the plane of the first SASI episode; i.e., the signal
modulation is particularly small. The second SASI episode

FIG. 1 (color online). Detection rate for our 27M! SN pro-
genitor, upper panels for IceCube, bottom one for Hyper-K. The
observer direction is chosen for strong signal modulation, except
for the second panel (minimal modulation). Upper two panels:
IceCube rate at 10 kpc for !!e (no flavor conversion) and for !!x

(complete flavor conversion). The lower two panels include a
random shot-noise realization, 5 ms bins, for the indicated SN
distances. For IceCube also the background fluctuations without
a SN signal are shown.
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Opportunities: Accretion Phase

Tamborra et al. PRL 111, 121104 (2013)

SASI-induced oscillations.

For an optimal viewing angle, the “SASI 
can be detected throughout the Galaxy.” “SASI Meter”: “The SASI frequency and amplitude can be 

reconstructed if D ≲ 5 kpc for Hyper-K (D ≲ 10 kpc for IceCube).” 

Lin et al. PRD 101 123028 (2020)
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Impact of Exotica: Axions

of the neutrino emission timescale. In turn, the neutrino
luminosities and average energies of all flavors are reduced
as soon as axion losses become significant. For the sake of
simplicity, in Fig. 6 we show only the neutrino luminosity
for ν̄e, as those are the most relevant ones for possible
detection prospects through the inverse β decay, e.g., at
the Super-Kamiokande detector [68]. The magnitude of

the reduced neutrino emission timescale depends on the
magnitude of the axion emissivity; high rates aNN result in
a more severe shortening, which is substantially less
pronounced for the updated and reduced rates aNN!.
Note that the latter neutrino fluxes and average energies
are nearly indistinguishable from the reference case without
any axion losses, during the early PNS evolution.
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FIG. 6. Evolution of the ν̄e and axion luminosities Lν̄e and La as well as the average neutrino energies hEνi for all neutrino species
(here, we represent the heavy neutrino flavors collectively as νx ¼ νμ), sampled in the comoving frame of reference at 500 km. For the
axion luminosities, we distinguish axions from nucleon-nucleon bremsstrahlung (2) ðNNÞ and axions stemming from pion ðπÞ
processes (3).
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t≳ 2 s, leading to a reduction by a factor of about 2 of the
signal at t ∼ 7 s. The updated bremsstrahlung rate aNN!

has a considerably reduced impact, and the complete run
becomes nearly indistinguishable from the reference one.
Differences become visible only at t≳ 4 s, reducing the
signal by a factor of about 1.2 with respect to the reference
case. If we now include the pionic process, the drop of the
neutrino event rate becomes dramatic, being evident with
respect to the reference case already at about t≳ 1 s. In the
case of noninteracting pions aπ, the final reduction of the
signal is comparable to what is obtained with the aNN
bremsstrahlung process. However, the drop of the signal
is faster at early times. Including interacting pions aπ!

features an even more dramatic drop of the event rate at
early times, resulting in a reduction by a factor of 3 at
t ∼ 7 s with respect to the reference case.
Figure 8 shows the detectable positron spectra for the

different models considered, integrating the signal in two
time windows, namely, t ∈ ½1; 2# s (upper panel) and
t ∈ ½2; 7# s (lower panel), respectively. We see that at early
times the effect of axion emission is marginal in the case of
only bremsstrahlung processes, regardless of whether the
rate is corrected ðaNN!Þ or not ðaNNÞ. On the other hand,
in the presence of pionic processes, the suppression of the
positron spectrum already shows a reduction of a factor
about 1.6 at the peak with respect to the reference case,
for the interacting pion scenario aπ!. In the second, later
time window, the effect of the suppression of the positron
spectrum is more remarkable, except in the case of aNN!,
which remains nearly indistinguishable in comparison to
the reference case. On the other hand, we find a reduction
of the peak of the spectrum of a factor of about 3 in the case
of interacting pions aπ!.
A further signature of the axion emission would be the

impact on the SN binding energy EB, carried by neutrinos.
Note that the axion emission would lead to a reduction of

the SN binding energy. This effect is illustrated in Fig. 9,
where we show the evolution of the energy carried away to
infinity by neutrinos of all flavors (top panel) and axions,
distinguishing bremsstrahlung processes (middle panels)
and pionic processes (bottom panel), for the different
scenarios discussed above. Note that the early and sudden
rise of the energy carried by neutrinos is due to the
contributions from the stellar core collapse, bounce, and
early postbounce phases prior to the SN explosion onset,
during which all simulations are identical and during which
we did not find any impact from the inclusion of axions.
We realize that in the case of bremsstrahlung processes

the energy carried by axions rises continuously, as indi-
cated by the slowly increasing temperature at the PNS
center, where most axions are being produced from
bremsstrahlung processes. When the temperature starts
to decrease, the axion emissivity decreases simultaneously,
which is the case at around 5 s for aNN and only at around
10 s for aNN!. The total energy carried away is similar
for aNN and aNN!; however, both of their magnitudes,
8 × 1052 and 4 × 1052 erg, respectively, are much lower
than that of neutrinos—i.e., neutrinos dominate the losses
during the PNS deleptonization phase. In particular, the
weak feedback for aNN! leaves nearly no difference
notable in the energy carried away by neutrinos, in
comparison to the reference case.

FIG. 8. Positron spectra in the Hyper-Kamiokande (left scale)
and Super-Kamiokande detectors (right scale) in selected time
ranges, between 1–2 (upper panel) and 2–7 s (bottom panel) for
the models discussed in Sec. IV.

FIG. 7. Count rate in each log-time bin for ν̄e in the Hyper-
Kamiokande (left scale) and Super-Kamiokande detectors (right
scale) due to the inverse-beta interaction for the different
scenarios discussed in Sec. IV. The vertical error bars show
the Poisson uncertainties on the counts in Hyper-Kamiokande,
and the horizontal error bars show the bin widths.
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there is no significant axion emission, neither from brems-
strahlung nor stemming from pions; (ii) the overall low-
density behavior reflects the limiting dependence on the
temperature of the pion abundance; (iii) the match between
aπ and aπ! at low density as strongly interacting pions
divert into noninteracting pions; and (iv) the substantial
enhancement of the emissivity for aπ! in comparison to aπ
at a density in excess of ρ ≃ 1014 g cm−3, dominating the
axion emission from pions over those of bremsstrahlung,
however, only at high temperatures.

IV. PNS DELEPTONIZATION WITH AXIONS

A comparison of the PNS deleptonization with muons
alone and in addition with pions can be found in the

Appendix, with an overall negligible impact on the PNS
structure and evolution of the neutrino luminosities and
average energies. Here, we report about simulations of the
PNS deleptonization including axions. We distinguish five
different SN simulation setups: (i) the reference model
without axions, (ii) including axion emission from only
nucleon-nucleon bremsstrahlung at the vacuum one-pion
exchange level employing the axion rates of Ref. [41],
denoted as aNN, and including all the improvements of
Ref. [32], denoted as aNN!, then further (iii) aNN! plus
axions stemming from noninteracting and (iv) interacting
pions, henceforth denoted as aπ and aπ!, respectively.
Table I summarizes these different setups, including the
labels used throughout the manuscript and the references
for the different treatments concerning the calculations of

TABLE I. Summary of the different supernova simulations including the references to the various treatments for the calculation of the
axion emissivity.

Label N þ N → N þ N þ a π− þ p → nþ a

Ref. run (Appendix) # # # # # #
aNN Vacuum one-π exchange, mπ ¼ 0 [41,43,66] # # #
aNN! Improvements according to Ref. [32] # # #
aNN! þ aπ Improvements according to Ref. [32] Rates according to Ref. [45] with Σπ ¼ 0
aNN! þ aπ! Improvements according to Ref. [32] Rates according to Ref. [45],

with Σπ according to Ref. [17]

10 20 30

1

2

3

4

5

6

10 20 30

10-4

10-3

10-2

10-1

100

5 10 20 30
0

10

20

30

40

5 10 20 30 40
0

50

100

150

200

250

FIG. 4. Radial profiles of selected quantities, fractions of electrons ðYeÞ, muons ðYμÞ, and pions ðYπ−Þ, temperature ðTÞ, rest mass
density ðρÞ, and the chemical potentials of electrons ðμeÞ and muons ðμμÞ as well as the nuclear charge chemical potential ðμ̂Þ at about 1 s
postbounce during the early PNS deleptonization phase.

TOBIAS FISCHER et al. PHYS. REV. D 104, 103012 (2021)

103012-6

[28] P. Sikivie, Invisible axion search methods, Rev. Mod. Phys.
93, 015004 (2021).

[29] G. G. Raffelt, Astrophysical axion bounds, Lect. Notes
Phys. 741, 51 (2008).

[30] M. Giannotti, I. Irastorza, J. Redondo, and A. Ringwald,
Cool WISPs for stellar cooling excesses, J. Cosmol.
Astropart. Phys. 05 (2016) 057.

[31] M. Giannotti, I. G. Irastorza, J. Redondo, A. Ringwald, and
K. Saikawa, Stellar recipes for axion hunters, J. Cosmol.
Astropart. Phys. 10 (2017) 010.

[32] P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martínez-
Pinedo, and A. Mirizzi, Improved axion emissivity from a
supernova via nucleon-nucleon bremsstrahlung, J. Cosmol.
Astropart. Phys. 10 (2019) 016.Erratum, J. Cosmol. As-
tropart. Phys. 05 (2020) E01.

[33] A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi, and
A. Ringwald, Revisiting the SN1987A gamma-ray limit on
ultralight axion-like particles, J. Cosmol. Astropart. Phys.
02 (2015) 006.

[34] F. Calore, P. Carenza, M. Giannotti, J. Jaeckel, and A.
Mirizzi, Bounds on axionlike particles from the diffuse
supernova flux, Phys. Rev. D 102, 123005 (2020).

[35] R. Bollig, W. DeRocco, P. W. Graham, and H.-T. Janka,
Muons in Supernovae: Implications for the Axion-Muon
Coupling, Phys. Rev. Lett. 125, 051104 (2020).

[36] G. Raffelt and D. Seckel, Bounds on Exotic Particle
Interactions from SN 1987a, Phys. Rev. Lett. 60, 1793
(1988).

[37] M. S. Turner, Axions from SN 1987a, Phys. Rev. Lett. 60,
1797 (1988).

[38] A. Burrows, M. S. Turner, and R. P. Brinkmann, Axions and
SN 1987a, Phys. Rev. D 39, 1020 (1989).

[39] A. Burrows, M. T. Ressell, and M. S. Turner, Axions
and SN1987A: Axion trapping, Phys. Rev. D 42, 3297
(1990).

[40] G. G. Raffelt, Astrophysical methods to constrain axions
and other novel particle phenomena, Phys. Rep. 198, 1
(1990).

[41] T. Fischer, S. Chakraborty, M. Giannotti, A. Mirizzi, A.
Payez, and A. Ringwald, Probing axions with the neutrino
signal from the next Galactic supernova, Phys. Rev. D 94,
085012 (2016).

[42] M. S. Turner, Axions from SN1987A, Phys. Rev. Lett. 60,
1797 (1988).

[43] G. Raffelt and D. Seckel, A selfconsistent approach to
neutral current processes in supernova cores, Phys. Rev. D
52, 1780 (1995).

[44] W. Keil, H. Janka, and E. Muller, Ledoux convection in
protoneutron stars: A clue to supernova nucleosynthesis?
Astrophys. J. 473, L111 (1996).

[45] P. Carenza, B. Fore, M. Giannotti, A. Mirizzi, and S. Reddy,
Enhanced Supernova Axion Emission and Its Implications,
Phys. Rev. Lett. 126, 071102 (2021).

[46] A. Mezzacappa and S. Bruenn, Type II supernovae and
Boltzmann neutrino transport: The infall phase, Astrophys.
J. 405, 637 (1993).

[47] A. Mezzacappa and S. Bruenn, A numerical method for
solving the neutrino Boltzmann equation coupled to spheri-
cally symmetric stellar core collapse, Astrophys. J. 405
(1993) 669–684.

[48] A. Mezzacappa and S. W. Bruenn, Stellar core collapse:
A Boltzmann treatment of neutrino-electron scattering,
Astrophys. J. 410, 740 (1993).

[49] M. Liebendörfer, O. Messer, A. Mezzacappa, S. Bruenn, C.
Cardall et al., A finite difference representation of neutrino
radiation hydrodynamics for spherically symmetric general
relativistic supernova simulations, Astrophys. J. Suppl. 150,
263 (2004).

[50] M. Liebendörfer, S. Rosswog, and F.-K. Thielemann,
An adaptive grid, implicit code for spherically symmetric,
general relativistic hydrodynamics in comoving coordi-
nates, Astrophys. J. Suppl. 141, 229 (2002).

[51] G. Guo, G. Martínez-Pinedo, A. Lohs, and T. Fischer,
Charged-current muonic reactions in core-collapse super-
novae, Phys. Rev. D 102, 023037 (2020).

[52] T. Fischer, G. Guo, A. A. Dzhioev, G. Martínez-Pinedo,
M.-R. Wu, A. Lohs, and Y.-Z. Qian, Neutrino signal from
proto-neutron star evolution: Effects of opacities from
charged-current-neutrino interactions and inverse neutron
decay, Phys. Rev. C 101, 025804 (2020).

[53] S. W. Bruenn, Stellar core collapse: Numerical model and
infall epoch, Astrophys. J. Suppl. 58, 771 (1985).

[54] J. M. Lattimer and F. Swesty, A Generalized equation of
state for hot, dense matter, Nucl. Phys. A535, 331 (1991).

[55] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi,
Relativistic equation of state of nuclear matter for supernova
and neutron star, Nucl. Phys. A637, 435 (1998).

[56] M. Hempel and J. Schaffner-Bielich, Statistical model for a
complete supernova equation of state, Nucl. Phys. A837,
210 (2010).

[57] M. Hempel, J. Schaffner-Bielich, S. Typel, and G. Röpke,
Light clusters in nuclear matter: Excluded volume versus
quantum many-body approaches, Phys. Rev. C 84, 055804
(2011).

[58] A.W. Steiner, M. Hempel, and T. Fischer, Core-collapse
Supernova equations of state based on neutron star obser-
vations, Astrophys. J. 774, 17 (2013).

[59] S. Typel, Relativistic model for nuclear matter and atomic
nuclei with momentum-dependent self-energies, Phys. Rev.
C 71, 064301 (2005).

[60] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. Wolter,
Composition and thermodynamics of nuclear matter with
light clusters, Phys. Rev. C 81, 015803 (2010).

[61] S. Typel, M. Oertel, and T. Klähn, CompOSE—CompStar
online supernovae equations of state, Phys. Part. Nucl. 46,
633 (2015).

[62] J. Antoniadis et al., A massive pulsar in a compact
relativistic binary, Science 340, 448 (2013).

[63] E. Fonseca et al., The NANOGrav nine-year data set: Mass
and geometric measurements of binary millisecond pulsars,
Astrophys. J. 832, 167 (2016).

[64] F. X. Timmes and D. Arnett, The accuracy, consistency, and
speed of five equations of state for stellar hydrodynamics,
Astrophys. J. Suppl. 125, 277 (1999).

[65] T. Fischer, G. Martínez-Pinedo, M. Hempel, and M.
Liebendörfer, Neutrino spectra evolution during protoneu-
tron star deleptonization, Phys. Rev. D 85, 083003 (2012).

[66] R. P. Brinkmann and M. S. Turner, Numerical rates for
nucleon-nucleon axion Bremsstrahlung, Phys. Rev. D 38,
2338 (1988).

TOBIAS FISCHER et al. PHYS. REV. D 104, 103012 (2021)

103012-16

Fischer et al. 2021 104 103012 (2021)



difference between the two waveforms until t2b and the
cumulative emitted GW energies are quantitatively similar
(bottom of Fig. 2). In accord with the more compact PCS,
the peak GW frequency for the hybrid EOS is always
higher than that for the STOS EOS.
Around t2b, the PT-induced collapse results in a burst of

GW emission with a much larger amplitude than those of
earlier episodes. In Fig. 2, the 10 ms window around t2b is
stretched in time to show clearly this burst, which is
associated with the PT-induced collapse and bounce. The
maximum amplitude of hþ reaches 10−20 and ∼30 times
larger than those of the other episodes. The energy carried
by this burst is ∼4.6 × 10−7 M⊙c2, which is ∼3 orders of
magnitudes more than the GWenergy of the other episodes
(and also that of the signal for the STOS EOS). Our
numerical test shows that this GW burst results from
asphericities developed between tb and t2b [30]. After this
burst, the amplitude damps quickly to the same level as
before t2b. This part of signal should come from the
oscillations of the PCS with a pure quark core.
A time-dependent spectrum (or spectrogram) is useful

for understanding the emission mechanisms of GWs, as
well as designing efficient detection strategies. Figure 3
shows the spectrogram of the GW signal extracted from the
simulation using the hybrid EOS. We use a Kaiser window
with a width of 25 ms for the short-time Fourier transform
except for around t2b where a width of 10 ms is used.
Before t2b, the spectral evolution is similar to that of the
STOS EOS (see [30]). The GW peak frequency is con-
tinuously increasing, in accord with the evolution of the
Brunt-Väisälä frequencies fBV [Eq. (3) in [30] ] at densities
between 1011 and 1012 g cm−3 (blue band in Fig. 3), which
is approximately the PCS surface [36]. Around t2b, the GW
burst has a much higher frequency (∼2500–4000 Hz). This
is related to the change of the dominant GW emission

region from ∼10–20 km to ∼5–10 km (see [30]), which is
inside the quasistatic core during the second collapse and
bounce. During this time, fBV peaks at 2900 Hz near a
radius of 10 km (ρ ≃ 8 × 1013 g cm−3) and is closer to the
observed GW frequency.
Shortly after t2b, the GW peak frequency drops back to

∼1000 Hz and continues to increase afterwards, albeit at a
much faster rate. We find that fBV has a much larger spread
inside the PCS and the GW spectral evolution does not
match the track of fBV. After tb þ 300 ms, the peak
frequency of the dominant GW emission is closer to fBV
at densities ∼5 × 1012 g cm−3. Nevertheless, due to the
much larger ρc (≳4 times) and compactness of the PCS for
the hybrid EOS (Fig. 1), the peak GW frequency is 2–3
times higher than that for the STOS EOS. The GW spectral
evolution after t2b contains information about the structure
and evolution of the PCS with a pure quark core, from
which one may infer the properties of the quark EOS (e.g.,
bag constant).
Detection prospect:To estimate the detectability of the

GW signals, we calculate the dimensionless characteristic
GW strain (hchar) [37] assuming a distance of 10 kpc, and
compare it with the sensitivity of Advanced LIGO in Fig. 4.
Below ∼1000 Hz, hchar are quantitatively similar for the
hybrid and STOS EOSs. At higher frequencies, hchar for the
hybrid EOS shows a broad peak between ∼2500–4000 Hz,
which is also above the detector’s sensitivity curve. This
part is mainly contributed by the burst associated with the
PT-induced collapse, seen from the comparison between
the entire hchar and that between t2b − 3 ms and t2b þ 7 ms.
We calculate the single-detector signal-to-noise ratio

(SNR) of the GW waveforms assuming the optimal
orientation using Eq. (1.1) in [37]. If a confident detection
requires an SNR of 8, then for the hybrid EOS, inclusion
(exclusion) of the burst yields a detection radius of
22 (12) kpc. The detectability of the burst is not signifi-
cantly better because the current detectors are optimized for
GW signals at ∼10–1000 Hz. The amplitude of hchar and

FIG. 2. GW waveforms hþðtÞ extracted from the CCSN
simulations using the hybrid (black solid) and STOS (red dashed)
EOSs. The 10 ms window around the second bounce t2b ≃ tb þ
287 ms is stretched in time to clearly show the loud GW burst. hþ
in the other two episodes are multiplied by a factor of 5 to
emphasize the contrast in the amplitude. The cumulative emitted
GW energies are shown at the bottom.

FIG. 3. Color map of the time-dependent power spectral density
(PSD) for the GW waveform extracted from the simulation using
the hybrid EOS. The color-filled bands track the evolution of the
Brunt-Väisälä frequencies at densities between 1011 and
1012 g cm−3 for the hybrid (blue) and STOS (green) EOSs.
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Figure 6. The neutrino spectrum without a phase transition (thick lines) and with a phase transition
(thin lines). The case with a phase transition to strange quark matter results in a second peak in
antineutrinos. The average energies of the emitted neutrinos increases also. Reprinted figure with
permission from [26]. Copyright (2009) by the American Physical Society.

Our supernova simulation runs were performed for different parameters, where the quark
core appears at tpb = 200 ms to 500 ms post-bounce. The results (tpb, baryonic mass and
explosion energy) are significantly sensitive to the location of the QCD phase transition (i.e.,
the bag constant in our case). Heavier progenitor masses can lead to the formation of a black
hole which could be circumvented by stiffening the quark EoS in order to explain the rather
long emission of neutrinos from SN1987A.

Most interestingly, we find that the temporal profile of the emitted neutrinos out of the
supernova reflects the features of the QCD phase transition. Figure 6 shows the neutrino
luminosity and the mean energy as a function of time. The first peak in electron neutrinos is
due to the first shock. When the QCD phase transition is included we find a second peak in
electron anti-neutrinos at about the time when the strange quark matter core is created. The
pronounced second peak of anti-neutrinos is due to the protonization of the material when the
second shock front runs over the neutrinosphere. We note that the location of the second peak
and its height is controlled by the critical density and strength of the QCD phase transition!

4. Summary

The QCD phase transition to strange quark matter leads to a rich variety of astrophysical
signals involving compact stars and supernovae. Neutron stars with a core of strange quark
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the mass accretion rate at the shock front (Figure 5(c)). The
sudden decline in the ram pressure ahead of the shock along
with the still significant mass accretion luminosity from the
surface of the protoNS is the trigger for shock revival in this
model. Lacking a density decrement, there is no corresponding
sudden decrease in the accretion ram to trigger shock revival in
F15.79. In this model, shock revival occurs about 100 ms later
than in F15.78, following a period during which the continuing
core and accretion luminosities, coupled with a gradual
hardening of the νe and n̄e spectra (Figure 6(a)), continue to
pump energy into the postshock region. Eventually an
accretion/luminosity critical condition is satisfied (as formu-
lated for 1D by Burrows & Goshy 1993; and extended to multi-
D by Muller & Janka 2015; Summa et al. 2016) and shock
revival ensues.

This description of the onset of shock revival is reflected in
the often used timescale inequality criterion. Shock revival is
triggered when the the advection or dwell timescale, τadv, of a
fluid element in the gain region, the region inside the shock
where heating exceeds cooling, becomes longer than the
heating timescale, τheat, the timescale for an e-fold increase in
the total energy of a fluid element by neutrino heating (Janka
et al. 2001; Thompson et al. 2005; Buras et al. 2006;
Fernández 2012). With τadv approximated as M Mgain , where
steady-state conditions are assumed, and t = E Qheat gain gain,
where Egain and Qgain are the integrated total energy and the
integrated net heating rate of material in the gain layer,
respectively, these timescales are plotted for both models in
Figure 5(b). The sudden switch from τadv < τheat to τadv > τheat
at 120 ms for F15.78 is brought about by the abrupt increase in
τadv due to the advection of the density decrement through the
shock and its immediate consequent expansion. Absent a

density decrement trigger, no such sudden increase in τadv is
observed for F15.79 until 210 ms. Rather, there is a sustained
period from 120 to 210 ms during which τadv slowly increases
and τheat slowly decreases, indicating a heating-driven build up
of internal energy and pressure inside a slowly expanding
heating region. At 210 ms, τadv exceeds τheat sufficiently for
shock revival to occur.
Another indicator of shock revival dynamics is the heating

efficiency, ηf, defined by

( )
¯


h =

+n n

Q
L L

, 1f
e e

and plotted for the two models in Figure 6(b). As before, Q is
the net neutrino energy deposition rate in the gain region, the
region inside the shock where the neutrino energy deposition
exceeds emission, and nL e and n̄L e are the νe and n̄e luminosities
at the base of the gain region, respectively. Until the density
decrement of F15.78 reaches the shock at 120 ms, the heating
efficiencies for both models are quite similar, reflecting their
similar core structures at bounce and the similar rates of mass
advection through the shock during this time. The heating
efficiencies rise during this time primarily because of the
increase in the neutrino RMS energies, as shown in Figure 6(a).
The decline in ηf for F15.78 after 120 ms is due to a
combination of the leveling off of its neutrino RMS energies
(Figure 6(a)) and the decline in the density of the heating
region following the expansion of the shock. The continuing
rise in the νe and n̄e RMS energies in F15.79 past 120 ms leads
to increasing heating efficiency (Figure 6(b)) that persists until
the occurrence of shock revival for this model at 210 ms,
similar to earlier CHIMERA models (Bruenn et al. 2013; Lentz
et al. 2015) where the shock also revived without a sudden drop
in ram pressure.
Fluid instabilities have long been known to play a key role in

enhancing the possibility of shock revival by increasing the
dwell time of material in the gain region, thereby increasing the
time and efficiency at which material can absorb energy. The
addition of turbulent pressure via the radial Reynolds stress
behind the shock, together with the thermal pressure, also
facilitates pushing the shock outward (Burrows & Hayes 1996;
Couch & Ott 2015; Nagakura et al. 2019). The neutrino-heated
layer develops a negative entropy gradient which can render it
convectively unstable (Herant et al. 1994; Burrows &
Hayes 1996; Janka & Müller 1996) when the convective
growth rate exceeds the rate at which accreting material is
swept through the gain region, parameterized by Foglizzo et al.
(2006)
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Foglizzo et al. (2006) showed that when χ  3 convective
growth is expected to overcome the stabilizing effect of matter
inflow, which we see at 69 ms for F15.78 and 75 ms for
F15.79. These times correlate well with the first appearance of
stable convective structures in the gain region of our models.
Convection persists for only about 50 ms before runaway shock
expansion sets in for F15.78, driven by the density decrement,
and about 150 ms for F15.79.

Figure 6. As a function of postbounce time, (a) the νe and n̄e luminosities and
RMS energies at the gain radius and (b) the neutrino heating efficiency.
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the observed range of explosion energies for MMS ∼ 16 M☉
(Martinez et al. 2022) while F15.78 falls below this observed
range.

The protoNS radii (Figure 8(a)) of the two models are
strikingly similar, while the baryonic masses (Figure 8(b)) are
substantially different. (Following common practice, we use
the region with density >1011 g cm−3 to define the protoNS.)
The baryonic masses are still slowly increasing at the end of the
simulations, at this time having attained values of 1.59 and 1.82
M☉ for F15.78 and F15.79, respectively, which correspond to
cold-NS gravitational masses of 1.46 and 1.62 M☉ using the
approximation formula of Timmes et al. (1996). These masses
are in the range of the observed distribution of slowly rotating
pulsars (Schwab et al. 2010; Özel et al. 2012; Özel &
Freire 2016). While less closely constrained than the masses of
binary NSs, slowly rotating pulsars seem a more likely
outcome for single, nonrotating progenitor stars.

The neutrino luminosities and RMS energies for the duration
of the simulation are shown in Figure 9 for the two models.
There are clearly substantial differences between these
quantities for the two models in the period from 0.2 to 0.8 s
and again from 1.6 to 2.3 s, with these quantities being larger
for F15.79. These differences are important to the strength of
the explosion, as they partially account for the heating rate and
heating efficiency differences between the two models that will
be explored in detail below.

Figure 10 displays the morphological evolution of the two
models by means of 2D entropy plots. At 0.1 s, both models
exhibit neutrino-driven convection, more highly developed in
F15.78. By 0.3 s, both models have evolved into a highly

prolate configuration with F15.78 having expanded farther at
this time. At 1 s, both models have expanded much farther with
F15.79 having overtaken F15.78. F15.78 has become almost
unipolar at this time, the transition from bipolar to unipolar
occurring roughly between 0.4 and 0.6 s, while F15.79 remains
clearly bipolar.
Considering the diagnostic energies of the two models

(Figure 7(b)) again, it is clear that the major differences
between the two models get established during the first 0.6 s.
Our primary focus in Sections 5.2–5.7 will therefore be to
examine the origin of these evolutionary differencesduring this
period, relating them to differences in the progenitors. In
Section 5.8, we will take a look at the causes for the later jumps
in the diagnostic energy at ≈1.2 s and ≈1.55 s in F15.78 and at
≈1.65 s in F15.79.

5.2. Heating Rates

To understand how two nonrotating progenitors with almost
equal masses have such dissimilar explosion energy histories
during the first 0.6 s, we begin with the basic driver of the
explosion, the neutrino heating rate +Q . Neutrino heating can
be expressed as an integral over the gain region of the volume-
specific heating rate +q , whose dominant contribution is given
by
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where Xn/p are the neutron and proton mass fractions, ¯n nL e e and
¯n nE e e are the νe and n̄e luminosities and energies, respectively,

¯ ¯ ¯á ñ º á ñ á ñn n n n n nE E E2 3
e e e e e e , ¯n ne e are the νe and n̄e inverse flux

factors (inverse ratios of the first to the zeroth angular moments
of the neutrino distribution), mB is the mean baryon mass, and
la

0, l̄
a
0 are weak interaction constants related to the absorption

mean free path. The quantities in angle brackets are spectral
energy averages.
The total net neutrino heating rates for the two models are

shown in Figure 11(a). The rates for the two models are
practically the same and essentially zero for the first 50 ms
postbounce, after which they are within 15%–20% of each
other until 120 ms postbounce. At this point, the hearing rates
for both models undergo a ∼0.5 s duration peak with the
heating rates for F15.79 exceeding those of F15.78 by a factor
of 2–3 until ≈0.6 s postbounce. These heating rate peaks are

Figure 8. Comparison of the (a) protoNS radii, and (b) protoNS masses of the
two models as a function of postbounce time.

Figure 9. The νe and n̄e luminosites and RMS energies at the gain layer.
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How do we distinguish the progenitors? Clue: The PNS masses differ. And the GW spectrograms differ.
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