Neutrino Cross Sections from Lattice QCD

Aaron S. Meyer

Lawrence Livermore National Laboratory

April 18, 2023

This work is supported by Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344 with the U.S. Department of Energy.

LLNL-PRES-847652

Outline

- ▶ Tests of BSM physics in nuclear systems
- Neutrino Cross Sections
- ▶ Quasielastic Scattering from Experiment
 - Constraints from Deuterium Scattering
- ▶ LQCD Applications
 - Survey of $F_A(Q^2)$ Calculations
 - T2K/DUNE Implications
- ▶ Future Prospects for BSM

Note: all references in online slides are hyperlinked

Introduction

Tests of BSM

Enormous scope of BSM physics - cherry picked examples to focus on

Neutrinoless Double Beta Decay

Majorana neutrinos \implies lepton number-violating ($\Delta L = 2$) nuclear decays (A, Z) \rightarrow (A, Z + 2) + $2e^- + Q_{\beta\beta}$

Nuclear matrix elements for $0\nu\beta\beta$ decay not directly measureable \implies obtained from theory

Matrix elements uncertain – nuclear many-body problem

 $\implies O(1)$ disagreements on NME

 $\left[T_{1/2}\right]^{-1} \propto \left|\mathcal{M}\right|^2$

Evidence that short-range contributions comparable to long-range:

[Phys.Rev.Lett.119 (2017)]

Superallowed β Decay Lifetime

Superallowed $(0^+ \rightarrow 0^+)$ beta decay to predict $V_{ud} \rightarrow$

$$\left|V_{ud}\right|^2 = \frac{2984.43\text{sec}}{\mathcal{F}t(1+\Delta_R^V)}$$

Recent experiment-theory comparison:

 $\begin{array}{ll} \mbox{Theory:} & \left| V_{ud} \right| = 0.97395(21)_{\mathcal{F}t}(10)_{\rm RC} & \mbox{[Phys.Rev.D 100 (2019)]} \\ \mbox{PDG:} & \left| V_{ud} \right| = 0.97420(10)_{\mathcal{F}t}(18)_{\rm RC} & \end{array}$

Theory prediction leads to a 2.2σ tension for first-row CKM unitarity: $|V_{ud}|^2+|V_{us}|^2+|V_{ub}|^2=0.9989(5)$

Dominant uncertainty from $W\gamma$ box diagram contribution to Δ_R^V :

BSM to Hadrons & Lattice QCD

Common thread in scenarios listed – hadronic matrix elements

- \implies Generically beneficial to constrain inputs for nuclear models
- \implies LQCD especially useful when matrix elements inaccessible to expt

Nuclear matrix elements are cutting-edge for LQCD:

- Exponential signal-to-noise problem for baryons
- Small state energy splittings, many states
- Developing formalism to carry out calculations
- ▶ First explorations with problems

Discuss application of LQCD to neutrino quasielastic scattering

 \implies Weak interaction matrix element on free neutron at high energy Circle back to applications to BSM, future prospects

Neutrino Cross Sections

Measuring Oscillation Probability

Event rate from convolution over E_{ν} . Broad flux & distribution of event E_{ν}

Measuring Oscillation Probability

Event rate from convolution over E_{ν} . Broad flux & distribution of event E_{ν} far/near \implies oscillation probability, but picture too simplified...

Neutrino Event Topologies

Many allowed interaction channels, reinteractions within nucleus Particle kinematics change in nuclear medium Only particles that escape are detectable

Neutrino Event Topologies

Many allowed interaction channels, reinteractions within nucleus Particle kinematics change in nuclear medium Only particles that escape are detectable

Mismatch between *nucleon* amplitudes & *nuclear* cross sections...

 \implies Event-by-event E_{ν} measurements are not possible

 \implies Reconstruct E_{ν} distributions from measured event rates

Neutrino Oscillation and Quasielastic

Compute *nucleon* amplitudes, ingredients for *nuclear* models

Quasielastic is lowest E_{ν} , simplest \implies most important

Question:

How well do we know nucleon quasielastic cross section from elementary target sources?

Deuterium scattering
 Lattice QCD

QE Experimental Constraints

Quasielastic Form Factors

Quasielastic (QE) scattering assumes quasi-free nucleon inside nucleus

$$\nu_{\mu} \qquad \qquad \mu^{-} \qquad \mathcal{M}_{\text{nucleon}} = \langle \ell | \mathcal{J}^{\mu} | \nu_{\ell} \rangle \langle N' | \mathcal{J}_{\mu} | N \rangle$$

$$\langle N'(p') | (V - A)_{\mu}(q) | N(p) \rangle$$

$$= \bar{u}(p') \left[\gamma_{\mu} F_{1}(q^{2}) + \frac{i}{2M_{N}} \sigma_{\mu\nu} q^{\nu} F_{2}(q^{2}) + \gamma_{\mu} \gamma_{5} F_{A}(q^{2}) + \frac{1}{2M_{N}} q_{\mu} \gamma_{5} F_{P}(q^{2}) \right] u(p)$$

- F_1, F_2 : constrained by eN scattering
- ► F_P : subleading in cross section, $\propto F_A$ from pion pole dominance constraint

Axial form factor F_A is leading contribution to nucleon cross section uncertainty

Form Factor Parameterizations

Most common in experimental literature: dipole ansatz —

$$F_A(Q^2) = g_A \left(1 + \frac{Q^2}{m_A^2}\right)^{-2}$$

- Overconstrained by both experimental and LQCD data (revisit later)
- ▶ Inconsistent with QCD, requirements from unitarity bounds
- \blacktriangleright Motivated by $Q^2 \rightarrow \infty$ limit, data restricted to low Q^2

Model independent alternative: z expansion [Phys.Rev.D 84 (2011)] —

$$F_A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad z(Q^2; t_0, t_{\text{cut}}) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}} \qquad t_{\text{cut}} \le (3M_\pi)^2$$

- Rapidly converging expansion
- Controlled procedure for introducing new parameters

Deuterium Constraints on F_A

- Outdated bubble chamber experiments:
 - Total $O(10^3) \nu_{\mu} QE$ events
 - Digitized event distributions only
 - Unknown corrections to data
 - Deficient deuterium correction
- Dipole overconstrained by data underestimated uncertainty ×O(10)
- Prediction discrepancies could be from nucleon and/or nuclear origins

Coming soon:

MINER $\nu A \ \bar{\nu}_{\mu} p \rightarrow \mu^{+} n$ dataset & updated form factor fits See [Nature 614 (2023)]

LQCD as Disruptive Technology

How can we improve precision?

Ideal: Modern high stats ν -D₂ scattering bubble chamber experiment

 \implies LQCD as a alternative/complement to experiment, especially with experimentally inaccessible quantities

Build from the ground up:

Nucleon amplitudes from first principles

Robust uncertainty quantification

Well motivated theory inputs to nuclear models/EFTs

LQCD Survey & Implications

Lattice QCD Formalism

Numerical evaluation of path integral Quark, gluon DOFs —

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\psi \, \mathcal{D}\overline{\psi} \, \mathcal{D}U \, \exp(-S) \, \mathcal{O}_{\psi} \, [U]$$

Parameters: $am_{(u,d),\text{bare}}$ $am_{s,\text{bare}}$ $\beta = 6/g_{\text{bare}}^2$

Matching: e.g. $\frac{M_{\pi}}{M_{\Omega}}$, $\frac{M_K}{M_{\Omega}}$, M_{Ω} 1 per parameter

"Complete" error budget \implies extrapolation in a, L, M_{π} guided by EFT, FV χ PT

- $a \to 0$ (continuum limit)
- $L \to \infty$ (infinite volume limit)
- $M_{\pi} \to M_{\pi}^{\text{phys}}$ (chiral limit)

JOURNALS A-Z

JOURNAL INFO

PRICING & SUBSCRIPTIONS

Home / Annual Review of Nuclear and Particle Science / Volume 72, 2022 / Meyer

Status of Lattice QCD Determination of Nucleon Form Factors and Their Relevance for the Few-GeV Neutrino Program

Annual Review of Nuclear and Particle Science

Vol. 72: (Volume publication date September 2022) Review in Advance first posted online on July 8, 2022. (Changes may still occur before final publication.) https://doi.org/10.1146/annuev-nucl-010522/120608

Aaron S. Meyer, 1.2 André Walker-Loud, 2 and Callum Wilkinson3

¹Department of Physics, University of California, Berkeley, California, USA; email: asmeyer@berkeley.edu ?Nuclear Science Drivision, Lawrence Berkeley National Laboratory, Berkeley, California, USA "Physics Drivision, Lawrence Berkeley National Laboratory, Berkeley, California, USA

Permissions | Reprints | Download Citation | Citation Alerts

Abstract

Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Nucleon Axial Form Factor

LQCD results maturing:

- ▶ Many results, all physical M_{π} : independent data & different methods
- ▶ Small systematic effects observed (expectation: largest at $Q^2 \rightarrow 0$)
- ▶ Nontrivial consistency checks from PCAC

Evidence of slow Q^2 falloff, situation unlikely to change drastically

Axial Radius (r_A^2)

Radius related to slope: $r_A^2 = -\frac{6}{g_A} \frac{dF_A}{dQ^2} \Big|_{Q^2=0}$ $(r_A^2 \sim 0.47 \text{ fm}^2 \implies m_A \sim 1.0 \text{ GeV})$

Good agreement with r_A^2 from experiment, poor agreement with large Q^2 Fixing radius to agree at large Q^2 would bring radius down to $r_A^2 \sim 0.25 \text{ fm}^2$

 \implies Incompatible with dipole ansatz

Free Nucleon Cross Section

- ▶ LQCD prefers 30-40% enhancement of ν_{μ} CCQE cross section
- recent Monte Carlo tunes require 20% enhancement of QE [Phys.Rev.D 105 (2022)] [2206.11050 [hep-ph]]
 similar trend with continuum Schwinger function methods [Phys.Rev.D 105 (2022)] [2206.12518 [hep-ph]]
- With improved precision, sensitive to vector FF tension (black vs blue) [Phys.Rev.D 102 (2020)] vs [Nucl.Phys.B Proc.Suppl. 159 (2006)]

DUNE Implications

Solid dark blue (GENIE nominal) vs dashed magenta (z exp LQCD fit)

- ▶ QE enhancements produce 10–20% event rate enhancement, E_{ν} -dependent
- ▶ cross section changes at ND \neq effective cross section changes at FD: insufficient CCQE model freedom \rightarrow bias in FD prediction

Future Directions

Roadmap To Nuclear

Build from the ground up:

- ▶ LQCD calculations of scattering, current interactions
- constraints of LECs for χPT , EFT
- computations of nuclear matrix elements for larger nuclei

Neutrinoless Double Beta Decay

Work is already underway!

Focused on meson contribution – two nucleon contributions are difficult, noisy

Many ongoing computations of NN spectrum, prerequisite to NN contributions

Tackling the $W\gamma$ box diagram

LQCD calculations to obtain unknown matrix elements

Two main issues:

- Matching of finite volume scattering amplitudes to infinite volume c.f. [Phys.Rev.D.101 (2020)]
- $\blacktriangleright\,$ Euclidean \rightarrow Minkowski time, inverse problem

LQCD Inverse Problem

Ill-posed inverse problem, common in other applications:

- Backus-Gilbert: [Geo.Journal.Intl.16 (1968)] [Phys.Rev.D.96 (2017)]
- Maximum Entropy: [Prog.Part.Nucl.Phys.46 (2001)]
- Bayesian Reconstruction: [Phys.Rev.Let.111 (2013)]

Some work to compute inclusive hadronic tensor matrix elements

Concluding Remarks

Outlook

- ► LQCD to be key player for testing BSM scenarios in nuclear systems: ⇒ proxy for missing experimental data
- Making waves in ν oscillation physics:
 - Nucleon form factor uncertainty significantly underestimated
 - Mounting evidence that ν QE cross section significantly underestimated \implies Attention needed to avoid biased results
- ▶ Significant progress being made in LQCD technology
 - \implies Many computations enabled during past few years
- LQCD as a tool to provide insight in nuclear systems
 ⇒ valuable inputs for other nuclear methods

Exciting times are ahead!

Thank you for your attention!

Aaron S. Meyer

Backup

Excited States

Excited States - $\chi {\rm PT}$ and $N\pi$

Contamination primarily from enhanced $N\pi$, mostly from induced pseudoscalar

Correlator fits without axial current not sensitive to $N\pi$ \implies need simultaneous fits including axial matrix elements [Phys.Rev.C 105 (2022)] [Phys.Rev.D 105 (2022)]

Alternate fit strategies to remove $N\pi$ (are they comparable?):

- Kinematic constraints $(F_P = 0)$
- include \mathcal{A}_4 (strong $N\pi$ coupling)

Prediction from χ PT: [Phys.Rev.D 99 (2019)]

First demonstration by NME: [Phys.Rev.Lett. 124 (2020)]

 χ PT-inspired fit methods for fitting form factor data [Phys.Rev.D 105 (2022)] [JHEP 05 (2020) 126]

Aaron S. Meyer

• explicit $N\pi$ operators

LQCD $g_A(Q^2 = 0)$

 g_A is benchmark for nucleon matrix elements in LQCD

Status circa 2018 summarized by USQCD white paper [Eur.Phys.J.A 55 (2019)]

See also: FLAG review [Eur.Phys.J.C 80 (2020)]

Historically g_A low compared to expt excited states (+other...)

Lots of activity since 2018, consistent agreement with PDG full error budgets available

[Eur.Phys.J.A 55 (2019)]

Electro Pion Production

 Predates Heavy Baryon χPT, no systematic power counting

Modern experiments do not report $F_A(Q^2) \implies$ averages out of date Possible argument for comparing to r_A^2 from low Q^2 ; high Q^2 untrustworthy Effort needed to update prediction from photo/electro pion production