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Motivation

• Different hadron mass sum rules in QCD→ How do they compare to each other ?

• Example 1: 4-term decomposition (Ji, 1994, 1995, with small re-arrangement)

Hq[Ji] = (ψ
†
iD ·αψ)R[Ji] (quark kinetic plus potential energy)[Ji]

Hm = (mψ̄ψ)R quark mass term

Hg[Ji] = 1
2(E

2
+ B

2
)R[Ji] (gluon energy)[Ji]

Ha = 1
4

(
γm (mψ̄ψ)R + β

2g(F
2
)R

)
anomaly contribution

• Example 2: 3-term decomposition (Rodini, AM, Pasquini, 2020 / AM, Rodini, Pasquini, 2020)

Hq = (ψ
†
iD ·αψ)R quark (kinetic plus potential) energy

Hm = (mψ̄ψ)R quark mass term

Hg = 1
2(E

2
+ B

2
)R gluon energy

(i) either, operators identical but at least one group made a mistake concerning Ha

(ii) or, meaning of two operators (Hq,Hg), generally, is different (→ this talk)

(but still: derivation of operators ? / interpretation of parton energy terms ?)



Energy Momentum Tensor

• Interpretation of EMT

(courtesy, C. Lorcé)

• Symmetric (gauge invariant) EMT in QCD

T
µν

= T
µν
q + T

µν
g

T
µν
q =

i

4
ψ̄ γ

{µ↔
D

ν}
ψ

(
γ
{µ↔
D

ν}
= γ

µ
↔
D

ν
+ γ

ν
↔
D

µ
)

T
µν
g = −F µα

F
ν
α +

g
µν

4
F

2

– T
µν
q contains gluon field through

↔
D

µ
=
→
∂
µ −

←
∂
µ− 2igA

µ
a Ta

– Total EMT not renormalized, but T
µν
i require renormalization



• Trace (anomaly) of EMT in QCD

(Collins, Duncan, Joglekar, 1977 / Nielsen, 1977 / ...)

T
µ
µ = (mψ̄ψ)R︸ ︷︷ ︸

classical trace

+ γm (mψ̄ψ)R + β
2g(F

2
)R︸ ︷︷ ︸

trace anomaly

– T
µ
µ, classical trace (quark mass term), and trace anomaly are UV-finite

• Quark and gluon contribution to trace of EMT (Hatta, Rajan, Tanaka, 2018 / Tanaka 2018)

T
µ
µ = (Tq,R)

µ
µ + (Tg,R)

µ
µ

(Tq,R)
µ
µ = (1 + y)(mψ̄ψ)R + x (F

2
)R

(Tg,R)
µ
µ = (γm − y)(mψ̄ψ)R +

(
β
2g − x

)
(F

2
)R

x and y related to finite parts of renormalization constants→ scheme dependence

• Different scheme choices (Rodini, AM, Pasquini, 2020 / AM, Pasquini, Rodini, 2020)

– MS scheme / MS scheme (Hatta, Rajan, Tanaka, 2018 / Tanaka 2018)

– D1 scheme: x = 0, y = γm
– D2 scheme: x = y = 0

D-type schemes look natural



EMT and Proton Mass

• Forward matrix element of total EMT (for spin-0 and spin-1
2)

〈T µν 〉 ≡ 〈P |T µν |P 〉 = 2P
µ
P
ν

• Relation to proton mass (n = 1
2M , depends on normalization of state)

M = n 〈T µµ〉 = n 〈T 00 〉
∣∣
P=0

=
〈HQCD 〉
〈P |P 〉

∣∣∣
P=0

(∫
d

3
xT

00
= HQCD

)

• Forward matrix element of T
µν
i,R (Ji, 1996)

〈T µνi,R 〉 = 2P
µ
P
ν
Ai(0) + 2M

2
g
µν
Ci(0)

– Ai(0), Ci(0) are gravitational FFs at t = 0

– conservation of (full) EMT implies

Aq(0) + Ag(0) = 1 Cq(0) + Cg(0) = 0

– in forward limit, matrix elements of EMT fully determined by two numbers only

(emphasized also in Lorcé, 2017)



2-Term Sum Rule by Hatta, Rajan, Tanaka
(Hatta, Rajan, Tanaka, JHEP 12 (2018) 008 / Tanaka, JHEP 01 (2019) 120)

• Sum rule based on decomposition of T
µ
µ

M = Mq +Mg = n
(
〈 (Tq,R)

µ
µ 〉+ 〈 (Tg,R)

µ
µ 〉
)

• Recall operators

(Tq,R)
µ
µ = (1 + y)(mψ̄ψ)R + x (F

2
)R

(Tg,R)
µ
µ = (γm − y)(mψ̄ψ)R +

(
β
2g − x

)
(F

2
)R

• Using D-type schemes

(Tq,R)
µ
µ

∣∣
D1

= (1 + γm)(mψ̄ψ)R (Tg,R)
µ
µ

∣∣
D1

= β
2g (F

2
)R

(Tq,R)
µ
µ

∣∣
D2

= (mψ̄ψ)R (Tg,R)
µ
µ

∣∣
D2

= γm(mψ̄ψ)R + β
2g (F

2
)R



2-Term Sum Rule by Lorcé
(Lorcé, EPJC 78, 120 (2018))

• Sum rule based on decomposition of T
00

M = Uq + Ug = n
(
〈T 00

q,R 〉+ 〈T 00
g,R 〉

)
• Renormalized operators (in dimensional regularization) (Rodini, AM, Pasquini, 2020)

T
00
q,R = (mψ̄ψ)R + (ψ

†
iD ·αψ)R total quark energy

T
00
g,R = 1

2(E
2

+ B
2
)R gluon energy

• Interpretation looks clean (component of EMT, and operator form)

• Relation of parton energies to EMT form factors

Ui = M
(
Ai(0) + Ci(0)

)
• Measurement of Ui requires two observables (“indirect”)

– Ai(0) = 〈xi〉 (parton momentum fractions)

– information about Ci(0) from EMT trace



3-Term Sum Rule
(Rodini, AM, Pasquini, JHEP 09 (2020) 067 / AM, Rodini, Pasquini, PRD 102 (2020) 114042)

• Sum rule based on decomposition of T
00

M = Mq +Mm +Mg = n
(
〈Hq〉+ 〈Hm〉+ 〈Hg〉

)
• Renormalized operators

Hq = (ψ
†
iD ·αψ)R quark (kinetic plus potential) energy

Hm = (mψ̄ψ)R quark mass term

Hg = 1
2(E

2
+ B

2
)R gluon energy

• 3-term sum rule can be considered refinement of 2-term sum rule by Lorcé

Mq +Mm = Uq Mg = Ug

– Mm is UV finite, has a clear interpretation, and has been studied frequently

• Interpretation looks clean



4-Term Sum Rule by Ji
(Ji, PRL 74, 1071 (1995) and PRD 52, 271 (1995))

• Sum rule based on decomposition of T
00

into traceless part and trace part

T
µν

=
(
T
µν − T̂ µν

)︸ ︷︷ ︸
traceless part

+ T̂
µν︸ ︷︷ ︸

trace part

T̂
µν

= 1
4 g

µν
T
α
α T

µν
= T

µν − T̂ µν

• Motivation: T̂
µν

and T
µν

are UV finite

• (Consequence of) virial theorem

(Ji, 1995 / Ji, Liu, Schäfer, 2021 / Lorcé, AM, Pasquini, Rodini, 2021 / ...)

M = ET + ES = 3
4 M + 1

4 M (ET ↔ T
00

ES ↔ T̂
00

)

decomposition follows from 〈T µν 〉 = 2P
µ
P
ν

• Final 4-term sum rule obtained by

(i) decomposition of T
00

and T̂
00

into quark and gluon contributions

(ii) re-arrangement in quark sector (re-shuffling between traceless and trace part)



• 4-term decomposition of T
00

M = Mq[Ji] +Mm +Mg[Ji] +Ma = n
(
〈Hq[Ji]〉+ 〈Hm〉+ 〈Hg[Ji]〉+ 〈Ha〉

)
• Renormalized operators (Ji, 1995)

Hq[Ji] = (ψ
†
iD ·αψ)R[Ji] (quark kinetic plus potential energy)[Ji]

Hm = (mψ̄ψ)R quark mass term

Hg[Ji] = 1
2(E

2
+ B

2
)R[Ji] (gluon energy)[Ji]

Ha = 1
4

(
γm (mψ̄ψ)R + β

2g(F
2
)R

)
anomaly contribution

– compared to 3-term decomposition, Ha comes in addition

• Comparison with our renormalized operators

Hg[Ji] = Hg− 1
4(Tg,R)

µ
µ

= 1
2(E

2
+ B

2
)R +

y−γm
4 (mψ̄ψ)R − 1

4

( β
2g − x

)
(F

2
)R

– similar discussion holds for Hq[Ji]

– interpretation of (operator of) Hg[Ji] and Hq[Ji] ?

– also, interpretation of Hg[Ji], Hq[Ji] due to pressure terms ? (Lorcé, 2017)



• More recent result in dimensional regularization (Ji, Liu, Schäfer, 2021)

Hm = (mψ̄ψ)R

Ha = 1
4

(
γm (mψ̄ψ)R + β

2g(F
2
)R

)
(Hq +Hg)[JLS] =

(
ψ
†
iD ·αψ + 2−2ε

4−2ε E
2

+ 2
4−2ε B

2
)
R

– this expression differs from original operator form (Ji, 1995)

– we find exact agreement with our result by using

(Lorcé, AM, Pasquini, Rodini, 2021)

−ε
4(E

2 − B2
) = ε

8F
2

= −1
4

(
γm (mψ̄ψ)R + β

2g(F
2
)R

)
leading to

(Hq +Hg)[JLS] = Hq +Hg−Ha implying

Hm +Ha + (Hq +Hg)[JLS] = Hm +Hq +Hg (our result)



Numerical Results

• First input: parton momentum fractions 〈xi〉, related to traceless parton operators

3

2
M

2
a = 〈T 00

q,R 〉
3

2
M

2
(1− a) = 〈T 00

g,R 〉
(
a = 〈xq〉 1− a = 〈xg〉

)

• Second input: quark mass term

2M
2
b = (1 + γm) 〈 (mψ̄ψ)R 〉 → 2M

2
(1− b) =

β

2g
〈 (F 2

)R 〉

– to the extent we know b, we know 〈(F 2
)R〉, and vice versa

• Example: 3-term sum rule in terms of a and b

Mq =
3

4
M a+

1

4
M

(
(y − 3) b

1 + γm
+ x(1− b)

2g

β

)
Mm = M

b

1 + γm

Mg =
3

4
M (1− a) +

1

4
M

[
(γm − y) b

1 + γm
+

(
1− x

2g

β

)
(1− b)

]



• Momentum fractions from CT18NNLO parameterization (at µ = 2 GeV)

a = 0.586± 0.013 1− a = 0.414± 0.013

• Quark mass term from sigma terms

σu+σd = σπN =
〈P | m̂ (ūu+ d̄d) |P 〉

2M
σs =

〈P |ms s̄s |P 〉
2M

σc =
〈P |mc c̄c |P 〉

2M

– Scenario A: sigma terms from phenomenology

(Alarcon et al, 2011, 2012 / Hoferichter et al, 2015)

σπN
∣∣
ChPT

= (59± 7)MeV σs
∣∣
ChPT

= (16± 80)MeV

– Scenario B: sigma terms from lattice QCD

(Alexandrou et al, 2019)

σπN
∣∣
LQCD

= (41.6± 3.8)MeV σs
∣∣
LQCD

= (39.8± 5.5)MeV

σc
∣∣
LQCD

= (107± 22)MeV

– main difference between scenarios: including or not σc



• Dependence on EMT renormalization scheme, for 3-term sum rule

(µ = 2 GeV, numbers in units of GeV)

– considerable numerical scheme dependence (similar for 2-term sum rules)

– scheme dependence no new phenomenon

– no scheme dependence for 4-term sum rule

– contribution of Mm is ∼ 8% for Scenario A, ∼ 20% for Scenario B

– quark mass term for heavy quarks significant

(Shifman, Vainshtein, Zakharov, 1978 / AM, Pasquini, Rodini, 2020 / Liu, 2021 /...)



Further Comparison of Mass Sum Rules

• Number of independent terms, and required input parameters (a, b)

– 2 terms T
µ
µ M = Mq +Mg → 1 indep. term (b)

– 2 terms T
00

M = Uq + Ug → 1 indep. term (a, b)

– 3 terms T
00

M = Mq +Mm +Mg → 2 indep. terms (a, b)

– 4 terms T
00

M = Mq[Ji] +Mm+Mg[Ji] +Ma → 2 indep. terms only (a, b)

Mq[Ji] −
3γm

4 + γm
Mm +Mg[Ji] − 3Ma = 0 (additional relation)

• Relation to experiment

– Mg[Ji] directly related to 〈xg〉 = 1− a
– Mq[Ji] not directly related to 〈xq〉 = a (admixture from b, “indirect” measurement)

→ hardly any advantage of 4-term sum rule over other sum rules

– “side-remark”: measuring 〈F 2〉 (at the EIC) relevant for all sum rules

(further constraint on b)



• Dependence on scheme (x and y)

– 2-term and 3-term sum rules: operators don’t change, numbers may change

– 4-term sum rule: numbers don’t change, operators may change

• Closest agreement in D2 scheme (x = y = 0)

– relation between quark contribution to trace and quark mass term

M
D2

q = Mm

– relation between parton energies

M
D2
q = Mq[Ji] M

D2
g = Mg[Ji] +Ma

Two different perspectives:

(i) Mg[Ji] has no clear interpretation (operator form, components of EMT)

→ Ma must be added to get meaningful quantity (our view)

(ii) anomaly contribution Ma hidden in M
D2
g (Ji, 2021)

• Scale dependence

– “simple” for 4-term sum (given by scale dependence of Ai)

– generally, more complicated (but known) for other sum rules (due C̄i)

– in D2 scheme, scale dependence equally “simple” for all sum rules



• Numerical comparison in D2 scheme (u,d,s in quark mass term)

2 terms T
µ
µ 2 terms T

00

3 terms T
00

4 terms T
00

M
D2

q = Mm M
D2
q = Mq[Ji] M

D2
g = Mg[Ji] +Ma


