Uncertainty on Extractions of the Axial Form Factor from Elementary Targets

Aaron S. Meyer

as meyer.physics@gmail.com meyer54@llnl.gov

October 30, 2023

INT 23-86W — Theoretical Physics Uncertainties to Empower Neutrino Experiments

This work is supported in part by: Lawrence Livermore National Security, LLC #DE-AC52-07NA27344, Neutrino Theory Network Program Grant #DE-AC02-07CHI11359, U.S. Department of Energy Award #DE-SC0020250.

LLNL-PRES-856479

Outline

- Neutrino Cross Sections
- ▶ Quasielastic Scattering from Experiment
 - Constraints from Deuterium Scattering
 - Preliminary Hydrogen Scattering
- ▶ LQCD Survey of $F_A(Q^2)$
 - Summary of $F_A(Q^2)$ Calculations
 - T2K/DUNE Implications
- ► Future Prospects

Neutrino Cross Sections

Measuring Oscillation Probability

Broad flux & distribution of event E_{ν}

Measuring Oscillation Probability

Broad flux & distribution of event E_{ν}

far/near \implies oscillation probability, but picture too simplified...

Neutrino Cross Sections

 E_{ν} spans several kinematic regimes

Different interaction channels contributing to event rates

Need precise, theoretically robust cross sections for multiple event topologies

Neutrino Event Topologies

Reinteractions within nucleus change kinematics Only particles that escape are detectable

Neutrino Event Topologies

Reinteractions within nucleus change kinematics Only particles that escape are detectable

Mismatch between *nucleon* amplitudes & *nuclear* cross sections...

- \implies Event-by-event E_{ν} measurements are not possible
- \implies Reconstruct E_{ν} distributions from measured event rates

Neutrino Oscillation and Quasielastic

Compute *nucleon* amplitudes, ingredients for *nuclear* models Quasielastic is lowest E_{ν} , simplest

Question:

How well do we know nucleon quasielastic cross section from elementary target sources?

- Hydrogen/Deuterium scattering
- Lattice QCD

QE Experimental Constraints

Quasielastic Form Factors

Quasi-free nucleon inside nucleus —

- ▶ F_1, F_2 : constrained by eN scattering
- ► F_P : subleading in cross section, $\propto F_A$ from pion pole dominance constraint

Leading contribution to nucleon cross section uncertainty is axial form factor F_A

Form Factor Parameterizations

Dipole ansatz —
$$F_A(Q^2) = g_A \left(1 + \frac{Q^2}{m_A^2}\right)^{-2}$$

- Overconstrained by both experimental and LQCD data
- ▶ Inconsistent with QCD, requirements from unitarity bounds
- \blacktriangleright Motivated by $Q^2 \rightarrow \infty$ limit, data restricted to low Q^2

Model independent alternative: z expansion [Phys.Rev.D 84 (2011)] —

$$F_A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad z(Q^2; t_0, t_{\text{cut}}) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}} \qquad t_{\text{cut}} \le (3M_\pi)^2$$

- Rapidly converging expansion
- Controlled procedure for adding parameters

Deuterium Constraints on F_A

- Outdated bubble chamber experiments:
 - Total $O(10^3) \nu_{\mu} QE$ events
 - Digitized event distributions only
 - Unknown corrections to data
 - Deficient deuterium correction
- Dipole overconstrained by data underestimated uncertainty ×O(10)

 Prediction discrepancies could be from nucleon and/or nuclear origins

Coming soon:

Updated joint fit with MINER $\nu A \ \bar{\nu}_{\mu} p \rightarrow \mu^{+} n$ dataset

Free Nucleon Axial Form Factor

- We have ~5800 such events on a background of ~12500.
- Shape is not a great fit to a dipole at high Q².
- LQCD prediction at high Q^2 is close to this result, but maybe not at moderate Q^2 .

0.01

3

0.05 0.1

- Hydrogen Fit

See also [Nature 614 (2023)]

10

0.5

Compatible with D₂ Data? Mmmmmaybe?

- We have some progress on joint fits with neutrino-deuterium analysis (*Phys.Rev.D* 93 (2016) 11, 113015), including comprehensive analysis of compatibility.
 - Note that compatibility depends on the choice of vector form factors, since vector-axial vector interference flips sign.
 - We see that compatibility also depends strongly on how low in Q² we use the D₂ data, which might suggest low Q² nuclear effects?
- With BBBA05 vector form factors and Q²>0.2 GeV², $\delta \chi^{2}$ ~5.5, or p-value of ~2%.

28 September 2023

K. McFarland, Measuring Protons with Neutrinos

63

See also [Nature 614 (2023)]

LQCD as Disruptive Technology

How can we improve precision?

Ideal: Modern high stats $\nu\text{-}\mathrm{D}_2$ scattering bubble chamber experiment

 \implies LQCD as a complement to experiment

LQCD Survey and Implications

JOURNALS A-Z

JOURNAL INFO

PRICING & SUBSCRIPTIONS

Home / Annual Review of Nuclear and Particle Science / Volume 72, 2022 / Meyer

Status of Lattice QCD Determination of Nucleon Form Factors and Their Relevance for the Few-GeV Neutrino Program

Annual Review of Nuclear and Particle Science

Vol. 72:- (Volume publication date September 2022) Review in Advance first posted online on July 8, 2022. (Changes may still occur before final publication.) https://doi.org/10.1146/annuver-yuci-010522/120608

Aaron S. Meyer, 1.2 André Walker-Loud, 2 and Callum Wilkinson3

¹Department of Physics, University of California, Berkeley, California, USA; email: asmeyer@berkeley.edu ?Nuclear Science Drivision, Lawrence Berkeley National Laboratory, Berkeley, California, USA "Physics Drivision, Lawrence Berkeley National Laboratory, Berkeley, California, USA

Permissions | Reprints | Download Citation | Citation Alerts

Abstract

Calculation of neutrimo-nucleus cross sections begin with the neutrimo-nucleon interaction, making the latter critically important to flagship neutrino calculation experiments designed limited measurements with post statistical. Attentatively, latter calculation and chromodynamics (LQCD) can be used to determine these interactions from the Sandard Model with quantifiable theoretical uncertainties. Recent Calc Densited 3 ag., and in an collectint agreement with data, and results for the (quasi-)selectint collection and an experiment selection and the same selection agreement with data. The same selection and the same selection and the same selection agreement with the same selection and calculations as an consoling agreement with a same selection agreement and calculations as an consoling allogeness with a selecting allogeness with a same part and socialization experiments. We describe a road may to be dark confidence in the LQCD results and future neutrino socialization experiments. When any the low consolitation experiments.

Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Nucleon Axial Form Factor

LQCD results maturing:

- ▶ Many results, all physical M_{π} : independent data & different methods
- ▶ Small systematic effects observed (expectation: largest at $Q^2 \rightarrow 0$)
- ▶ Nontrivial consistency checks from PCAC

Evidence of slow Q^2 falloff outside of uncertainty from D_2

Free Nucleon Cross Section

- ▶ LQCD prefers 30-40% enhancement of ν_{μ} CCQE cross section
- recent Monte Carlo tunes require 20% enhancement of QE [Phys.Rev.D 105 (2022)] [Phys.Rev.D 106 (2022)]
 similar trend with continuum Schwinger function methods [Phys.Rev.D 105 (2022)] [Eur.Phys.J.A 58 (2022)]
- With improved precision, sensitive to vector FF tension (black vs blue) [Phys.Rev.D 102 (2020)] vs [Nucl.Phys.B Proc.Suppl. 159 (2006)]

T2K Implications

• Dashed dark blue (GENIE nominal) vs solid magenta ($z \exp LQCD$ fit)

- ▶ QE enhancements produce 10-20% event rate enhancement, E_{ν} -dependent
- ▶ cross section changes at ND \neq effective cross section changes at FD: insufficient CCQE model freedom \rightarrow bias in FD prediction
- Monte Carlo tuning invalidates more sophisticated comparisons

DUNE Implications

Solid dark blue (GENIE nominal) vs dashed magenta ($z \exp LQCD$ fit)

- ▶ QE enhancements produce 10-20% event rate enhancement, E_{ν} -dependent
- ▶ cross section changes at ND \neq effective cross section changes at FD: insufficient CCQE model freedom \rightarrow bias in FD prediction
- Monte Carlo tuning invalidates more sophisticated comparisons

Future Directions

Energy Regimes

LQCD Excited States — χPT and $N\pi$

Contamination in $g_A(Q^2)$ primarily from enhanced $N\pi$, mostly from induced pseudoscalar

Correlator fits without axial current not sensitive to $N\pi$ [Phys.Rev.C 105 (2022)] [Phys.Rev.D 105 (2022)]

Alternate fit strategies:

- explicit $N\pi$ operators
- include \mathcal{A}_4 (strong $N\pi$ coupling)

Prediction from χ PT: [Phys.Rev.D 99 (2019)]

First demonstration of $N\pi$: [Phys.Rev.Lett. 124 (2020)]

 χ PT-inspired fit methods for fitting form factor data [Phys.Rev.D 105 (2022)] [JHEP 05 (2020) 126]

Aaron S. Meyer

• Kinematic constraints $(F_P = 0)$

LQCD Target Calculations

Roadmap To Nuclear

Concluding Remarks

Outlook

- ▶ Nucleon form factor uncertainty significantly underestimated
- Mounting evidence that QE ν cross section underestimated ⇒ Attention needed to avoid biased results
- LQCD is a proxy for missing experimental data
- ▶ Nucleon-pion effects are the next frontier...
 - Transition form factors
 - Low-energy constants for meson exchange
 - Pion production
- Exciting results upcoming: hydrogen scattering, LQCD

Thank you for your attention!

Aaron S. Meyer

Backup

Axial Radius (r_A^2)

Radius related to slope: $r_A^2 = -\frac{6}{g_A} \frac{dF_A}{dQ^2} \Big|_{Q^2=0}$

Good agreement with r_A^2 from experiment, poor agreement with large Q^2 Fixing radius to agree at large Q^2 would bring radius down to $r_A^2 \sim 0.25 \text{ fm}^2$

 \implies Incompatible with dipole ansatz

Electro Pion Production

 Predates Heavy Baryon χPT, no systematic power counting

Modern experiments do not report $F_A(Q^2) \implies$ averages out of date Possible argument for comparing to r_A^2 from low Q^2 ; high Q^2 untrustworthy Effort needed to update prediction from photo/electro pion production

LQCD Excited States — Empirical

Compare fit to correlator data ratio Contamination dominated by "transition" states $(0 \rightarrow n, \text{ blue})$ Typically signal below $\lesssim 1 \text{ fm},$ contamination $\gtrsim 2 \text{ fm}$ Excited states present in

practically-achievable large time limit

NME collab:

 Q^2 contamination from $N \to N \pi$

Dominant contribution agrees with χPT expectation

 $N\pi$ is important for $F_A(Q^2)$

LQCD $g_A(Q^2 = 0)$

 g_A is benchmark for nucleon matrix elements in LQCD

Status circa 2018 summarized by USQCD white paper [Eur.Phys.J.A 55 (2019)]

See also: FLAG review [Eur.Phys.J.C 80 (2020)]

Historically g_A low compared to expt excited states (+other...)

Lots of activity since 2018, consistent agreement with PDG full error budgets available

[Eur.Phys.J.A 55 (2019)]

Axial FF - $N\pi$ Interpolating Operators

 2×2 operator basis, explicit 3- & 5-quark interpolating operators

Significantly flatter ratios, simplified analysis Will analysis with only 3-quark operators be consistent?

Resonance Production - $N \to \Delta$

 1π cross section known to 30% [Phys.Rev.C 88 (2013)] DUNE error budget $\lesssim 10\%$ precision [2002.03005 [hep-ex]]

Unconstrained axial form factors in $J^P = 3/2^-$ channels $\implies 100\%$ uncertainties from V - A, A - A interference terms [Phys.Rev.D 74 (2006)]

Previous work by ETM: [Phys.Rev.D 83 (2011)] [Phys.Rev.Lett. 98 (2007)]

Resonance Production - $N \rightarrow N^*$

Hadronic tensor methods for addressing SIS (1.4 GeV $\leq W \leq 2.0$ GeV) See also: [Phys.Rev.D 101 (2020)]

 $\langle \mathcal{O}(0)\mathcal{J}_4(-q)\mathcal{J}_4(q)\bar{\mathcal{O}}(0)\rangle, M_{\pi} \sim 370$ MeV, removed elastic contribution Large $N\pi, N\pi\pi$ contributions

Currently no practical $Q^2 \neq 0$ data in this region [S.Nakamura - NuSTEC S&DIS]

Vector Form Factors - Proton/Neutron

Large tension in proton magnetic form factor

Vector Form Factors - Isospin Symmetric

Uncertain slope of F_2^V

Large uncertainty on isoscalar form factors