

# Ab Initio Nuclear Structure and Reactions in the Context of Neutron Skin



May 2023

Alexis Mercenne Louisiana State University



Alexis Mercenne – Neutron Rich Matter on Heaven and Earth

# **Constraining the Neutron Skin**

### **Electron scattering experiments (PREX, CREX)**

Provide the most accurate measurement of the nucleon distribution. Upcoming MREX for neutron radius of <sup>208</sup>Pb, but not before 2030.

M. Thiel et al. J. Phys. G: Nucl. Part. Phys. 46 (2019) 093003



May 2023

### Hadronic probes (FRIB)

Extraction of neutron skin is model-dependent, suffers from large and uncontrolled theoretical uncertainties.

- Optical potential models fitted on experimental data.
- Models reproduce binding energies and charge radii for a variety of nuclei.
- Very accurate representation of the experimental cross sections.
- Yet, wide range of values for the neutron-skin thickness.

J. Piekarewicz, S.P. Weppner, Nucl. Phys. A 778, 10 (2006)

Alexis Mercenne - Neutron Rich Matter on Heaven and Earth

# **Ab Initio Calculations**

First Principles

#### Many-body Dynamics

**Properties of Nuclei** 







Realistic Interactions ( $\chi$ EFT)

May 2023

Symmetry-Adapted No-Core Shell Model (SA-NCSM)





# **Ab Initio Low Energy Nuclear Physics**

#### Two energy regimes:

- High energy nuclear physics (quarks,  $\sim GeV$ ).
- Low energy nuclear physics (nucleons,  $\sim MeV$ ).

Interactions from Chiral Effective Field Theory ( $\chi$ EFT) : Effective Lagrangians consistent with symmetries of QCD – expansion in  $Q/\Lambda$ .

#### Only nucleons as degree of freedom.

|                                           | NN             | 3N                | 4N                                               |
|-------------------------------------------|----------------|-------------------|--------------------------------------------------|
| ${f LO}\ (Q/\Lambda_\chi)^0$              | $\times$       |                   |                                                  |
| $\frac{\mathbf{NLO}}{(Q/\Lambda_\chi)^2}$ | X A A<br>N I A |                   |                                                  |
| <b>NNLO</b> $(Q/\Lambda_{\chi})^3$        |                | ++- <br>          |                                                  |
| ${f N^3 LO} \ (Q/\Lambda_\chi)^4$         |                | ++  4+ <br> >4  ¥ | <b>†</b> - <b> </b> ∧ <b> </b> − <b>†</b><br>+ ` |

May 2023

#### A plethora of many-body methods:

- In-medium Similarity Renormalization Group
- Coupled Cluster methods
- Self-consistent Green's Functions
- Configuration Interaction Approaches (No-core Shell Model, Symmetry-adapted No-core Shell Model)
- Quantum Monte Carlo
- Lattice Effective Field Theory



# Symmetry-adapted No-core Shell Model (SA-NCSM)

#### **Based on traditional No-core Shell Model (NCSM):**

- Spherical harmonic oscillator basis.
- Configuration interaction.
- Ab initio (no restrictions for interactions ...NN, NNN, non-local,...  $\chi$ EFT)

#### But brings new features:

- SU(3)-coupled basis states or Sp(3,R)-coupled basis states.
- Selected model space (truncation) physically relevant + exact center-of-mass factorization!
- Equal to NCSM in complete-N<sub>max</sub> model space.

May 2023





Alexis Mercenne – Neutron Rich Matter on Heaven and Earth

# Symmetry-adapted No-core Shell Model



- Few basis states contribute.
- Practically exact calculations.
- Important shapes capture relevant correlations.

- Allow to keep non-negligible contributions only:
  - I. Manageable model space.
  - II. Center-of-mass/relative motion can be exactly factorized.



## **SA-NCSM Observables**

PRC 91, 023326 (2015)



Alexis Mercenne - Neutron Rich Matter on Heaven and Earth

May 2023

7

# **Pushing Ab Initio Calculations Up to the Calcium Region**

• Applied to many nuclei up to calcium region.

May 2023

• Successful in calculating: energy spectrum, rms radius, electromagnetic transitions ... etc.





### **SA-NCSM Results for Neutron Rich Nuclei**



Williams et al., PRC 100, 014322 (2019)

### SA-NCSM Heaviest Systems A = 48



G.H. Sargsyan et al. Bulg. J. Phys. 49, 47 (2022)

### SA-NCSM Heaviest Systems A = 48



May 2023

Alexis Mercenne – Neutron Rich Matter on Heaven and Earth

# **Pushing Ab Initio Calculations Up to the Calcium Region**

• Applied to many nuclei up to calcium region.

May 2023

• Successful in calculating: energy spectrum, rms radius, electromagnetic transitions ... etc.





Next step: use this physically relevant manybody basis to nuclear reactions.

- Support FRIB experiments for exotic nuclei.
- Provide reliable inputs for astrophysical studies.

# **Plugging SA-NCSM Wavefunctions Into Reaction Calculations**



Can be solved with calculable R-matrix.

a.k.a optical potential, intercluster interaction, nucleonnucleus potential ... etc

A basis for reactions: channel index gathers partitions, quantum numbers of projectile and target, total angular momentum of composite ...etc  $c = \{A \ I_T; a \ I_p; n\ell j; J\}$ 

May 2023

Low energies/light systems: the coupled-channel equation can be treated exactly; all thresholds are included; Non-local potential couples all channels with each other.

Higher energies/heavier systems: too many reaction thresholds; use of optical potential instead.

# Low Energy Ab Initio Reactions With the Resonating Group Method

- u<sub>c</sub>(r) describes the relative motion between the two clusters.
- Asymptotic of u<sub>c</sub>(r) gives cross section for specific channel.
- Requires internal wave functions and NN interaction.
- Microscopic: full antisymmetrization + cluster correlations.
- Can be generalized to any number of clusters.

$$|\Psi\rangle = \sum_{c} \int dr \frac{u_{c}(r)}{r} r^{2} \mathcal{A} \left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ |\Phi\rangle = \sum_{i} \mathcal{C}_{i} \end{array} \right\}$$

$$|\Phi\rangle = \sum_{i} \mathcal{C}_{i} \quad & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$\left[ c = \{ A I_T; a I_p; n\ell j; J \} \right]$$

May 2023

 $\rightarrow$ 

# Low Energy Ab Initio Reactions With the Resonating Group Method

### Symmetry-adapted RGM:

• *Ab initio* single-nucleon projectile reactions in a coupled-channel framework.

May 2023

• First results studied the influence of selected model space on non-local potentials.





Launey, Mercenne, Dytrych Ann. Rev. Nucl. Part. Sci. 71, 253 (2021)

# **Optical Potentials Derived from SA-NCSM Calculations**

- <sup>4</sup>He wave function calculated with SA-NCSM.
- Optical potential describing neutron scattering on <sup>4</sup>He constructed with Green's function method.

Matthew Burrows and Kristina Launey, preliminary results





# **Uncertainties in Ab Initio Calculations**



Alexis Mercenne - Neutron Rich Matter on Heaven and Earth

# Summary

- Practically exact ab initio calculations are now performed up to the calcium region.
- Symmetry-adapted No Core Shell Model (SA-NCSM) makes use of a physically relevant basis that allows a good reproduction of spectra, B(E2) values, quadrupole moments, form factors ... etc.
- SA-NCSM wave functions can be implemented into reaction formalisms:
  - For low-energy reactions in multiple coupled-channels framework.
  - At higher energies with the construction of effective ab initio nucleon-nucleus potentials (optical potentials).
- Applications of SA-NCSM in neutron-rich nuclei can help to evaluate the neutron skin thickness.
- Compared to traditional methods extracting  $R_{skin}$  from proton scattering, theoretical uncertainties will now be better controlled.

LSU collaborators: K. Launey, J. Draayer, T. Dytrych, G. Sargsyan, M. Burrows, K. Becker, D. Mumma, N. Thompson. And also: M. Ploszajczak (GANIL), Y. Alhassid (Yale), J. Escher (LLNL), N. Michel (Institute of Modern Physics, Lanczhou).



Alexis Mercenne – Neutron Rich Matter on Heaven and Earth