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Takeaways

e Core-collapse supernova models in 3D with sophisticated vRHD explode consistently,
reasonably, and in various ways. The next frontier is establishing a guantitative
understanding of all multi-messenger observables over much longer timescales.

e Our current understanding of neutrino emission (and, maybe, nucleosynthesis) over the
first few seconds of CCSNe explosions is qualitatively OK if you ignore some known
physics (e.g., collective flavor oscillations).

— Prediction is, of course, dependent on understanding this physics, but will also require an in situ
treatment in RHD simulations.

e But, the details of this emission is tightly coupled to explosion dynamics,
depending strongly on progenitor structure in a variety of ways.

e Aside from neutrino flavor oscillation physics-—a frontier that will require considerably
more computational intensity than we have brought to bear to this point—there are
other pieces of physics that require more-or-less immediate attention

— Including heavy lepton degrees of freedom “everywhere” (every-how) in simulations
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Ingredients of a core-collapse supernova explosion
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We are at the beginning of an era where confronting
observables via simulation can be/must be quantitative

* The efficacy of the neutrino shock
reheating/delayed shock 4000 ‘ ‘
mechanism has now been ol — Doerioan
demonstrated by all leading | — D9.6:5n160-3D
Qroups Aacross progenitor
characteristics (mass, rotation,
and metallicity). Nonetheless,
significant challenges remain. For
recent reviews, see:

e Janka, Melson, and Summa,
Ann. Rev. Nucl. Part. Sci. 66 341 (201 6)

 Mueller, Liv. Rev. Comp. Astr. 6:3 (2020)

« Mezzacappa, Endeve, Messer, and Bruenn, 0 100 200 300 400 500 600 700
Liv. Rev. Comp. Astr. 6:4 (2020) Time [ms]

e Burrows and Vartanyan, Nature 589, 29 (2021)
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Finishing the explosion See Li+ (2023) - arxiv 2306.08024!!

We must continue to run with full physics until the explosion is fully developed, until the
explosion energy approaches its asymptotic value.

We approximate the asymptotic kinetic energy of the explosion with a “diagnostic”
energy, E* = Ethermal + Egrav + Ekinetic, SUmmed over zones where E* > 0.
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INishing the nucleosynthesis

Not only to we need the explosion to be fully developed, we need the nucleosynthesis to
be completed, at least for the major species of interest.
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Progenitor asymmetries

e When discussing asymmetries, as with all other aspects of
CCSN, it is important to remember that the collapse of the
core is just the final act of a massive star’s life.

e Asymmetry late in the evolution, primarily on the silicon and
oxygen layers that are reaching the shock as the explosion
powers up, can accelerate the development of asymmetry
INn shocked material.

Mean A C. Sandoval+(in prep)

e Even larger effects are
possible, if, for
example, convection
affects the growth of
the iron core.
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D9.6-sn160-3D

. D9.6-sn160-3D t=54.6 ms
e 9.6 Mo zero-metallicity

progenitor from Heger
(p.C.)

e Same progenitor as
Melson+(2015) and
Stockinger+(2020)

e Very light envelope alters
the explosion mechanism

* Shock doesn't stall for long,
like ECSN, neutron-rich
marterial from just above
the PNS is enfrained in the
ejecta

e Explosion is quite spherical
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ECSN mimicry

 With the rapid development of the
explosion of this relatively low mass iron-
cored star, the explosion of the D9.6 model
shares many features with ECSN models.
— Explosion Energy ~ .2 B
— 5Nj ejected ~ 3 x 10> Mo
with large amounts of neutron-rich ejecta
(cf. Hiramatsu+ 2021)

e Remnant neutron star masses are also
small, with a baryonic mass of ~ 1.3 Mo
and an ultimate gravitational mass of ~
1.2 Mo.

e Given the uncertainties in modeling SAGB
and massive stars and the uncertainties in

supernova models, it is hard to distinguish
ECSN and low mass CCSN.
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Silicon Flash during Collapse

D9.6-sn160-3D t=-193.9ms Ne-20

0.50

e Stellar evolution 2000

Nuclear energy

models (eé;i. WoOosley  release ergs/g/s

& Heger 2015) for 9-11
Me exhibit flashes .
starting in the silicon
layer. o "

e Here, compressional L e
heating during M 37617
collapse leadsto
accelerated burning in
the neon and silicon
burning shells.

e This flash propagates
to several thousand km
before it is caught by
the supernova shock.
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Decelerating shocks & developing instabllities

Progress of the shock is generally impeded by the envelope
with a o« pr3. Density jumps at shell interfaces also launch
reverse shocks and instabillities.
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But, the inifial morphology at mapping matters as well

Time = 62000 s

D9.6-2D3D
D9.6-3D3D le8 km
[)‘)()-2”’\') Iilted
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Bullets getting ahead

 While the shock
responds to pr3, in
the D9.6-3D3D (and
the D9.6-2D3Drited)
(3D) R-T fingers
caftch up to the
shock and push it
outward.

e This does not occur
INn our D9.6-2D3D run
gor the z9.6 model

rom Stockinger+
(2020)), which
prevents the mixing
of meftals into the
outer parts of the
star.
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D9.6-3D3D: Mushroom view

3D view of nickel at mapping, in He shell, and at surface.
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D9.6-3D3D: Heavy element distribution
Time=79961.690 s
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Supernova neutrino “lightcurves”
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Multi-flavor detection

M.S. thesis — T. Devotie (2015, UTK)
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A tale of two “identical” progenitors 1978 Mo versus 15.79 Mo
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Later start to explosion, but more massive progenitor has higher explosion

energy and more rapid early shock propagation ,
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Early RMS energies and luminosities

o Affer explosion
starts for F15.78
@ about 150ms

- ~10%

differences in
<E>

- ~40%
differences in L
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Bruenn+ (2023)
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Later energies and luminosities @ gain radius
Bruenn+ (2023)
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The inclusion of bremsstrahlung has little dynamic impact
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Impact of bremsstrahlung on heavy-lepton-tlavor
neutrino specitro
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Muons and the total neutrino flux budget
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Modest dynamic differences, but at interesting times and

places o
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Complete multi-messenger theory of CCSNe will enable
astrophysical neutrino science

For frue mulfi-messenger astronomy, we must build a continuous chain
of core-collgpse supernova/remnant simulations linking the earliest
moments of the explosion, when the neutrino & gravitational wave
signals originate, to the epochs when the photon signals arise.

e Examine late stellar evolution in multi-dimensions

e Model CCSN. mechanism with 3D spectral neutrino radiation .
hydrodynamics and detailed nucleosynthesis until the explosion
matures and the nucleosynthesis finishes

. mOd’rel progress of the shock and heavy element ejecta through
e star

* Model shock breakout and the light curve phase with (3D?¢)
photon radiation hydrodynamics, etc

e Model nebular phase with full chemistry, efc.

. Iv}rodel supernova remnant phase including cosmic ray generation,
efc.

$,0AK RIDGE s ...and connect to NS cooling calculations!
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Takeaways redux

 Core-collapse supernova models in 3D with sophisticated VRHD explode consistently,
reasonably, and in various ways. The next frontier is establishing a guantitative
understanding of all multi-messenger observables over much longer timescales.

e Our current understanding of neutrino emission (and, maybe, nucleosynthesis) over the
first few seconds of CCSNe explosions is qualitatively OK if you ignore some known
physics (e.g., collective flavor oscillations).

— Prediction is, of course, dependent on understanding this physics, but will also require an in situ
treatment in RHD simulations.

e But, the details of this emission is tightly coupled to explosion dynamics,
depending strongly on progenitor structure in a variety of ways.

e Aside from neutrino flavor oscillation physics-—a frontier that will require considerably
more computational intensity than we have brought to bear to this point—there are
other pieces of physics that require more-or-less immediate attention

— Including heavy lepton degrees of freedom “everywhere” (every-how) in simulations
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Questions?e
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