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CKM unitarity tests and the Cabibbo anomaly
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• the SM predicts |Vud |2 + |Vus|2 + |Vub|2 = 1
• re-evaluation of “inner radiative correction” and precise lattice QCD calculation of f+(0)

C. Y. Seng, M. Gorchtein, H. Patel, M. Ramsey-Musolf, ‘18 A. Czarnecki, W. Marciano, A. Sirlin, ‘19; A. Bazavov et al, ‘18
• led to ∼ 2σ-3σ tension in CKM unitarity test

|Vud |2 + |Vus|2 + |Vub|2 − 1 = − (1.65 ± 0.73) · 10−3

BSM physics in the 5-10 TeV range? Can we trust the nuclear corrections?
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Why EFTs? Scales in β decays
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V. Cirigliano, W. Dekens, J. de Vries, S. Gandolfi, M. Hofericther, EM, ‘24
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EFTs and the factorization of the half-life

1
t
=

G2
F |Vud |2m5

e

π3 log 2

[
C(gV )

eff (µ)
]2

f̄ (µ)× [1 + δ̄′R(µ)] (1 + δ̄NS − δ̄C)[
C(gV )

eff (µ)
]2

: hard and soft photons expansion in α, αs, kF/mN

• matching at electroweak scale, RG evolution from mW to µ ∼ mN [ pQCD]

• 1-body matching Fermi theory to χPT at µ ∼ mN [dispersive + LQCD methods]
• running from mN to µ ∼ kF and matching at kF [pQED]

δ̄NS and δ̄C : potential and soft photons, sensitive to nuclear details expansion in α, kF/mN , Q/kF

• derivation of EW operators [χPT]
• two- and three-nucleon matrix elements [QMC, ab initio methods, shell model . . .]
• low-energy constants [dispersive + LQCD methods, fit to data]

δ̄′R , f̄ : ultrasoft photons expansion in α, Q/kF

• sensitive to global nuclear properties, e.g. charge, radii [pQED]

• each object depends on a factorization scale µ resum large logs and estimate higher orders
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EFTs and the factorization of the half-life

1
t
=

G2
F |Vud |2m5

e

π3 log 2
(1 +∆V

R)(1 + δ′R)(1 + δNS − δC)× f

J. C. Hardy and I. Towner, ‘20

• very similar to the “standard” half-life

∆V
R ∝ gV (mN), δ′R → C(gV )

eff (µ)

1. better factorization of the nuclear and low-energy dynamics

2. resummation of logQ/kF in addition to logQ/mN

δNS → δ̄NS

3. systematically improvable definition of EW operators

δ′R → δ̄′R

4. higher order pQED calculation in consistent scheme
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Hard Modes
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Hard modes: matching onto χPT

cPT Fermi theory + QED +QCD

J(x) J(0)

LFermi =− 2
√

2GF Vud Cβ ēLγ
µνL q̄τ+γµq + LQED

=⇒−
√

2GF Vud ēLγ
0νL

{
gV N̄τ+N + gNN

V1 N̄τ+N N̄N + gNN
V2 N̄τ+N N̄τ3N + . . .

}
+ Lχ

QED

• Cβ encodes contributions of photons and gluons from mW to Λχ

• photons with |q⃗| ∼ Λχ are not in the low-energy EFT
• their contribution is hidden in EFT low-energy constants

gV = 1 +
∑

n

( α

4π

)n
g(n)

V , gNN
Vi =

∑
n

( α

4π

)n
g(n)
Vi

• gV is common to neutron and nuclear decays see Vincenzo’s and Misha’s talks
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Potential and Soft Modes
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Potential modes. δ̄NS and two-body weak currents

• the second important regime is q0 ≪ |q| ∼ kF “potential”
• photon emission puts the nuclear intermediate state far off-shell
• can neglect nuclear excitation energy in energy denominators & sum over intermediate states

similar to “closure approximation” in 0νββ (made more systematic in EFT)

• δ̄NS given by matrix element of a two- or higher-body current V0

δ̄NS =
√

2⟨f |V0|i⟩,

• V0 has an expansion in α and Q/Λχ as “standard” vector & axial 2- and 3-body currents

V0 = α
∑
n,m

Vn,m αn εm
χ εχ =

Q
Λχ
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δ̄NS at O(αQ/kF )

• diagrams with LO weak and EM vertices are proportional to external momenta

V0
E =

(
E0

6
+

4
3

Ee

) ∑
j<k

e2

q4

(
τ−(j)P(k)

p + j ↔ k
)
−→ −α (RAE0)

(
1
6
+

4Ee

3E0

)∑
j<k

rjk

2RA

(
τ−(j)P(k)

p + j ↔ k
)

• correction suppressed by Ee/kF , still very important as it grows with Z
• replaces corrections linear in R =

√
5/3⟨r 2

ch⟩ in shape factor C and finite size corrections L0

• scaling is somewhat similar to δNS(E) in M. Gorchtein, ‘18, but we were not able to exactly map it
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δ̄NS at O(αkF/mN)

• diagrams with NLO EM vertices do not require external momenta O(αεχ)
• long range corrections mediated by nucleon magnetic moments and recoil corrections∗

∗ thanks to S. Novario and C.-Y. Seng for spotting two mistakes in our original paper

Vmag
0 (q) =

∑
j<k

e2

3
gA

mN

1
q2

(
σ(j) · σ(k) +

1
2

S(jk)
)[

(1 + κp)τ
−(j)P(k)

p + κnτ
−(j)P(k)

n + (j ↔ k)
]
,

Vrec
0 (q,P) =

∑
j<k

i
e2gA

4mN

[
τ−(j)P(k)

p

q4 (Pk × q) · σ(j) − (j ↔ k)
]

very similar to I. S. Towner, ‘92,
• Vmag

0 is a Coulomb-like potential =⇒ induces UV sensitivity when acting in 1S0 channel†
† same as mπ dependence of nuclear force & 0νββ D. Kaplan, M. Savage, M. Wise, ‘96 V. Cirigliano, et al, ‘18
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δ̄NS at O(αkF/mN)

• to absorb cut-off dependence, need

VCT
0 = e2(gNN

V1 O1 + gNN
V2 O2

)
, O1 =

∑
j ̸=k

τ−(j)
1k , O2 =

∑
j<k

[
τ−(j)τ

(k)
3 + (j ↔ k)

]
.

Extraction of gNN
V1 and gNN

V2 :
1. lattice QCD might take a long time...
2. calculate/model Wγ Compton tensor at large Q2 “Cottingham”
3. match “EFT” and “dispersive” δNS calculations in light nuclei
4. fit them to superallowed transitions, with Vud model independent, inflate errors?

• when needed for illustration, assume “improved NDA” gNN
V ∼ 1/mN × 1/(2Fπ)

2
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O(α2) corrections to δNS

• at O(α2), the Fermi function and the nuclear-structure-independent correction δ2 depend
logarithmically on R A. Sirlin and R. Zucchini, ‘86, W. Jaus and G. Rasche, ‘87

f = 1 − αZ
β

+ α2Z 2
(

π2

3β2 +
9
4
− logEeR + . . .

)
, δ2 ∝ α2Z logEeR

can we understand large logs in terms of scale separation?

• soft and potential photons induce two more 2- and 3-body operators

V0 = Cδ(µ,Λ)Vδ + C3b
δ (µ,Λ)V3b

δ + C+V+(Λ) + C3b
+ V3b

+ (Λ)

• Vδ and V3b
δ have trivial matrix elements

⟨f |Vδ|i⟩ = ZM(0)
F , ⟨f |V3b

δ |i⟩ = Z (Z − 1)M(0)
F ,
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O(α2) corrections to δNS

• at O(α2), the Fermi function and the nuclear-structure-independent correction δ2 depend
logarithmically on R A. Sirlin and R. Zucchini, ‘86, W. Jaus and G. Rasche, ‘87

f = 1 − αZ
β

+ α2Z 2
(

π2

3β2 +
9
4
− logEeR + . . .

)
, δ2 ∝ α2Z logEeR

can we understand large logs in terms of scale separation?

• soft and potential photons induce two more 2- and 3-body operators

V0 = Cδ(µ,Λ)Vδ + C3b
δ (µ,Λ)V3b

δ + C+V+(Λ) + C3b
+ V3b

+ (Λ)

• Vδ and V3b
δ have trivial matrix elements

⟨f |Vδ|i⟩ = ZM(0)
F , ⟨f |V3b

δ |i⟩ = Z (Z − 1)M(0)
F ,
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O(α2) corrections to δNS

• and matching coefficients that reproduce the log in the Fermi function and δ2 correction

Cδ(µ) = −α2
(

1
2
log

µ2

Λ2 − 13
16

+ γE

)
C3b

δ (µ) = −α2
(

1
4
log

µ2

Λ2 +
γE

2
− 3

8

)
C are scale and scheme dependent!

• V+ and V3b
+ have a logarithmic dependence on internucleon distances

C+V+(r,Λ) = −α2
∑
j ̸=k

log(rjkΛ)τ
−(j)P(k)

p , C3b
+ V3b

+ (r,Λ) = −α2

2

∑
i ̸=j ̸=k

log

[
Λ

2

(
rij+rik+rjk

)]
τ−(i)P(j)

p P(k)
p

• nuclear matrix elements of V+, V3b
+ provide an operator definition of R

can relate to integrals over the weak and charge distributions?
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δNS summary: integrating out potential and soft modes

• we can interpret this procedure as matching onto a theory with nuclear fields Bi,f

L(0)
e+ = B†

f (iv · D +∆)Bf + B†
i iv · DBi −

2GF√
2

Vud

(
CVB†

f vµBi ν̄γ
µPLe + h.c.

)
+O(E/kF ).

can be extended to higher order, to include nuclear radii . . .
starting point for usoft loops & to reinterpret finite size corrections

• at the matching scale, the nuclear vector coupling CV is

CV (µ̄χ = µπ) = M(0)
F C(gV )

eff (µπ)

(
1 − 1

2
δC +

1
2
δ
(0)
NS

)
.

• integrating out the soft/potential modes shifts the single nucleon coupling with Z -dep. terms

gV → C(gV )
eff = gV

[
1 + Z

(
Cδ − C3b

δ

)
+ Z 2C3b

δ

]
• we can resum large logs by using high orders anomalous dimensions K. Borah, R. Hill and R. Plestid, ‘24

dC(gV )
eff (µ)

d logµ
= γ(gV )C(gV )

eff (µ), γ(gV ) =
α

π
γ̃0 +

(α
π

)2
γ̃1 +

[√
1 − α2Z (Z ∓ 1)− 1

]
+

α3

4π
Z 2
(

6 − π2

3

)
,
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δNS summary: integrating out potential and soft modes

• energy dependent and independent contributions

δ
(0)
NS =

2

gV (µπ)M
(0)
F

∑
N=n,p

[
α
(
Mmag

GT,N + Mmag
T,N + MCT

GT,N + MLS,N
)
+ α2

(
M+

F,N + M+,3b
F,N

)]
,

δE
NS = ∓α

2

gV (µπ)M
(0)
F

RAE0

∑
N=n,p

f̃E ME
F,N f̃E =

1
E0

(
4
3
⟨Ee⟩+

1
6

E0 +
1
2

〈
m2

e

Ee

〉)
• all the nuclear physics input contained in two- and three-body matrix elements

M(X )
i,N =

∫ ∞

0
dr C(X )

i,N (r) = ⟨f |V(X )
i,N |i⟩,

• with Fermi, Gamow-Teller, Tensor and spin-orbit (LS) components

VX
F,N =

∑
j<k

hX
F,N(rjk )

[
τ−(j)P(k)

N + j ↔ k
]
, VX

GT,N =
∑
j<k

hX
GT,N(rjk )σ

(j) · σ(k)
[
τ−(j)P(k)

N + j ↔ k
]
,

VX
T,N =

∑
j<k

hX
T,N(rjk )S(jk)(r̂)

[
τ−(j)P(k)

N + j ↔ k)
]
, VLS,N =

∑
j<k

hLS,N(rjk )
[
τ−(j)P(k)

N (Ljk − LCM
jk ) · σ(j) + j ↔ k

]
,

• and different radial dependence h(r)
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Extension of the δNS operator to higher orders

derive V0 at higher orders
test convergence and theory errors
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Ultrasoft Modes
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Usoft modes. The Fermi and Sirlin functions

• last step of the calculation involves photon momentum modes |q0| ∼ |q⃗| ∼ Ee ≪ R−1

Fermi & Sirlin functions and “outer corrections”
• for Fermi function, use MS calculation of R. Hill and R. Plestid, ‘23

F̄ (β, µ) =
4η

(1 + η)2

2(1 + η)

Γ(2η + 1)2 |Γ(η + iy)|2eπy
(

2|pe|
µ

e1/2−γE

)2(η−1)

, η =
√

1 − α2Z 2 y = ∓Zα/β

• recover the standard Fermi function by µ → R−1e1/2−γE

• for the “outer corrections”

δ̃′R(Ee, µ̄) = α ĝ(1)(β, Ē , µ̄) + α2Z ĝ(2)(β, µ̄) + . . . .

• ĝ(1)(β, Ē , µ̄) is the standard Sirlin function in HBχPT

ĝ(1)(β, Ē , µ̄) = gSirlin +
5
4
+

3
2
log

µ̄2

m2
p
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Usoft modes. O(α2Z ) corrections

Ò. L. Crosas, EM, ‘25

• O(α2Z ) are also needed, in same scheme as the rest of the calculation
• computed diagrams in low-energy theory with nuclear dof
• diagrams are UV and IR divergent, IR cancels with real-virtual
• UV is renormalized by C(gV )

eff
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Usoft modes. O(α2Z ) corrections

ĝ(2)(β, µ̄) = ±

{
−
(

1
3β

+
1
2

)
Lµ +

9 − β2

2β
Li2

(
1 − β

1 + β

)
+

−5 + β2

β
Li2

(√
1 − β

1 + β

)

− 1
β
Li2

((
1 − β

1 + β

)2
)

+
3 − β2

2β
π2

6
− 4 − 5β + β3

16β2 log2 1 + β

1 − β
+

β2 − 2
β2 log

(
1 +

√
1 − β

1 + β

)

− 2β2 + 2
β2 log

1 + β

2
+

1
12β2 log

1 + β

1 − β

(
−6 + 10β + 3β2 + 3β3

)
− 4

β

+

(
1 −

√
1 − β

1 + β

)3
(1 + β)2

144β4

(√
1 − β

1 + β
(430 − 220β − 39β2 + 48β3)

+ 434 − 652β + 327β2 − 96β3

)}
,

• not much worse than the Sirlin function . . .
• Lµ = log µ2/m2

e absorb scale dependence of αMS & C(gV )
eff
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O(α2Z ) corrections

• in the limit β → 1

ĝ(2)(β, Ē) −−−→
β→1

±
[
−5

6
log

µ2

4E2
e
− 131

36
+

π2

6

]
agrees with Z. Chao, R. Hill, R. Plestid, P. Vander Griend, ‘25

• log agree with Sirlin and Zucchini, if µ = mN

• diagrams (g)− (l) are UV finite also in the heavy particle theory =⇒ finite part agrees with Sirlin
• diagrams (a)− (f ) are UV divergent

ĝ(2)(β, Ē)
∣∣∣
(a)−(f )

−−−→
β→1

±
[
−15

4
+

π2

3

]
vs g(2)

Sirlin = ±
[
−5

2
+

π2

6

]
• difference is most likely due to the different UV regulator (mN vs. dim. reg.)
• regulator and scheme dependence should be absorbed by C(gV )

eff and α2Z potentials
• numerically ∼ 5 · 10−4 for Z = 26.
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O(α2Z ) corrections
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P̄ =
∣∣∣C(gV )

eff (µ)
∣∣∣2 f̄ (µ)(1 + δ̄′R(µ))

analogous to (1 +∆V
R)f (1 + δ′R)

• effect of the correction is large, 1 · 10−3 − 3 · 10−3

• estimate missing pQED corrections (O(α2, α3Z 2, . . .)) by varying µ ∈ [E0, 4E0]

• scale variation decreases by factor of 10, to ≲ 1.5 · 10−4
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(Partial) Summary: ingredients for Vud

1
t
=

G2
F |Vud |2m5

e

π3 log 2

[
C(gV )

eff (µ)
]2

f̄ (µ)× [1 + δ̄′R(µ)] (1 + δ̄NS − δ̄C)

[
C(gV )

eff (µ)
]2

:

• matching and running at NLL in α and αs ✓

• single nucleon γ-W box ✓

• matching and running from mN to µ ∼ kF

δ̄NS

• operators at O(αεχ), O(αεπ) ✓

• low-energy constants [need to be determined]
• higher order terms & UQ [work in progress]

δ̄′R , f̄ :
• O(α2Z ) ✓

• extend to subleading power in E × R & interplay with traditional finite size [yet to begin. . . ]
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Nuclear Matrix Elements

more in G. King’s talk
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Nuclear matrix elements in 14O
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V. Cirigliano, W. Dekens, J. de Vries. S. Gandolfi, M. Hoferichter, EM, ‘24

• nuclear matrix elements in A = 6 (for benchmarking) and A = 14

hmag
GT,p(r) = 4hmag

T ,p (r) =
gA

3mN

1 + κp

r
, hCT

GT,p(r) = −4π
3

(gNN
V1 + gNN

V2 )δRS (r)

• VMC calculation with N2LO local chiral potential at R0 = 1 fm A. Gezerlis, I. Tews et al, ‘14

• for local terms, Gamow-Teller component dominates, tensor small.
• contact can be sizable (depending on LECs)

LA-UR-26-20188 1/14/2026 | 22

https://inspirehep.net/literature/2791204
https://arxiv.org/abs/1406.0454


NME in 14O: energy independent components.
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h+
F (r) = − log r/RA

• after including both L and LCM spin-orbit term is very small
• the α2 V+ potential vanishes for Λ = (1.02R)−1, with R2 = 5/3⟨r 2⟩

standard choice µ = R works pretty well for 14O!
• putting everything together [after fixing LS]

δ̄
(0)
NS = −

[
3.1|mag

GT − 0.2|T + 0.2|LS ± 0.9|LEC + 0.1|α2

]
· 10−3 = −(3.1 ± 0.9) · 10−3

• larger than Towner and Hardy δ
(B)
NS = −1.96(50) · 10−3 J. Hardy and I. Towner, ‘20
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NME for 14O. Energy dependent pieces
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VE ∝ α
∑

j<k
rjk

2RA

(
τ+(j)P(k)

p + τ+(k)P j
p

)

• the energy dependent operator leads to (neglecting small π-exchange corrections)

δ̄E
NS = ∓ 2

gV M(0)
F

⟨f (0)|VE |i (0)⟩
(

E0 + 8Ee

6
+

m2
e

2Ee

)
• corrections matches closely O(αZRE) “finite size” corrections if

ME
F ,p = M(0)

F Z
R

2RA
∼ 5.6 =⇒ 10% too small
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QMC calculations of δNS in 10C
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• Quantum Monte Carlo calculation of δ̄NS in 10C, with 3 different interactions.
• about 5% spread from different interactions (first step towards full UQ)
• long-range part of the result agrees well with dispersive result of M. Gennari et al., ‘24
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Higher order corrections to δNS
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Ṽ (g)
0, first term
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thanks to G. Chambers-WallPRELIMINARY

• Graham Chambers-Wall has started derivation & implementation of 3-body operators
• calculation is not complete, but so far corrections look in line with χEFT power counting
• parallel work at UW on loop corrections =⇒ see M. d‘Souza talk

LA-UR-26-20188 1/14/2026 | 26



Coupled cluster calculations in medium mass nuclei
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thanks to S. Novario (WashU)

• S. Novario computed δNS for 11 transitions with 2 interactions (EM1.8/2.0 and NNLOsat)
• error includes many-body truncation error (Nmax) and CC approximations (triple/no triple

correlations)
• still missing Hamiltonian and operator truncation
• long-distance part of δNS agrees well with Hardy and Towner adopeted values
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Coupled cluster calculation in medium mass nuclei
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• missing a 3-body O(α2) ME to do full EFT analysis ✗

thinking of alternative strategies to extract them
• missing δC with same interactions ✗
• if we take ft , δ′R , ∆V

R and δC from Hardy and Towner & fit Vud , and 2 LECs
EM1.8/2.0 Vud = 0.97371 ± 0.00045 χ2/dof = 1.3
NNLOsat Vud = 0.97366 ± 0.00048 χ2/dof = 1.1

only δNS error!
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Coupled cluster calculation in medium mass nuclei
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• compatible with Hardy and Towner, ‘20, with larger error

δVud |δNS
= 4.5 · 10−4 vs δVud |δNS

= 2.9 · 10−4

• not much sensitivy to LECs, which are compatible with zero and enlarge error

not fully consistent EFT analysis yet!
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Conclusion

• precision β decays are important probes of BSM physics

. . . but they require precise theoretical input!
• EFTs provide a systematic organizational tool for assessment/re-evalution of th. uncertainties

• “refactored” half-life formula according to photon virtuality
• derived lowest-order two-body operators for δ̄NS in chiral EFT
• clarified some nuclear-structure dependence of nuclear-structure-independent corrections
• calculated O(α2Z ) corrections in heavy nucleus theory
• performed first QMC and CC calculations in 10C, 14O and medium mass nuclei

TO DO:
• higher order corrections to δNS and “outer corrections”
• more rigorous assessment of nuclear theory error on the NMEs

multiple chiral Hamiltonians, different cut-offs, multiple methods
• calculate δC with the same method
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