





# T-matrix approach to quark-gluon plasma at finite baryon density

Going beyond EoS (even) in the equilibrium

K. Maslov

University of Houston & Cyclotron Institute, Texas A&M University

In collaboration with R. Rapp, J. Grefa, V. Dexheimer, C. Ratti

INT-25-94W (2025) Seattle, WA

#### Understanding QCD matter



- $T > T_c^{\chi}$ : still strongly coupled QGP
  - Near perfect fluid
  - Strong jet quenching
  - Rapid heavy-quark thermalization

[E. Shuryak Rev.Mod.Phys 89 2017]

- Features of a "good" model of QGP:
  - Description of lattice QCD results at zero and low  $\mu_B/T$
  - Crossover at  $\mu_B = 0$  transition of dominant degrees of freedom

#### Green's functions and spectral functions

• Central objects:

$$G(\omega, \vec{p})$$

- Green's function
- Spectral function:

$$\rho(\omega, p) = -\frac{1}{\pi} \operatorname{Im} G(\omega, p)$$

• Non-interacting (let  $\mu=0$ )  $G_0(\omega,p)=\frac{1}{\omega-E_p+i0}$ 

• Interacting:

$$G(\omega, p) = \frac{1}{G_0^{-1}(\omega, p) - \Sigma(\omega, p)}$$

 Choice of diagrams in Σ ↔(largely) many-body framework

$$A(\omega,p) = rac{-rac{1}{\pi} \mathrm{Im}[\Sigma(\omega,p)]}{(\omega-E_p-\mathrm{Re}[\Sigma(\omega,p)])^2 + (\mathrm{Im}[\Sigma(\omega,p)])^2}$$

• If we are lucky:  $\Gamma \simeq -2 \mathrm{Im} \Sigma(E_p^*,p) \to 0$  ,  $\rho(\omega,q) = \delta(\omega-E_p^*)$ 

• If not:











[Barbieri & Carbone "Self-Consistent Green's Function Approaches"]

## T-matrix approach to strongly interacting QGP

- Basic d.o.f. partons:  $q, \overline{q}, g; N_f = 3$ (degenerate)
- Start with  $\widehat{H}$  with 2-body interaction  $V(\vec{q}, \vec{q}')$  in various color channels
- Ladder resummation: *T*-matrix

$$T(E, P; q, q') = V + VG_2(E, ...)T$$

• Resonances below 2m in T-matrix ⇔ bound states

#### Example: heavy quarkonia bb, $\bar{c}c$

[M. Mannarelli, R. Rapp PRC72 (2005), D. Cabrera, R. Rapp PRD76 (2007), F. Riek, R. Rapp PRC82 (2010)]

**Screened Cornell potential** 

$$V \sim -\frac{4}{3} \frac{e^{-m_d r}}{r} + \frac{\sigma}{m_s} (1 - e^{-m_s r})$$

Self-consistent evaluation of

Heavy-quark diffusion coefficient

Euclidian-time correlators from lattice QCD



$$\sigma(E_{c.m.}) \sim \operatorname{Im} T(E_{c.m.})$$

## In-medium: self-consistency

• Interactions ↔self-energies

$$G = G_0 + G_0 \Sigma G, \qquad \Sigma \sim TG$$

#### Real-time formulation:

Im
$$\Sigma(\omega, q) \sim \int d\vec{p}_2 d\omega_2 \text{Im} T(\omega + \omega_2, \vec{p}_1, \vec{p}_2)$$
  
  $\times \rho(\omega_2, \vec{p}_2) \times [n_B(\omega + \omega_2) + n_F(\omega)]$ 

Self-consistent scheme



#### Equation of state

$$\Omega(\{\mu\}, T) = \mp T \sum_{n} \underbrace{\operatorname{Tr}\{\ln(-G^{-1}) + \Sigma G\}}_{\text{1-body}} \pm \underbrace{\Phi[G]}_{\text{2-body}}$$

Luttinger-Ward Functional (LWF)  $\Phi[G] =$ 

 Self-consistent many-body framework

$$\Sigma[G] = \frac{\delta \Phi[G]}{\delta G}$$

Conserving 2PI approximation

[G. Baym PR 127 (1962)]

### Light sector: weakly/strongly coupled scenarios

- Parton masses and interaction screening fit IQCD data:
  - $P(T, \mu_B = 0)$
  - Heavy-quark free energy  $F(\vec{r})$
  - Heavy-quark correlators
- ... due to remnants of the confining force



 Same EoS, significant difference in transport properties

S. Liu, R. Rapp EPJA 56 (2020)



#### This work: separable interactions

#### **Technical simplification**

- Solves 3D-reduced BSE and allows to resum LWF semi-analytically
- Rank-2 separable interaction in s- and p-waves:

• 
$$V(q, q') = G_S v_S(q) v_S(q') + G_C v_C(q) v_C(q')$$

$$v_S^{l=0}(q) = \frac{\Lambda_S^4}{(q^2 + \Lambda_S^2)^2}, \qquad v_C^{l=0}(q) = \frac{\Lambda_C^2}{q^2 + \Lambda_C^2}$$

× relativistic corrections

- $\Lambda_S \sim 0.5$  GeV,  $\Lambda_C \sim 2.9$  GeV
- Parameters tuned to reasonably describe quarkonium spectroscopy



Can we mimic the strongly coupled QGP with this simplified interaction?

#### Excitations at finite temperature

#### **In-medium screening**

• Assumption: color screening onset at  $T > T_0 = 0.15 \text{ GeV}$ 

$$\frac{\Lambda_S^4}{\left(q^2 + \Lambda_S^2\right)^2} \rightarrow \frac{\Lambda_S^4}{\left(q^2 + \Lambda_S^2 + s_S(T^2 - T_0^2)\right)^2}$$

$$\bullet \ \frac{\Lambda_C^2}{\mathrm{q}^2 + \Lambda_C^2} \to \frac{\Lambda_C^2}{\mathrm{q}^2 + \Lambda_C^2 + s_C(T^2 - T_0^2)}$$

- ↔ Debye screening
- $s_S \ll s_C$  remnants of confining force is still present in deconfined phase

#### Transition of d.o.f.

- T = 190 MeV: broad partons, well-defined resonances
- T = 300 MeV: narrow partons, dissociated resonances



#### EoS and beyond

 Parton masses fitted to lattice QCD pressure at  $\mu_B = 0$ 

[Borsanyi et al. Phys.Lett. B 730 (2014)]



- Main contribution:  $\Phi$  at low T  $\rightarrow$  partons at large T
- 1-body contribution ≠ QP case











- + p-wave
- + many channels:

| 19                    | $qar{q}$         | $(q/ar{q})g$                       | 88                                  |
|-----------------------|------------------|------------------------------------|-------------------------------------|
| (1/2, 3)<br>(-1/4, 6) | (1,1) $(-1/8,8)$ | (9/8, 3)<br>(3/8, 6)<br>(-3/8, 15) | (9/4, 1)<br>(9/8, 16)<br>(-3/4, 27) |

## Extension to finite $\mu_q$

- In our formulation  $\mu_q$  enters the propagators, not thermal distribution functions
- $\omega = 0 \leftrightarrow \text{Fermi surface}$

$$G_q(\omega, p; \mu_q) = \frac{1}{\omega + \mu_q - \varepsilon_p - \Sigma(\omega, q)}$$

$$G_{\bar{q}}(\omega, p; \mu_q) = \frac{1}{\omega - \mu_q - \varepsilon_p - \Sigma(\omega, q)}$$

Calibration: lattice QCD susceptibilities

$$P(T, \mu_B) = \sum_{n} \frac{1}{(2n)!} \chi_B^{(2n)}(T) \left(\frac{\mu_B}{T}\right)^{2n}$$

Extrapolation ansatz for parton masses and screened interaction



#### Susceptibilities

Polynomial fit to get susceptibilities

• 
$$P(\mu_B) = P_0 + \frac{\chi_B^2}{2} \mu_B^2 + \frac{\chi_B^4}{4!} \mu_B^4 + \frac{\chi_B^4}{6!} \mu_B^6 + \cdots$$

• Reasonable agreement with lattice QCD up to  $\chi_6$ 





#### Large $\mu_B$ : breaking the Lorentz invariance

•  $\mu_B = 0$ : vacuum approximation

$$T(E, P; q, q') =$$
 $T(\sqrt{E^2 - P^2}, 0, q, q')$ 
is not too bad (~(10 - 20)%)

- Large  $\mu_B$ , small T picture changes
  - $P \ll 2 p_F$  particle-particle and hole-hole excitations treated on equal footing (unlike G-matrix approach)
  - $P > 2 p_F$  no hole-hole excitations anymore

Lifesaving choice: separable interaction

• 
$$T(E, P; q, q') \sim \frac{v(q)v(q')}{1-J(E, P)}$$

$$\operatorname{Im} J(E, P) = \int d\omega \int_{\vec{k}} v_N v_{N'} \{ [1-f(\omega)][1-f(E-\omega)] - f(\omega)f(E-\omega) \}$$

$$\times \rho_i \left( \omega, \left| \frac{\vec{P}}{2} + \vec{k} \right| \right) \rho_j \left( E - \omega, \left| \frac{\vec{P}}{2} - \vec{k} \right| \right)$$

 $\operatorname{Im} J$  and  $\operatorname{Im} \Sigma$  can be calculated using Fast Fourier Transform

#### Color superconductivity

 Thouless criterion for superconductivity:

$$\operatorname{Re}\left[T_{qq_{\overline{3}}}(E=0,P=0)\right]^{-1}=0$$

$$\vec{p}_{1}=-\vec{p}_{2} \text{ in the medium frame}$$

• For the separable interaction

$$\det_{\text{sep}}[1 - \mathcal{F}_a J_{NN'}(E = 0, P = 0)] = 0$$

$$\mathcal{F}_a^{qq_{\overline{3}}} = 1/2$$

Example: NJL model

$$S_D(\omega, \vec{q}) = \frac{1}{1 - 2 G_D \Pi_D(\omega, \vec{q})}$$

$$\Pi(\omega, \vec{q}) = \Gamma_i \qquad \qquad \Gamma_j = i \operatorname{Tr} \int_k [G \Gamma_i G \Gamma_j]$$

• On-shell fermions: Thouless criterion  $1-2G_D\Pi_D(0,0)=0$  is equivalent to mean-field gap equation at  $\Delta=0$ 

$$1 = 8 N_f G_D \int \frac{d^3p}{(2\pi)^3} \frac{1 - 2n_F(\varepsilon_p - \mu, T)}{2\varepsilon_p - 2\mu}$$

#### Critical temperature: quasiparticle estimate







- Reasons for the small gap:
  - Separable interaction

Approx. gap eq.: 
$$1 \simeq V_{\rm s}^{\rm SEF}(k_{\rm F,n},\,k_{\rm F,n}) \sum_{\pmb k} \frac{1}{2\xi_{\pmb k,\rm n}} \tanh \left(\frac{\xi_{\pmb k,\rm n}}{2T_{\rm c}^{\rm nn}}\right).$$



similar in nuclear matter: small at large  $n_B$  compared to contact  $V(\vec{r}) = a \ \delta(\vec{r})$ 

[Tajima et al. Scientific Reports (2019)]

- Calibration to  $\chi_2(T)$   $qq_{\overline{3}}$  can't be too much bound
- Screening of v(q) with increasing T,  $\mu_q$

#### Thouless criterion: self-consistent results



-0.4

0.35

0.40

I use parameters fitted at  $\mu_q=0$  with

Quasiparticle

0.55

0.60

0.50

 $\mu_a$  [GeV]

Lorentz-invariant kinematics;

recalibration underway



#### Self-consistent SFs:



0.45

### Thermodynamics (quark-diquark model)

- What do we have instead?
- Pressure from precursors of CSC: correlated  $qq_{\overline{3}}$  pairs!



 Two-body contribution pushed total EoS into "typically hadronic" region



## Work in progress: recalibration with P-dependence



10-20 % indeed

#### Summary $\mu_B = 0$ :

- T-matrix model: beyond mean-field approach to description of strongly interacting QGP
- Explicit treatment of 2-body mesonic/diquark/glueball correlations
- A rank-2 separable model recovers:
  - quarkonium spectroscopy
  - collisional broadening
  - transition of degrees of freedom
- Model can be calibrated to describe  $\mu_B=0$  lattice QCD EoS and susceptibility

## Large $\mu_B$ , low T

- Low quasiparticle  $T_c$  artifact of separable interaction
- The very same strong interaction responsible for condensation significantly decreases  $T_c$  due to the collisional widths
- Pressure from 2-body diquark excitations brings  $P(\mu)$  into typically hadronic region

#### Backup 1. NJL model with diquark excitations

- Diquark excitations in Generalized Beth-Uhlenbeck approach ("Gaussian fluctuations")
   [D. Blaschke et al. Annals of Physics 348 (2014)]
- Pressure comparable with quarks near the condensation!

Lead to overshooting the susceptibility (!)



