

Lattice calculations of the heavy quark diffusion coefficient using gradient flow

INT - Heavy Flavor Production in Heavy-Ion and Elementary Collisions Julian Frederic Mayer-Steudte

In collaboration with Nora Brambilla (TUM) Viljami Leino (TUM) Peter Petreczky (BNL)

Based on arXiv:2206.02861

Seattle, October 25 2022

- 2 Lattice analysis
- 3 Conclusion

Introduction: Motivation of the Quark Gluon Plasma

- Quark Gluon Plasma (QGP) generated at particle accelerators such as LHC/RHIC
- The QGP can be described in terms of transport coefficients
- We are interested in Heavy quark physics as they probe the medium consisting of light quarks well
- Here: we focus on the heavy quark momentum coefficient κ : Spatial diffusion coefficient $D_{\rm S} = 2T^2/\kappa$ Drag coefficient $\eta_{\rm D} = \kappa/(2MT)$ Heavy quark relaxation time $\tau_{\rm Q} = \eta_{\rm D}^{-1}$
- \mathbf{I} κ related to experimental quantities Nuclear modification factor R_{AA} , and Elliptic flow ν_2
- Multiple theoretical models predicting wide range of values

Non-perturbative lattice simulations needed

Introduction: Theoretical constructions for the Lattice

(Casalderrey-Solana and Teaney PRD 74 (2006)), (Caron-Huot et.al. JHEP04 (2004))

In the $M \to \infty$ limit we can define:

$$\kappa = \frac{1}{3T\chi} \sum_{i=1}^{3} \lim_{\omega \to 0} \left[\lim_{M \to \infty} M_{kin}^2 \int_{-\infty}^{\infty} dt e^{i\omega(t-t')} \int d^3x \left\langle \frac{1}{2} \left\{ \frac{\hat{\mathcal{J}}^i(t,x)}{dt}, \frac{\hat{\mathcal{J}}^i(0,x)}{dt} \right\} \right\rangle \right]$$

 $\blacksquare~$ Where $\hat{\mathcal{J}}^i(x)=\bar{\psi}(x)\gamma^\mu\psi(x)$ is the heavy quark current

The heavy quark force in static limit:

$$M\frac{d\hat{\mathcal{J}}^{i}}{dt} = \left\{\phi^{\dagger}E^{i}\phi - \theta^{\dagger}E^{i}\theta\right\}$$

Nhere $\phi, \, heta$ are ${
m HQ}$ and ${
m H} ar{{
m Q}}$ operators, E^i chromoelectric field

Now the euclidean correlator is defined as:

$$\kappa = \sum_{i=3}^{3} \lim_{M \to \infty} \frac{\beta}{3\chi} \int dt d^3x \left\langle \frac{1}{2} \left\{ \left[\phi^{\dagger} g E^i \phi - \theta^{\dagger} g E^i \theta \right](t,x), \left[\phi^{\dagger} g E^i \phi - \theta^{\dagger} g E^i \theta \right](0,x) \right\} \right\rangle$$

Introduction: Theoretical constructions for the Lattice (Caron-Huot et.al. JHEP04 (2004))

Switch to Euclidean electric fields:

$$G_{\rm E} = -\frac{1}{3T\chi} \sum_{i=3}^{3} \lim_{M \to \infty} \int d^3x \left\langle \frac{1}{2} \left[\phi^{\dagger} g E^i \phi - \theta^{\dagger} g E^i \theta \right] (\tau, x) \left[\phi^{\dagger} g E^i \phi - \theta^{\dagger} g E^i \theta \right] (0, x) \right\rangle$$

After simplifying the propagators of ϕ and θ in $M \to \infty$:

$$G_{\rm E}(\tau) = -\frac{1}{3} \sum_{i=1}^{3} \frac{\langle \text{ReTr}[U(\beta,\tau)gE_i(\tau,0)U(\tau,0)gE_i(0,0)] \rangle}{\text{ReTr}[U(\beta,0)]}$$

Related to the Diffusion coefficient by:

$$G_{\rm E} = \int_0^\infty \frac{d\omega}{\pi} \rho(\omega) \frac{\cosh\left(\frac{\beta}{2} - \tau\right)\omega}{\sinh\frac{\beta\omega}{2}}, \\ \kappa = \lim_{\omega \to 0} \frac{2T}{\omega} \rho(\omega)$$

- In general, inversion problem ill defined
- **No** $\omega \to 0$ transport peak

Julian Frederic Mayer-Steudte | Heavy quark diffusion with gradient flow | 10/25/2022

пп

Introduction: Theoretical constructions for the Lattice

(A. Bouttefeu and M. Laine JHEP 12 (2020) 150, M. Laine JHEP 06 (2021) 139)

Considering full Lorentz force:

 $F(t) = \dot{p} = q(E + v \times B))(t)$

 $\blacksquare~\langle v^2\rangle\sim \mathcal{O}(T/M)$ corrections to HQ momentum diffusion

 $\kappa_{
m tot} \simeq \kappa_{
m E} + rac{2}{3} \langle v^2
angle \kappa_{
m B}$

 \blacksquare $\kappa_{\rm B}$ related to correlation of chromo magnetic fields:

$$G_{\rm B}(\tau) = \frac{1}{3} \sum_{i=1}^{3} \frac{\langle \operatorname{ReTr}[U(\beta,\tau)B_i(\tau,0)U(\tau,0)B_i(0,0)] \rangle}{\langle \operatorname{ReTr}[U(\beta,0) \rangle}, \kappa_{\rm B} = \lim_{\omega \to 0} \frac{2T\rho_{\rm B}(\omega)}{\omega}$$

Same tree level expansion as $G_{\rm E}$, but NLO has divergence

$$\rho_{\rm B} = \frac{g^2 C_f \omega^3}{6\pi} \left[1 - \frac{g^2 C_A}{(4\pi)^2} \frac{2}{\epsilon} + (\text{finite}) \right] + \mathcal{O}(g^6)$$

Introduction: Lattice discretization

E-field discretization:

$$a^{2}E_{i}(\tau, x) = U_{4}(\tau, x)U_{i}(\tau + 1, x) - U_{i}(\tau, x)U_{4}(\tau, x + \hat{i})$$

- Similar for *B*-field discretization:
 - $a^{2}B_{i}(\tau, x) = \epsilon_{ijk}U_{j}(\tau, x)U_{k}(\tau, x + \hat{j})$
- Both, $G_{\rm E/B}$ have a finite extension which leads to unphysical self-energy contributions
- κ -physics at large au, but bad signal-to-noise ratio there

Need to renormalize the correlators for obtaining a proper continuum limit, e.g. $Z_{
m E,B}$

Introduction: Gradient flow

Evolve gauge fields along fictitious time t:

$$\begin{split} \partial_t B_{\tau_F,\mu} &= -\frac{\delta S_{YM}}{\delta B} = D_{\tau_F,\mu} G_{\tau_F,\mu\nu} \,, \\ G_{\tau_F,\mu\nu} &= \partial_\mu B_{\tau_F,\nu} - \partial_\nu B_{\tau_F,\mu} + \left[B_{\tau_F,\mu}, B_{\tau_F,\nu} \right] . \\ B_{0,\mu} &= A_\mu \quad \leftarrow \text{ the original gauge field} \end{split}$$

- Diffuses the inital gauge field with radius $\sqrt{8\tau_F}$, "diffuses" discretization effects
- Automatically renormalizes gauge invariant observables
- **Zero flowtime limit** $\mathcal{O}(x, \tau_F) \xrightarrow{\tau_F \to 0} \sum_j d_j(\tau_F) \mathcal{O}_j^R(x)$
- Could allow un-quenched simulations
- Issue with G_B: divergence at zero flowtime

пп

Introduction: Gradient flow

- From force measurement: non-perturbative Z_E determination
- For $\sqrt{8\tau_F} > a$: $Z_{\rm E} \to 1$
- Gradient flow renormalizes field insertions if enough flowtime is applied

Introduction: Our aim

Perform simulations at $T = 1.5T_C$ and $T = 10^4T_C$

So far for $\kappa_{\rm E}$:

- 1. Measure flowed $G_{\rm E}$ and perform continuum limits
- 2. Obtain renormalized $G_{\rm E}$ with the zero flowtime limit
- 3. Model $\rho_{\rm E}$ and obtain $\kappa_{\rm E}$
- To target $\kappa_{\rm B}$ try new procedure for $\kappa_{\rm E}$:
 - 1. Measure flowed $G_{\rm E}$ and perform continuum limits
 - 2. Model $\rho_{\rm E}$ at finite flowtime and obtain flowed $\kappa_{\rm E}(\tau_F)$
 - 3. Perform zero flowtime limit for $\kappa_{\rm E}$
 - 4. Compare with the traditional approach
 - Perform the same for $\kappa_{
 m B}/G_{
 m B}$

1 Introduction

- 2 Lattice analysis
- 3 Conclusion

Analysis: Lattice setup

Set scale for $1.5T_C$ and 10^4T_C through (A. Francis et.al. PRD 91 (2015))

Simulation parameters:

T/T_C	N_t	N_S	β	N_{conf}
1.5	20	48	7.044	4290
	24	48	7.192	4346
	28	56	7.321	5348
	34	68	7.483	3540
10000	20	48	14.635	1890
	24	48	14.792	2280
	28	56	14.925	2190
	34	68	15.093	1830

- Configurations produced with Wilson action, Gradient flow with Symanzik action
- For the largest lattice, adaptive gradient flow solver is used, fixed stepsize for the others

Julian Frederic Mayer-Steudte | Heavy quark diffusion with gradient flow | 10/25/2022

пп

Analysis: Lattice perturbative

 Continuum perturbative correlator is known: (Caron-Huot et.al. JHEP04 (2009))

$$\frac{G_{\rm E}^{\rm pert,LO}}{g^2 C_f} = \pi^2 T^4 \left[\frac{\cos^2(\pi \tau T)}{\sin^4(\pi \tau T)} + \frac{1}{3\sin^2(\pi \tau T)} \right]$$

Lattice perturbative correlator is known (flowed correlator more complicated): (A. Francis et.al. PoSLattice (2011))

$$\frac{G_{\rm E}^{\rm LOlatt}(\tau)}{g^2 C_{\rm F}} = \int_{-\pi}^{\pi} \frac{d^3 q}{(2\pi)^3} \frac{\tilde{q}^2 e^{\bar{q}N_t(1-\tau T)} + \bar{q}^2 e^{\bar{q}N_t\tau T}}{3a^4(e^{\bar{q}N_t} - 1)\sinh(\bar{q})}, \\ \bar{q} = 2 \text{arsinh}\left(\frac{\sqrt{\bar{q}^2}}{2}\right), \quad \tilde{q}^n = \sum_{i=1}^3 2^n \sin^n\left(\frac{q_i}{2}\right) + \frac{1}{2} \left(\frac{q_i}{2}\right) + \frac{1}{2}$$

By perturbative behavior and experience, the valid flowtime range is

• We use the ratio $\sqrt{8t}/\tau$ as the relevant scale

a

Analysis: Measurement preparation

- We use the ratio $\sqrt{8t}/\tau$ as the relevant scale
- Normalizing the correlator with $G^{\text{norm}} = G_{\text{E}}^{\text{pert,LO}}/g^2 C_f$
- Tree level improvement through multiplicative factor

 $\frac{G_{\rm E}^{\rm pert,LO}}{G_{\rm E}^{\rm LOlatt}} \qquad \qquad \times \frac{G_{\rm E}^{\rm meas}}{G^{\rm norm}} = \frac{G_{\rm E}^{\rm meas}}{G_{\rm E}^{\rm LOlatt}/g^2 C_f}$

- We use the same normalization for $G_{\rm B}$
- Normalized quantities are dimensionless → suitable for continuum limits

Analysis: Correlator measurement

Measured correlator for the $N_t = 28$ lattice

- Increasing flowtime decreases statistical error
- With increasing flowtime converge towards a common shape

Analysis: Continuum extrapolation

linear in a^2 fit $\hat{=}$ linear in $1/N_t^2$ fit

works well within the flowtime range of interest

Analysis: Continuum extrapolation for $G_{\rm E}$

- Largest systematic error source is the interpolation
- For large τT all lattice data can be used
- For small τT continuum limit is restricted to the largest lattices

Analysis: Continuum extrapolation for G_B

- Largest systematic error source is the interpolation
- For large τT all lattice data can be used
- For small τT continuum limit is restricted to the largest lattices

Analysis: zero flowtime extrapolation

works well for $G_{\rm E}$

Analysis: Spectral inversion for G_E

- At UV: model ρ at NLO
 - Scale is optimized: $\ln(\mu_{\omega}) = \ln(2\omega) + \frac{(24\pi^2 149)}{66}$
 - □ only LO part remains:

$$\rho_{\rm E}^{\rm LO}(\omega,T) = \frac{g^2(\mu_{\omega})C_F\omega^3}{6\pi}$$

- for $\omega \sim T$ and smaller: $\ln(\mu_{\omega}) = \ln(4\pi T) \gamma_{\rm E} \frac{1}{22}$
- At IR: $\rho = \frac{\omega \kappa}{2T}$
- Connect both regimes by
 - $\hfill\square$ line ansatz: scales $\omega^{\rm IR},\,\omega^{\rm UV}$
 - $\hfill\square$ step ansatz: scale Λ
 - $ightarrow
 ho^{\mathrm{Model}}
 ightarrow \mathrm{construct} \; G_{\mathrm{E}}^{\mathrm{Model}}$

Analysis: κ_E extraction

- For $\kappa_{\rm E}$ extraction we optimize:
 - 1. lattice data are normalized such that $G_{\rm E}^{\rm lat}(T\tau_{\rm min})/G_{\rm E}^{\rm Model}(T\tau_{\rm min}) = 1$
 - 2. $G_{\rm E}^{\rm lat}(\tau T > T \tau_{\rm min})/G_{\rm E}^{\rm Model}(\tau T > T \tau_{\rm min}) = 1$ within 1.5σ
 - 3. Estimate systematic errors by model variation
 - Result for $\kappa_{\rm E}$:
 - $\Box \ T = 1.5T_C: 1.70 \le \frac{\kappa_{\rm E}}{T^3} \le 3.12$
 - $\Box T = 10^4 T_C : 0.02 \le \frac{\kappa_{\rm E}}{T^3} \le 0.16$
 - I repeat procedure at finite flowtime and perform zero flowtime limit

Finite flowtime effectects negligible compared to model uncertainties

Analysis: Spectral inversion for $G_{\rm B}$

■ UV part must be modified due to renormalization of G_B:

$$G_{\rm B}^{\rm flow, UV}(\omega, \tau_F) = (1 + \gamma_0 g^2 \ln(\mu \sqrt{8\tau_F}))^2 Z_{\rm flow} G_{\rm B}^{\rm \overline{MS}, UV}(\tau, \mu)$$

Modified UV spectral function

$$\rho_{\rm B}^{\rm UV}(\omega,\tau_F) = Z_{\rm flow} \frac{g^2}{6\pi} (1 + g(\mu)(\beta_0 - \gamma_0)\ln(\mu^2/(A\omega^2)) + g^2(\mu)\gamma_0\ln(8\tau_F\mu^2))$$
$$\gamma_0 = 3/(8\pi^2), \beta_0 = 11/(16\pi^2), A = \exp\left[\frac{134}{35} - \frac{8\pi^2}{5} - \ln 4\right]$$

Renormalization factor Z_{flow} fixed by the normalization
 Optimized scale:

$$\mu_{\omega} = (\sqrt{A}\omega)^{1-\gamma_0/\beta_0} (8\tau_F)^{-\gamma_0/(2\beta_0)}$$

Analysis: κ_B extraction

Low flowtime dependence

 $1.03 \le \frac{\kappa_{\rm B}}{T^3} \le 2.61$

Analysis: Clover discretization

ТШ

Clover discretization of B-field with a^2 -improvement:

$$a^{2}F_{\mu\nu} = -\frac{i}{8}(Q_{\mu\nu} - Q_{\nu\mu}), Q_{\mu\nu} = U_{\mu\nu} + U_{\nu,-\mu} + U_{-\mu,-\nu} + U_{-\nu,\mu} = Q_{\nu\mu}^{\dagger}$$
$$a^{2}B_{i} = -\frac{1}{2}\epsilon_{ijk}F_{jk}$$

new G^{norm}

(D. Banerjee et.al. JHEP08 (2022) 128

Compare three possibilities:

.

- 1. corner discretization + old Norm (our approach)
- 2. clover discretization + clover Norm (D. Banerjee et.al.)
- 3. corner discretization + clover Norm (for comparison)

Analysis: Clover discretization comparison

proper choices give the same continuum limit

1 Introduction

- 2 Lattice analysis
- 3 Conclusion

Conclusion

- Gradient flow improves qualitatively the signal to noise ratio
- Gradient flow renormalizes the E and B fields
 - \rightarrow proper continuum limits of flowed $G_{\rm E}$ and $G_{\rm B}$ possible
- Gradient flow can be used as renormalization scheme
 - \rightarrow extract scheme-independent, physical quantities
- Results of the electrical heavy quark diffusion coefficient:
 - $\Box T = 1.5T_C: 1.70 \le \frac{\kappa_{\rm E}}{T^3} \le 3.12$
 - $\Box T = 10^4 T_C: 0.02 \le \frac{\kappa_{\rm E}}{T^3} \le 0.16$
- Results of the magnetic heavy quark diffusion coefficient:
 - $\Box T = 1.5T_C: 1.03 \le \frac{\kappa_E}{T^3} \le 2.61$
 - $\Box T = 10^4 T_C$: not enough statistics
- Mass suppressed effects:
 - \Box charm: $\langle v^2 \rangle \approx 0.51 \rightarrow 34 \%$
 - $\hfill\square$ bottom: $\langle v^2 \rangle \approx 0.3 \rightarrow {\rm 20}\,\%$