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Introduction
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Tests of BSM
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Neutrinoless double beta decay

Superallowed beta decay

Enormous scope of BSM physics – cherry picked examples to focus on

Aaron S. Meyer Section: Introduction 4/ 32



Neutrinoless Double Beta Decay
Majorana neutrinos =⇒ lepton number-violating (∆L = 2) nuclear decays

(A,Z)→ (A,Z + 2) + 2e− +Qββ

Nuclear matrix elements for 0νββ decay not directly measureable
=⇒ obtained from theory

Matrix elements uncertain – nuclear many-body problem
=⇒ O(1) disagreements on NME[

T1/2
]−1
∝
∣∣M∣∣2

Evidence that short-range contributions comparable to long-range:
[Phys.Rev.Lett.119 (2017)]
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[Universe 7 (2021)]
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Superallowed β Decay Lifetime
Superallowed (0+ → 0+) beta decay to predict Vud →∣∣Vud∣∣2 = 2984.43sec

Ft(1 + ∆V
R)

Recent experiment–theory comparison:

Theory:
∣∣Vud∣∣ = 0.97395(21)Ft(10)RC [Phys.Rev.D 100 (2019)]

PDG:
∣∣Vud∣∣ = 0.97420(10)Ft(18)RC

Theory prediction leads to a 2.2σ tension for first-row CKM unitarity:
|Vud|2 + |Vus|2 + |Vub|2 = 0.9989(5)

Dominant uncertainty from Wγ box diagram contribution to ∆V
R :

∆V
R → W γ

n

νe

p

e
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BSM to Hadrons & Lattice QCD

Common thread in scenarios listed – hadronic matrix elements
=⇒ Generically beneficial to constrain inputs for nuclear models
=⇒ LQCD especially useful when matrix elements inaccessible to expt

Nuclear matrix elements are cutting-edge for LQCD:

I Exponential signal-to-noise problem for baryons
I Small state energy splittings, many states
I Developing formalism to carry out calculations
I First explorations with problems

Discuss application of LQCD to neutrino quasielastic scattering
=⇒ Weak interaction matrix element on free neutron at high energy

Circle back to applications to BSM, future prospects
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Neutrino Cross Sections
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Measuring Oscillation Probability

Flux Cross Section

Event Rate

Oscillation Probability

Eν

Φ(
E
ν
)

Eν

σ
(E

ν
)

Eν

N
ev
en
t

Eν

N
ev
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t

Near Detector

Far Detector

Eν

P
ν µ

→
ν µ

Nevent =
∫

bin dEν Φ(Eν)σ(Eν)

[
× P (L/Eν)

]︸ ︷︷ ︸
far detector only[

P (L/Eν)
]
bin
≈
[

Nevent[FAR]
Nevent[NEAR]

]
bin

Event rate from convolution over Eν . Broad flux & distribution of event Eν

far/near =⇒ oscillation probability, but picture too simplified...
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Neutrino Event Topologies
Quasielastic π production Multinucleon
νµ µ−

π

νµ µ− νµ µ−

Fe
w

-b
od

y
M

an
y-

bo
dy

CC0π CC1π CCNp

νµ µ−

π

νµ µ− νµ µ−

Many allowed interaction channels, reinteractions within nucleus
Particle kinematics change in nuclear medium
Only particles that escape are detectable

Mismatch between nucleon amplitudes & nuclear cross sections...
=⇒ Event-by-event Eν measurements are not possible
=⇒ Reconstruct Eν distributions from measured event rates
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Neutrino Oscillation and Quasielastic
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[Rev.Mod.Phys. 84]
νµ flux [arb.unit]

HyperK [1805.04163[physics.ins-det]]

DUNE [1512.06148[physics.ins-det]]

n

νµ

p

µ−
νµ µ−

Compute nucleon amplitudes, ingredients for nuclear models

Quasielastic is lowest Eν , simplest =⇒ most important

Question:
How well do we know nucleon quasielastic cross section

from elementary target sources?

I Deuterium scattering I Lattice QCD
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QE Experimental Constraints
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Quasielastic Form Factors

Quasielastic (QE) scattering assumes quasi-free nucleon inside nucleus

nucleus
n

νµ

p

µ−
Mnucleon = 〈`|J µ|ν`〉〈N ′|Jµ|N〉

〈N ′(p′)|(V −A)µ(q)|N(p)〉

= ū(p′)
[

γµF1(q2) + i
2MN

σµνqνF2(q2)

+ γµγ5FA(q2) + 1
2MN

qµγ5FP (q2)
]
u(p)

I F1, F2: constrained by eN scattering
I FP : subleading in cross section,

∝ FA from pion pole dominance constraint

Axial form factor FA is leading contribution to nucleon cross section uncertainty
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Form Factor Parameterizations

Most common in experimental literature: dipole ansatz —

FA(Q2) = gA

(
1 + Q2

m2
A

)−2

I Overconstrained by both experimental and LQCD data (revisit later)
I Inconsistent with QCD, requirements from unitarity bounds
I Motivated by Q2 →∞ limit, data restricted to low Q2

Model independent alternative: z expansion [Phys.Rev.D 84 (2011)] —

FA(z) =
∞∑
k=0

akz
k z(Q2; t0, tcut) =

√
tcut +Q2 −

√
tcut − t0√

tcut +Q2 +
√
tcut − t0

tcut ≤ (3Mπ)2

I Rapidly converging expansion
I Controlled procedure for introducing new parameters
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Deuterium Constraints on FA
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MINERvA Data

z exp: [Phys.Rev.D 93 (2016)]
dipole: [Eur.Phys.J.C 53 (2008)]
data: [Phys.Rev.Lett. 111 (2013)]

I Outdated bubble chamber experiments:
- Total O(103) νµQE events
- Digitized event distributions only
- Unknown corrections to data
- Deficient deuterium correction

I Dipole overconstrained by data
underestimated uncertainty ×O(10)

I Prediction discrepancies could be from
nucleon and/or nuclear origins

Coming soon:
MINERνA ν̄µp→ µ+n dataset

& updated form factor fits
See [Nature 614 (2023)]
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LQCD as Disruptive Technology
How can we improve precision?

Ideal: Modern high stats ν-D2 scattering bubble chamber experiment
=⇒ LQCD as a alternative/complement to experiment,

especially with experimentally inaccessible quantities

X No nuclear effects
X Realistic uncertainty estimates
X Systematically improvable
X Computers are (relatively)

inexpensive

Experiment

MC
Nucleon

Nuclear
Lattice QCD

Build from the ground up:
Nucleon amplitudes from first principles
Robust uncertainty quantification
Well motivated theory inputs to nuclear models/EFTs
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LQCD Survey & Implications
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Lattice QCD Formalism
Numerical evaluation of path integral

Quark, gluon DOFs —

〈O〉 = 1
Z

∫
DψDψDU exp(−S)Oψ [U ]

Parameters: am(u,d),bare
ams,bare
β = 6/g2

bare

Matching: e.g. Mπ
MΩ

, MK
MΩ

, MΩ
1 per parameter

L

a

Uµ

ψ

ψ

ψ

ψψ̄

Results — first principles predictions from QCD,
gluons to all orders

“Complete” error budget =⇒ extrapolation in a, L, Mπ guided by EFT, FVχPT

I a→ 0 (continuum limit)
I L→∞ (infinite volume limit)
I Mπ →Mphys

π (chiral limit)
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Nucleon Axial Form Factor
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Bands: systematic error budget
Scatter: single ensembles

LQCD results maturing:

I Many results, all physical Mπ : independent data & different methods
I Small systematic effects observed (expectation: largest at Q2 → 0)
I Nontrivial consistency checks from PCAC

Evidence of slow Q2 falloff, situation unlikely to change drastically
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Axial Radius (r2
A)
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Filled circle: full error budget
Open square: incomplete
D2+µH: [Rept.Prog.Phys. 81 (2018)]

Radius related to slope: r2
A = − 6

gA

dFA
dQ2

∣∣
Q2=0

(r2
A ∼ 0.47 fm2 =⇒ mA ∼ 1.0 GeV)

Good agreement with r2
A from experiment, poor agreement with large Q2

Fixing radius to agree at large Q2 would bring radius down to r2
A ∼ 0.25 fm2

=⇒ Incompatible with dipole ansatz
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Free Nucleon Cross Section

[Ann.Rev.Nucl.Part. 72 (2022)]
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I LQCD prefers 30-40% enhancement of νµ CCQE cross section
I recent Monte Carlo tunes require 20% enhancement of QE

[Phys.Rev.D 105 (2022)] [2206.11050 [hep-ph]]

similar trend with continuum Schwinger function methods
[Phys.Rev.D 105 (2022)] [2206.12518 [hep-ph]]

I With improved precision, sensitive to vector FF tension (black vs blue)
[Phys.Rev.D 102 (2020)] vs [Nucl.Phys.B Proc.Suppl. 159 (2006)]
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DUNE Implications
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[Ann.Rev.Nucl.Part. 72 (2022)]

I Solid dark blue (GENIE nominal) vs dashed magenta (z exp LQCD fit)
I QE enhancements produce 10–20% event rate enhancement, Eν -dependent
I Monte Carlo tuning makes more detailed comparisons complicated

=⇒ All channels are adjusted to compensate for QE changes
I cross section changes at ND 6= effective cross section changes at FD:

insufficient CCQE model freedom → bias in FD prediction
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Future Directions
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Roadmap To Nuclear

N

N

N

N

N

π

N

π

n

νµ

p

π

µ−

NN

νµ

NN ′

µ−

N

νµ

N

µ−

N N

A

νµ

X

µ−

Build from the ground up:
I LQCD calculations of scattering, current interactions
I constraints of LECs for χPT , EFT
I computations of nuclear matrix elements for larger nuclei
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Neutrinoless Double Beta Decay

Work is already underway!

Focused on meson contribution – two nucleon contributions are difficult, noisy

π−

π+

e

e

π− → π+ee short-distance contributions
[Phys.Rev.Lett.121 (2018)]

π−

π−

e

e

ν
π− → π+ee long-distance contributions
[Phys.Rev.D.100 (2019)] [2004.07404 [hep-lat]]

n

n

p

e

e

p

Formal developments
[Phys.Rev.Lett.126 (2021)] [Phys.Rev.D.94 (2016)]

Many ongoing computations of NN spectrum, prerequisite to NN contributions
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Tackling the Wγ box diagram

W γ

n

νe

p

e

LQCD calculations to obtain unknown matrix elements

Two main issues:

I Matching of finite volume scattering amplitudes to infinite volume
c.f. [Phys.Rev.D.101 (2020)]

I Euclidean → Minkowski time, inverse problem
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LQCD Inverse Problem
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Backus-Gilbert
Maximum Entropy
Bayesian Reconstrcution
input

(toy data)
[Phys.Rev.D.101 (2020)]

(LQCD data)
[priv.comm. K.F.Liu]

t = 0 ti
(Euclidean) time

WE(~p, ~q, t)︸ ︷︷ ︸
Euclidean

=
∫

WM(~p, ~q, ν)︸ ︷︷ ︸
Minkowski

e−νtdν

Ill-posed inverse problem, common in other applications:
I Backus-Gilbert: [Geo.Journal.Intl.16 (1968)] [Phys.Rev.D.96 (2017)]

I Maximum Entropy: [Prog.Part.Nucl.Phys.46 (2001)]

I Bayesian Reconstruction: [Phys.Rev.Let.111 (2013)]

Some work to compute inclusive hadronic tensor matrix elements

Aaron S. Meyer Section: Future Directions 30/ 32

https://inspirehep.net/literature/1739854
https://academic.oup.com/gji/article/16/2/169/623631
https://inspirehep.net/literature/1597313
https://inspirehep.net/literature/536432
https://inspirehep.net/literature/1244139


Concluding Remarks
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Outlook

[Fermilab]

I LQCD to be key player for testing BSM scenarios in nuclear systems:
=⇒ proxy for missing experimental data

I Making waves in ν oscillation physics:
- Nucleon form factor uncertainty significantly underestimated
- Mounting evidence that ν QE cross section significantly underestimated

=⇒ Attention needed to avoid biased results
I Significant progress being made in LQCD technology

=⇒ Many computations enabled during past few years
I LQCD as a tool to provide insight in nuclear systems

=⇒ valuable inputs for other nuclear methods
Exciting times are ahead!

Thank you for your attention!
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Excited States
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NOTE: expect only approx
agreement between data/curves

[Phys.Rev.Lett.124(2020)]

Compare fit to correlator data ratio
Remnant contamination

dominated by “transition” states
(m→ n, violet)

Statistically significant until 2 fm
typical data . 1 fm

Excited states still present in
practically achievable large time limit

NME collab:
Q2 contamination from N → Nπ

Dominant contribution agrees
with χPT expectation

Nπ is important for FA(Q2)
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Excited States - χPT and Nπ
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FIG. 4: Results for ✏plat
A (Q2, t) (dots) and ✏plat

P (Q2, t) (diamonds) for a source sink separation t = 2 fm and

momentum transfers below 0.25 (GeV)
2
. The discrete values for the latter are determined by the size of the

spatial volume given in terms of M⇡L = 3 (purple), 4 (blue), 5 (black) and 6 (red).

according to

Gplat
A (Q2, t) ⌘ min

0<t0<t
Ge↵

A (Q2, t, t0) , (5.1)

G̃plat
P (Q2, t) ⌘ max

0<t0<t
G̃e↵

P (Q2, t, t0) . (5.2)

These are functions of the momentum transfer and t. Naively one expects the operator has to be
located closely to the middle between source an sink, i.e. t0 ⇡ t/2. At least for small momentum
transfer that are accessible with ChPT we will find this expectation to be true, see below. In
practice, the midpoint estimates

Gmid
A (Q2, t) ⌘ Ge↵

A (Q2, t, t0 = t/2) , (5.3)

G̃mid
P (Q2, t) ⌘ G̃e↵

P (Q2, t, t0 = t/2) . (5.4)

are close to the plateau estimates and work equally well.
As a measure for the N⇡-state contribution we introduce the relative deviation of the plateau

estimates from the true form factors,

✏plat
A (Q2, t) ⌘ Gplat

A (Q2, t)

GA(Q2)
� 1 , ✏plat

P (Q2, t) ⌘ G̃plat
P (Q2, t)

G̃P(Q2)
� 1 (5.5)

and analogously for the midpoint estimates. Figure 4 shows ✏plat
A,P for a source sink separation of t = 2

fm and small momentum transfers below 0.25 GeV2. Without the N⇡ contribution �Gplat
A,P would

be equal to 0. Any deviation from this value is the N⇡ state contamination in percent. Plotted
are the results for the lowest discrete momentum transfers allowed by various spatial volumes with
M⇡L values between 3 and 6.

In case of the axial form factor (dots) we can read o↵ that the plateau estimate overestimates
GA(Q2) by about 5%, essentially independent of Q2. We also reproduce the result for vanishing

momentum transfer found in [9]. In contrast, G̃plat
P (Q2) underestimates the induced pseudo scalar

15

[Phys.Rev.D 99 (2019)]

Axial

Induced
Pseudoscalar

Contamination primarily from enhanced Nπ, mostly from induced pseudoscalar

Correlator fits without axial current not sensitive to Nπ
=⇒ need simultaneous fits including axial matrix elements

[Phys.Rev.C 105 (2022)] [Phys.Rev.D 105 (2022)]

Alternate fit strategies to remove Nπ (are they comparable?):
I Kinematic constraints (FP = 0)
I include A4 (strong Nπ coupling)

I explicit Nπ operators

Prediction from χPT: [Phys.Rev.D 99 (2019)]
First demonstration by NME: [Phys.Rev.Lett. 124 (2020)]
χPT-inspired fit methods for fitting form factor data

[Phys.Rev.D 105 (2022)] [JHEP 05 (2020) 126]
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LQCD gA(Q2 = 0)

gA is benchmark for
nucleon matrix elements in LQCD

Status circa 2018 summarized by
USQCD white paper
[Eur.Phys.J.A 55 (2019)]

See also: FLAG review
[Eur.Phys.J.C 80 (2020)]

Historically gA low compared to expt
excited states (+other...)

Lots of activity since 2018,
consistent agreement with PDG
full error budgets available
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[Eur.Phys.J.A 55 (2019)]
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See refs. in: [2103.05599[hep-lat]]
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Electro Pion Production

Mainz 22
NME 21
RQCD 20
νD z exp
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[J.Phys.G 28 (2002)]

same data, different model

I Large model uncertainty,
not included in world averages

I Valid only in Mπ → 0, q → 0 limits
I Expansion to O(M2

π , Q
2):

- restricted Q2 validity
- lacks shape freedom in Q2

I Predates Heavy Baryon χPT,
no systematic power counting

Modern experiments do not report FA(Q2) =⇒ averages out of date
Possible argument for comparing to r2

A from low Q2; high Q2 untrustworthy
Effort needed to update prediction from photo/electro pion production
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