

CLFV at the EIC and LHC vs low-energy

Emanuele Mereghetti

Electroweak and Beyond the Standard Model Physics at the EIC February 14th, 2024, Seattle.

with K. Fuyuto, V. Cirigliano, C. Lee, B. Yan, S. Gonzalez-Solis, F. Delzanno

Charged lepton flavor violation

- mismatch between quark weak and mass eigenstates \implies quark family number is not conserved \checkmark visible in several rare $\Delta F = 1$ and $\Delta F = 2$ processes
- in minimal SM with massless neutrinos, no such mismatch

lepton family (LF) is exactly conserved

Charged lepton flavor violation

- mismatch between quark weak and mass eigenstates \implies quark family number is not conserved \checkmark visible in several rare $\Delta F = 1$ and $\Delta F = 2$ processes
- in minimal SM with massless neutrinos, no such mismatch

lepton family (LF) is exactly conserved

but neutrino have masses!

- LF is broken in neutrino sector
- charged LFV highly suppressed by GIM mechanism

$${
m BR} \sim \left(rac{m_{
u}}{m_W}
ight)^4 \sim 10^{-44}$$

S. Petcov, '77; W. Marciano and A. Sanda, '77

Charged lepton flavor violation

- ... however, models that explain $m_{
 u}$ usually introduce new CLFV at tree or loop level
- e.g. type I, II and III see-saw A. Abada, C. Biggio, F. Bonnet, M. B. Gavela, T. Hambye, '08
- and a variety of models from leptoquarks, to Z', to SUSY
- CLFV experiments crucial to falsify TeV origin of m_{ν}

CLFV at low- and high-energy

1. μ, τ and meson decays $\mu \to e\gamma, \mu \to 3e, \tau \to \ell\gamma, \tau \to \ell\pi\pi, \tau \to \ell K\pi, B \to \pi\tau\ell, \ldots$ 2. pp collisions $pp \to \ell\ell', h \to \ell\ell', t \to q\tau e \ldots$ 3. ep collisionsat HERA and the upcoming EIC

M. Gonderinger and M. R. Musolf, '10; HERA collaboration, '11; T. Husek, K. Monsalvez-Pozo, J. Portoles, '20, ...

The Standard Model Effective Field Theory

Study CLFV at EIC within EFT framework

- SM fields, no new light degrees of freedom (but easy to add new particles, e.g. ν_R)
- local $SU(3)_c \times SU(2)_L \times U(1)_Y$ invariance
- organize them in a power counting based on canonical dimension

1. no CLFV at dim. 4 2. GIM suppression at dim. 5, BR $\sim (m_{\nu}/m_W)^4$

SMEFT for CLFV

1. LFV Z couplings, & γ , Z dipole and Yukawa couplings

$$\mathcal{L} = -\frac{g}{2c_w} Z_\mu \left[\left(c_{L\varphi}^{(1)} + c_{L\varphi}^{(1)} \right)_{\tau e} \bar{\tau}_L \gamma^\mu e_L + c_{e\varphi} \bar{\tau}_R \gamma^\mu e_R \right] - \frac{e}{2v} \left[\Gamma_\gamma^e \right]_{\tau e} \bar{\tau}_L \sigma^{\mu\nu} e_R F_{\mu\nu} - \left[Y_e' \right]_{\tau e} h \bar{\tau}_L e_R + h.c.$$

$$\mathcal{C} = \mathcal{O} \left(\frac{v^2}{\Lambda^2} \right)$$

SMEFT for CLFV

- 1. LFV Z couplings, & γ , Z dipole and Yukawa couplings
- 2. leptonic and semileptonic interactions

7 Vector/Axial:
$$C_{LQ}^{(1,3)}$$
, C_{eu} , C_{ed} , C_{Lu} , C_{Ld} , C_{Qe}
3 Scalar/Tensor: C_{LedQ} , $C_{LeQu}^{(1,3)}$
3 purely leptonic: C_{LL} , C_{ee} , C_{Le}

• assume generic quark flavor structures (> 120 indep. $au \leftrightarrow e$ couplings)

$$\begin{bmatrix} C_{Ld} \end{bmatrix}_{\tau e} = \begin{pmatrix} \begin{bmatrix} C_{Ld} \end{bmatrix}_{dd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{ds} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{db} \\ \begin{bmatrix} C_{Ld} \end{bmatrix}_{sd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{ss} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{sb} \\ \begin{bmatrix} C_{Ld} \end{bmatrix}_{bd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{bs} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{bb} \end{pmatrix}$$

Connecting observables at different scales

- for μ and τ decays, $\mu \rightarrow e$ conversion, integrate heavy particles out
- end up with γ dipole operator

$$\mathcal{L} = -\frac{e}{2\nu}\bar{e}_{L}^{\rho}\left[\Gamma\right]_{\rho r}\sigma^{\mu\nu}e_{R}^{r}F_{\mu\nu}$$

Connecting observables at different scales

- for μ and τ decays, $\mu \rightarrow e$ conversion, integrate heavy particles out
- leptonic and semileptonic ops. with *u*, *d* and *s* quarks

$$\mathcal{L} = -\frac{4G_F}{\sqrt{2}} L_{\text{prst}}^{\Gamma} \bar{e}^{\text{p}} \Gamma e^{\text{r}} \ \bar{e}^{\text{s}} \Gamma e^{\text{t}} - \frac{4G_F}{\sqrt{2}} C_{\text{prst}}^{\Gamma} \bar{e}^{\text{p}} \Gamma e^{\text{r}} \ \bar{q}^{\text{s}} \Gamma q^{\text{t}}$$

Connecting observables at different scales

- for μ and τ decays, $\mu \rightarrow e$ conversion, integrate heavy particles out
- and gluonic operators

$$\mathcal{L} = \frac{\alpha_s}{4\pi v^3} GG \bar{e}^p \left[C_{GG} \right]_{pr} e^r + \dots$$

Connecting observables at different scales (running is important)

Lepton bilinears

- Z couplings, photon dipoles \implies tree level matching \checkmark
- Z dipole & Higgs coupling run and match onto γ dipole at one or two loops \checkmark

$$\left[\Gamma_{\gamma}^{e}\right]_{\tau e}\left(\mu=2\,\text{GeV}\right) = \left(\left[\Gamma_{\gamma}^{e}\right]_{\tau e}-2.0\cdot10^{-2}\left[\Gamma_{Z}^{e}\right]_{\tau e}-6.0\cdot10^{-5}\left(Y'\right)_{\tau e}\right)\left(\mu=1\,\text{TeV}\right)$$

Connecting observables at different scales (running is important)

Semileptonic operators

- light-quark 4-fermion operators \implies tree level matching \checkmark
- vector/axial t operators, vector b and c operators run into light quark ops. via penguins \checkmark

$$\begin{split} C^{eu}_{\rm VLV}(\mu &= 2\,{\rm GeV}) = \left(-10[C_{LQ,U} - C_{Lu}]_{tt} - 2.0[C_{LQ,U} + C_{Lu}]_{tt} + 3.0[C_{LQ,D} + C_{Ld}]_{bb} - 6.8[C_{LQ,U} + C_{Lu}]_{cc}\right) \cdot 10^{-3} \\ C^{eu}_{\rm VLA}(\mu &= 2\,{\rm GeV}) = \left(-27[C_{LQ,U} - C_{Lu}]_{tt}\right) \cdot 10^{-3} \end{split}$$

 \times very suppressed contribs. from axial b and c ops

scalar/tensor operators run into dipole and match onto dim-7 glue ops.

$$\Gamma_{\gamma}^{e}(\mu = 2\,\text{GeV}) = -0.46 \left[C_{LeQu}^{(3)} \right]_{tt} + 6.5 \cdot 10^{-4} \left[C_{LeQu}^{(1)} \right]_{tt} - 2.0 \cdot 10^{-3} \left[C_{LeQu}^{(3)} \right]_{cc} + 2.9 \cdot 10^{-6} \left[C_{LeQu}^{(1)} \right]_{cc}$$

Constraints on $\tau \rightarrow e$ transitions

Decay mode	V	A	5	Р	
	$q^{(0)} q^{(1)} s c b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)} q^{(1)} s c b$	иc
$\tau \rightarrow e\gamma$					\checkmark
$ \tau \rightarrow e\ell^+\ell^-$	\checkmark				
$ \tau \rightarrow e\pi^0$		\checkmark			
$ \tau \rightarrow e\eta, \eta' $		\checkmark		$\checkmark \checkmark \checkmark \checkmark \checkmark$	
$ \tau \rightarrow e \pi^+ \pi^-$	\checkmark \checkmark \checkmark		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$		\checkmark
$\tau \rightarrow eK^+K^-$	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$		\checkmark
$ J/\psi \rightarrow \tau e$	\checkmark				✓
$\Upsilon ightarrow au e$	\checkmark				
	ds db sb cu	ds db sb cu	ds db sb cu	ds db sb cu	си
$\tau \rightarrow eK_S^0$		\checkmark		\checkmark	
$ \tau^- \rightarrow e^- K \pi$	\checkmark		\checkmark		
$ B^0 \rightarrow e \tau$		\checkmark		\checkmark	
$ B^+ \rightarrow \pi^+ e \tau$	\checkmark		\checkmark		
$B^+ \rightarrow K^+ e \tau$	\checkmark		\checkmark		

 \checkmark = tree \checkmark = loop

- au branching ratios in the $\sim 10^{-7}$ - 10^{-8} range
- non-perturbative input mostly under control (some model dep. in K^+K^-)

A. Celis, V. Cirigliano, E. Passemar, '14, V. Cirigliano, A. Crivellin, M. Hoferichter, '18
 E. Passemar private comm., K. Beloborodov, V. Druzhinin, S. Serednyakov, '19

- B branching ratios $\sim 10^{-5}$
- f_{B} , $f_{+,0}(B
 ightarrow \pi, K)$ well determined from LQCD

Decay mode	V	A	S	P	T
	$q^{(0)} q^{(1)} s c b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)} q^{(1)} s c b$	$q^{(0)} q^{(1)} s c b$	uс
$\tau ightarrow e\gamma$					\checkmark
$ \tau \rightarrow e \ell^+ \ell^-$	\checkmark				
$\tau \rightarrow e\pi^0$		\checkmark		\checkmark	
$\tau \rightarrow e\eta, \eta'$		\checkmark		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark \checkmark$	
$\tau \rightarrow e \pi^+ \pi^-$	\checkmark \checkmark \checkmark		V V V V		✓
$\tau \rightarrow eK^+K^-$	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$		\checkmark \checkmark \checkmark		\checkmark
$J/\psi \rightarrow \tau e$	\checkmark				\checkmark
$\Upsilon \rightarrow \tau e$	\checkmark				
	ds db sb cu	ds db sb cu	ds db sb cu	ds db sb cu	си
$\tau \rightarrow eK_S^0$		\checkmark		\checkmark	
$ \tau^- \rightarrow e^- K \pi$	\checkmark		\checkmark		
$B^0 \rightarrow e \tau$		\checkmark		\checkmark	
$B^+ \rightarrow \pi^+ e \tau$	\checkmark		\checkmark		
$B^+ ightarrow K^+ e au$	\checkmark		\checkmark		

 \checkmark = tree \checkmark = loop

- 1. uu, dd, ss components of all Dirac structures well constrained by multiple channels
- V isoscalar $\mathit{uu} + \mathit{dd}$ gives small and uncertain contrib. to $au o \mathit{eKK}$

Decay mode	V	A	S	Р	T
	$q^{(0)} q^{(1)} s c b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)}q^{(1)} \ s \ c \ b$	иc
$\tau \rightarrow e\gamma$					\checkmark
$ \tau \rightarrow e\ell^+\ell^-$	\checkmark	XX			
$\tau \rightarrow e\pi^0$		✓ ××		\checkmark	
$ \tau \to e\eta, \eta'$		✓ ✓ × × ×		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$	
$\tau \rightarrow e \pi^+ \pi^-$	\checkmark \checkmark \checkmark	X X	$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$		\checkmark
$\tau \rightarrow eK^+K^-$	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$	X X	$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$		\checkmark
$ J/\psi \rightarrow \tau e$	\checkmark	X X			\checkmark
$\uparrow \uparrow \rightarrow \tau e$	\checkmark	X X			
	ds db sb cu	ds db sb cu	ds db sb cu	ds db sb cu	си
$\tau \rightarrow eK_S^0$		\checkmark		\checkmark	
$ \tau^- \rightarrow e^- K \pi$	\checkmark		\checkmark		
$ B^0 \rightarrow e \tau$		\checkmark		\checkmark	
$ B^+ \rightarrow \pi^+ e \tau $	\checkmark		\checkmark		
$B^+ ightarrow K^+ e au$	\checkmark		\checkmark		

- 2. bb, cc vectors run into light quark V via penguins
- bb, cc S, P match onto dim 7 gluonic operators
- no constraints on axial *cc* or *bb* components

 \checkmark = tree \checkmark = loop

need $\eta_c \rightarrow e\tau$, $\eta_b \rightarrow e\tau$!

Decay mode	V	A	S	Р	T
	$q^{(0)} q^{(1)} s c b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)}q^{(1)} s c b$	иc
$\tau \rightarrow e\gamma$					\checkmark
$ \tau \rightarrow e\ell^+\ell^-$	\checkmark	XX			
$\tau \rightarrow e\pi^0$		✓ ××		\checkmark	
$\tau \rightarrow e\eta, \eta'$		✓ ✓ × × ×		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$	
$ \tau \rightarrow e \pi^+ \pi^- $	\checkmark \checkmark \checkmark	X X	V VVV		\checkmark
$ \tau \rightarrow eK^+K^-$	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$	XX	\checkmark \checkmark \checkmark \checkmark		\checkmark
$J/\psi \rightarrow \tau e$	\checkmark	X X			\checkmark
$\uparrow \uparrow \rightarrow \tau e$	\checkmark	X X			
	ds db sb cu	ds db sb cu	ds db sb cu	ds db sb cu	си
$\tau \rightarrow eK_{S}^{0}$		\checkmark		\checkmark	
$ \tau^- \rightarrow e^- K \pi$	\checkmark		\checkmark		
$ B^0 \rightarrow e\tau$		\checkmark		\checkmark	
$ B^+ \rightarrow \pi^+ e \tau $	\checkmark		\checkmark		
$B^+ ightarrow K^+ e au$	\checkmark		\checkmark		

 \checkmark = tree \checkmark = loop

- 3. strong constraints on ds, sd from $\tau \rightarrow eK$, $\tau \rightarrow eK\pi$
- and on vector/scalar bd, bs $(B \rightarrow P \tau e)$ and axial/pseudoscalar bd $(B \rightarrow \tau e)$ components
- no constraints on *cu*, axial and pseudoscalar *sb*, *bs*,

 ${\cal B}_{s}
ightarrow e au$ at Belle II and LHCb D
ightarrow e au at LHCb and BESIII

Z, Higgs and top decays

• $Z \rightarrow \tau e$ studied at LEP and LHC, LHC giving strongest bounds

$$\mathrm{BR}(Z \to e\tau) < 5.0 \cdot 10^{-6} \Longrightarrow \left| c_{L\varphi}^{(1)} + c_{L\varphi}^{(3)} \right| < 7.8 \cdot 10^{-3}$$

• limit on $H \rightarrow \tau e$ from LHC

$$\mathrm{BR}(H_0 \to e\tau) < 2.0 \cdot 10^{-3} \Longrightarrow \left| Y_{e\tau, \, \tau \, e}' \right| < 1.3 \cdot 10^{-3}$$

• ATLAS looked for $t
ightarrow q\ell\ell'$, $C \sim 0.1$ bounds

High invariant mass CLFV Drell-Yan

- ATLAS published $pp \rightarrow \tau e$ results, with hadronic τ , framed as Z' searches 6 invariant mass bins from 100 GeV to 3 TeV, compatible with background only
- if $\Lambda\gtrsim 3-4$ TeV, can be reframed as constraints on four-fermion operators as at low-energy
- simulate SMEFT operators at NLO in QCD, with POWHEG + Pythia8 + Delphes

High invariant mass CLFV Drell-Yan

- signal from four-fermion enhanced at large $m_{\tau e}$, indep. of Lorentz structure
- $C_{ au eq_i q_i} \lesssim 10^{-3}$ for valence quarks, $\lesssim 3 \cdot 10^{-2}$ for b quarks
- new '22 and '23 ATLAS and CMS analysis with full luminosity and better backgrounds

Summary of existing constraints

- all channels with *d*-type quarks sector well constrained by low-energy
- LHC in striking distance in db, ss, and better in bb channel

Summary of existing constraints

- strong constraints on $tar{t}$ couplings from $au
 ightarrow e\pi\pi$
- more fragmentary info for *u*-type FCNC operators
- similar results for other Lorentz structures

CLFV Deep Inelastic Scattering

Left handed τ_L , e_L Left handed u_L , d_L

NNPDF31_lo_as_0118

- most cross sections in the 1-10 pb range, for $\Lambda = v$,
- heavy flavors c, b suppressed by factor ten
- large PDF uncertainties for heavy-flavor-initiated processes, need NLO corrections
- is a NLO + parton shower framework needed/available for EIC?

τ at the EIC

- (substantial) background from standard NC and CC DIS
- generate 10^8 SM & 10^6 SMEFT events with <code>Pythia8</code> + <code>Delphes</code> for EIC

using Delphes card by M. Arratia and S. Sekula

Muon channel

- too much background in *e* channel, μ channel much more promising!
- in SM, μ come from hadron decays, typically at small p_T

 $p_T^{\mu} > 10 \, {
m GeV}, \quad {\not\!\!\!E_T} > 15 \, {
m GeV}, \quad p_T^{j_1} > 20 \, {
m GeV}$

eliminates all SM background

- smaller signal efficiency for Z couplings, heavy quarks
- ? assumed same performance for muon and electrons, realistic?

Hadronic channel

- one " τ -tagged" jet, with 1 or 3 charged tracks, and close in ϕ to $\not\!\!E_T$
- recoils against a second jet, no charged leptons in final state

$$p_T^{j_1} > 20 \,\mathrm{GeV}, \quad p_T^{j_2} > 15 \,\mathrm{GeV}, \quad
ot\!\!\!/ _T > 15 \,\mathrm{GeV} \Longrightarrow \epsilon_{SM} = 10^{-5}$$

does not quite kill all SM background

? cuts severely suppress heavy quark signals, can be improved with b-tagging?

EIC sensitivity to CLFV

• ϵ_{n_b} : signal efficiency for the cuts to reduce the SM background to n_b events At EIC with $\mathcal{L} = 100 \text{ fb}^{-1}$, $\sqrt{S} = 140 \text{ GeV}$, $n_{obs} = n_b$

• EIC can probe couplings at the $10^{-3} - 10^{-2}$ level in μ channel

can improve with "smarter" hadronic channel analysis

• no suppression for off-diagonal, e.g. $C_{cu} \sim C_{uu}$

Constraints on $\tau \leftrightarrow e$ transitions: dipole, Yukawa and Z

- γ and Z overwhelming constrained by $\tau \to e \gamma$
- strong direct LHC bound on Y'
- $\tau \rightarrow e\pi\pi$ dominates Z couplings

Constraints on $\tau \leftrightarrow e$ transitions: four-fermion operators

- uu $\tau
 ightarrow e\pi\pi$ stronger by \sim 5, EIC competitive with $\tau
 ightarrow e\pi$ & LHC
- cc low-energy loop suppressed, EIC can do better
- tt strong constraints from au decays
- colliders are only probes of u-type off-diagonal

Constraints on $\tau \leftrightarrow e$ transitions: four-fermion operators

• EIC can compete on *bb* component and with *B* decays **if** we improve *b* quark analysis

LHC vs EIC, SMEFT vs models

- LHC vs EIC comparison assumes SMEFT is applicable in DY tail (i.e. $\Lambda \gg m_{ au e}$)
- cross section can be suppressed in BSM models e.g. *t*-channel exchanges with $M \sim 1-2$ TeV
- DY bound weaken by a factor of 2 (M = 2 TeV) to 5 (M = 1 TeV)
- discovery at EIC and null results at LHC could point to specific (lightish) new physics

Beyond single coupling

$$\begin{split} & C_{LQ\,U} = \text{diag}([C_{LQ\,U}]_{uu}, 0, 0) \\ & C_{LQ\,D} = \text{diag}([C_{LQ\,D}]_{dd}, [C_{LQ\,D}]_{ss}, 0) \\ & C_{Lu} = \text{diag}([C_{Lu}]_{uu}, 0, 0) \\ & C_{Ld} = \text{diag}([C_{Ld}]_{dd}, [C_{Ld}]_{ss}, 0) \\ & c_{L\varphi} \end{split}$$

- $\pi\pi$ mode dominates, can weaken the limits with multiple couplings
- isoscalar, vector couplings not well constrained,

$$[C_{LQ U}]_{uu} + [C_{LQ D}]_{dd} + [C_{Lu}]_{dd} + [C_{Ld}]_{dd}$$

• no free directions at colliders!

Beyond single coupling

V/A couplings to L leptons & d-type quarks

$$C_{LQD} = \operatorname{diag}([C_{LQD}]_{dd}, [C_{LQD}]_{ss}, [C_{LQD}]_{bb}]$$

$$C_{Ld} = \operatorname{diag}([C_{Ld}]_{dd}, [C_{Ld}]_{ss}, [C_{Ld}]_{bb})$$

- contributions to hadronic au decays cancel for $[C_{Ld}]_{bb} \sim [C_{LQD}]_{bb}$
- $\tau \to e \ell^+ \ell^-$ weaker than current LHC and project EIC

low energy not sufficient to constrain full parameter space need complementary info!

 $e \rightarrow \mu$ at the EIC

- simpler analysis (still assuming $\mu \sim e$. . .)
- investigated 15 cuts with p_T^{μ} , $p_T^{\rm jet}$ between 5 and 20 GeV, electron veto between 5 and 10 GeV
- hardest cut leaves about \sim 50 SM events behind
- explored role of b-tagging to allow for softer cuts for heavy flavors

$e \rightarrow \mu$ at the EIC vs LHC

- if SMEFT interpretation is valid, LHC stronger by a factor of 10/20
- and pushing in the $\Lambda > 10$ TeV regime

$e \rightarrow \mu$ at the EIC vs LHC and low-energy

- in single coupling analysis, low energy provides stronger constraints on $\mu
 ightarrow e$ interactions
- SI $\mu \rightarrow e$ conversion in nuclei constrains dd, ss and bb couplings
- ss suppressed by nucleon strange vector form factor, bb by electroweak loop,

still $100 \times$ stronger than LHC/EIC

• K, D and B decays give strong constrains on flavor changing couplings

Multiple couplings

- spin independent and spin dependent $eA \rightarrow \mu A$ limits are very strong, but only a few...
- 4 couplings are enough to reveal free directions
- and colliders become competitive on both heavy and light flavors

Conclusion

- CLFV can unveil/constrain mechanisms of neutrino mass generation
- EIC, LHC, *B* factories and $\mu \rightarrow e$ experiments are complementary especially for heavy flavors and in multiple-coupling scenarios

To do:

- improve EIC calculations and simulations, detailed study of heavy quark channels, improve efficiency with b tagging, study e ↔ μ transitions, ...
- ? can we get away w/o full detector simulations?
- recast ATLAS and CMS analyses in SMEFT language (alongside to benchmark models)
- perform a real global fit & identify unconstrained direction in $e \leftrightarrow \mu$, $e \leftrightarrow \tau$ and $\mu \leftrightarrow \tau$ interactions
- extend SMEFT studies to include light sterile neutrinos

Backup

The LEFT LNV Lagrangian

vector-like operators

$$\begin{split} \mathcal{L}_{6} &= -\frac{4G_{F}}{\sqrt{2}} \left(C_{\mathrm{VLL}}^{eu} \, \bar{e}_{L} \gamma^{\mu} e_{L} \, \bar{u}_{L} \gamma_{\mu} u_{L} + C_{\mathrm{VLL}}^{ed} \, \bar{e}_{L} \gamma^{\mu} e_{L} \, \bar{d}_{L} \gamma_{\mu} d_{L} + C_{\mathrm{VRR}}^{eu} \, \bar{e}_{R} \gamma^{\mu} e_{R} \, \bar{u}_{R} \gamma_{\mu} u_{R} \right. \\ &+ C_{\mathrm{VRR}}^{ed} \, \bar{e}_{R} \gamma^{\mu} e_{R} \, \bar{d}_{R} \gamma_{\mu} d_{R} + C_{\mathrm{VLR}}^{ue} \, \bar{e}_{R} \gamma^{\mu} e_{R} \, \bar{u}_{L} \gamma_{\mu} u_{L} + C_{\mathrm{VLR}}^{de} \, \bar{e}_{R} \gamma^{\mu} e_{R} \, \bar{d}_{L} \gamma_{\mu} d_{L} \\ &+ C_{\mathrm{VLR}}^{eu} \, \bar{e}_{L} \gamma^{\mu} e_{L} \, \bar{u}_{R} \gamma_{\mu} u_{R} + C_{\mathrm{VLR}}^{ed} \, \bar{e}_{L} \gamma^{\mu} e_{L} \, \bar{d}_{R} \gamma_{\mu} d_{R} \bigg), \end{split}$$

• scalar-tensor type operators

$$\begin{split} \mathcal{L}_6 &= -\frac{4G_F}{\sqrt{2}} \left(C^{eu}_{\mathrm{SRR}} \, \bar{e}_L e_R \, \bar{u}_L u_R + C^{ed}_{\mathrm{SRR}} \, \bar{e}_L e_R \, \bar{d}_L d_R + C^{eu}_{\mathrm{TRR}} \, \bar{e}_L \sigma^{\mu\nu} e_R \, \bar{u}_L \sigma_{\mu\nu} u_R \right. \\ &+ C^{ed}_{\mathrm{TRR}} \, \bar{e}_L \sigma^{\mu\nu} e_R \, \bar{d}_L \sigma_{\mu\nu} d_R + C^{eu}_{\mathrm{SRL}} \, \bar{e}_L e_R \, \bar{u}_R u_L + C^{ed}_{\mathrm{SRL}} \, \bar{e}_L e_R \, \bar{d}_R d_L \right) + \mathrm{h.c.} \end{split}$$

• vector/axial combinations

$$C_{\rm VLV}^{eq} = \frac{1}{2} \left(C_{\rm VLR}^{eq} + C_{\rm VLL}^{eq} \right), \qquad C_{\rm VLA}^{eq} = \frac{1}{2} \left(C_{\rm VLR}^{eq} - C_{\rm VLL}^{eq} \right)$$

$\tau \leftrightarrow e$ transitions: future projections

- Belle-II will improve
- colliders will play an important role in heavy flavor & multi-coupling scenarios

Leptoquark models

marginalized over remaining couplings

- light-quark components severely constrained by low-energy
- EIC and LHC can improve the *b* components

Polarized cross section

• generic form of polarized cross section

$$\begin{split} \frac{1}{\sigma_0} \frac{d\sigma_{\lambda_e \lambda_T}}{dx \, dy} &= \frac{1}{2} \sum_{\mathfrak{a}} \left[\frac{1 - \lambda_e}{2} \left(\hat{\sigma}_{\mathrm{LL}}^{\mathfrak{a}} + \hat{\sigma}_{\mathrm{LR}}^{\mathfrak{a}} \right) + \frac{1 + \lambda_e}{2} \left(\hat{\sigma}_{\mathrm{RL}}^{\mathfrak{a}} + \hat{\sigma}_{\mathrm{RR}}^{\mathfrak{a}} \right) \right] f_{\mathfrak{a}}(x, Q^2). \\ &+ \frac{1}{2} \sum_{\mathfrak{a}} \left[\frac{1 - \lambda_e}{2} \left(- \hat{\sigma}_{\mathrm{LL}}^{\mathfrak{a}} + \hat{\sigma}_{\mathrm{LR}}^{\mathfrak{a}} \right) + \frac{1 + \lambda_e}{2} \left(- \hat{\sigma}_{\mathrm{RL}}^{\mathfrak{a}} + \hat{\sigma}_{\mathrm{RR}}^{\mathfrak{a}} \right) \right] \lambda_T \Delta f_{\mathfrak{a}}(x, Q^2), \end{split}$$

• example of
$$u$$
 quarks $(F_Z = \frac{1}{c_w^4 s_w^4} \frac{Q^4}{(Q^2 + m_Z^2)^2})$

$$\begin{split} \hat{\sigma}_{LL}^{u_i} &= F_Z \bigg\{ \left| \left[c_{L\varphi}^{(1)} + c_{L\varphi}^{(3)} \right]_{\tau e} z_{u_L} + \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{LQ, \, u} \right]_{\tau eu_i u_i} \right|^2 + \sum_{j \neq i} \left| \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{LQ, \, u} \right]_{\tau eu_j u_i} \right|^2 \bigg\} \\ \hat{\sigma}_{RR}^{u_i} &= F_Z \bigg\{ \left| \left[c_{e\varphi} \right]_{\tau e} z_{u_R} + \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{eu} \right]_{\tau eu_i u_i} \right|^2 + \sum_{j \neq i} \left| \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{eu} \right]_{\tau eu_j u_i} \right|^2 \bigg\} \\ \hat{\sigma}_{LR}^{u_i} &= F_Z (1 - y)^2 \bigg\{ \left| \left[c_{L\varphi}^{(1)} + c_{L\varphi}^{(3)} \right]_{\tau e} z_{u_R} + \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{Lu} \right]_{\tau eu_i u_i} \right|^2 + \sum_{j \neq i} \left| \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{Lu} \right]_{\tau eu_j u_i} \right|^2 \bigg\} \\ \hat{\sigma}_{RL}^{u_i} &= F_Z (1 - y)^2 \bigg\{ \left| \left[c_{e\varphi} \right]_{\tau e} z_{u_L} + \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{Qe} \right]_{\tau eu_i u_i} \right|^2 + \sum_{j \neq i} \left| \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{Qe} \right]_{\tau eu_j u_i} \right|^2 \bigg\}, \end{split}$$

$\tau \leftrightarrow e$ transitions: future projections

- Belle-II will improve au decays BR by a factor of 5 $(au o e\gamma)$ to 40 $(au o e\pi\pi)$
- colliders will play an important role in heavy flavor & multi-coupling scenarios