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R process modelling

Astrophysical environment should 

provide enough neutrons per seed 

for the r process to operate

𝐴final = 𝐴initial + 𝑛seed

nseed depends mainly on 

neutron richness ejecta

requires properties of exotic 

neutron-rich nuclei:

• Beta-decay rates

• Neutron capture rates 

• Fission rates and yields
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Benchmark against observations:

• Indirect: Solar and stellar abundances (contribution many events, chemical evol.)

• Direct: Kilonova electromagnetic emission (single event, sensitive Atomic and 

Nuclear Physics)



Kilonova: signature of the r-process
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Metzger & Berger 2012

Kilonova: An electromagnetic 

transient due to long term 

radioactive decay of r-process 

nuclei

• Direct probe of the formation 

r-process nuclei

• Electromagnetic counterpart 

to Gravitational Waves

• Diagnostics physical 

processes at work during 

merger

Line of view GW170817 



R-process in mergers
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Simulations

Bauswein et al, ApJ 773, 78 (2013)

Nucleosynthesis
Light curve and

spectra modelling
Watson et al, Nature 574, 497 (2019)

• Different sources of ejecta

with different properties (𝑌𝑒)

• Role of equation of state

• Role of neutrinos 

• Physics of neutron-rich 

and heavy nuclei

• Radioactive energy 

deposition

• Thermalization decay 

products (Barnes+ 2016, 

Kasen+ 2019) 

• Spectra formation:  

atomic data depends on 

ejecta evolution (LTE vs 

NLTE) 



Energy levels - Opacity

▪ Early evolution (𝑡 ≲ 1 week, local thermodynamic equilibrium)
▪ Bound-bound opacities 

▪ Not enough data: levels and transitions (theory: Gaigalas+ 2019, Tanaka+ 2020, Fontes+ 2020)

▪ Nebular evolution (𝑡 ≳ 1 week, non LTE)
▪ Electron-ion cross sections, photoionization cross sections, recombination coefficients

(Hotokezaka+ 2021, Pognan+ 2022)
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All relevant levels & transitions known

Some levels & transitions known

Very incomplete levels & transitions data



Atomic opacities and spectral 

modelling 
▪ Systematic opacity calculations 

▪ All elements between Iron and Actinides computed using Flexible Atomic Code
[Gu CJP 86, 675 (2008), https://github.com/flexible-atomic-code/fac], U Lisbon
same set of configurations than Tanaka et al 2020.

▪ Extended set of configurations to ensure convergence low lying states and
density of levels

▪ Benchmark against data or calculations with alternative codes (HFR, U Mons)

▪

▪ 1D Monte Carlo Spectral Synthesis Code

▪ Inner boundary: only early spectra possible

▪ ARTIS
▪ 3D Monte Carlo Radiative Transfer

▪ Consistent description of energy deposition, transport and spectral formation

▪ 3D geometry ejecta

▪ Both photospheric and nebular epochs. 
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Kerzendorf & Sim, MNRAS 440, 387 (2014)

https://tardis-sn.github.io/
vmax

inner 

boundary

A. Flörs

G. Leck

R. Silva

L. Shingles

Kromer & Sim, MNRAS 398, 1809 (2009)

https://github.com/artis-mcrt/artis

https://github.com/flexible-atomic-code/fac
https://tardis-sn.github.io/
https://github.com/artis-mcrt/artis


Atomic Opacities (LTE)

▪ Sobolev optical depth (for a line 𝑙)

𝜏𝑙 =
𝜋𝑒2

𝑚𝑒𝑐
𝑡 𝑓𝑙 𝑛𝑙 𝜆𝑙

▪ Expansion opacity (homologous expanding material, not 

used in the radiation transport modelling)

𝜅exp
bb =

1

𝜌𝑐𝑡


𝑙

𝜆𝑙
Δ𝜆bin

(1 − 𝑒−𝜏𝑙)
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Oscillator

strength 

Population lower level

(Saha eq. and partition functions) 

Transition wavelength



Ionization balance

▪ Lanthanides and Actinides: large contribution to opacity, 

more highly ionized than iron-group

▪ Early phases: double ionized

▪ After ~ 2 days: single ionized

▪ Single ionized material has higher 

bound-bound opacity than

double ionized

▪ Ionization transition can

potentially be observed

in the spectrum 
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1.4d
2.4d

3.4d



Level energies: Nd II

10 G. Martínez-Pinedo / Kilonova: probe r-process nucleosynthesis

• Consider enough configurations to achieve convergence low lying states and

level densities. 

• Opacities after energy matching to

known levels



Level density: Nd II

▪ Large number configurations required to reproduce level 

density up to ionization energy
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Expansion opacity: Nd II

▪ Good agreement with 

published results

[Gaigalas et al, ApJS 240, 29 

(2019)]

▪ Small differences due to 

different atomic codes
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𝜌 = 10−13g cm−3 𝑇 = 5000 K



Expansion opacity: Nd III

▪ Differences below 2000 Å

▪ Very limited measured data

available

▪ Calibration to levels difficult
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𝜌 = 10−13g cm−3 𝑇 = 5000 K



Expansion opacity: Nd

14 G. Martínez-Pinedo / Kilonova: probe r-process nucleosynthesis

𝜌 = 10−13g cm−3 𝑇 = 5000 K

Good agreement with Gaigalas+ 2019 for 𝑇 ≲ 5000 K



Actinides vs Lanthanides

▪ How do the Actinides opacities compare to Lanthanides?

▪ Important to identify Actinides to determine what are the

heavier elements produced. 

▪ Actinides may be an important source of heating at late

times (Zhu+ 2018, Wu+ 2019)
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Larger opacities for

U III than Nd III

No data available

Opens possibility of 

identifying features of 

actinides

Silva et al, Atoms 10, 18 (2022)



Expansion opacity: U III

▪ Benchmark against calculations using HFR code

(U Mons). Confirms larger opacity of U III vs Nd III
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Extension to U II in progress



Modelling a Nd kilonova

17 G. Martínez-Pinedo / Kilonova: probe r-process nucleosynthesis

Exponential density profile

with power-law index Γ = 3

Increase the Nd mass 

fraction 

from 10-5 to 10-1

Low abundance: 

only line blanketing 

High abundance:

line blanketing in addition to 

spectral features in the NIR

A. Flörs



Modelling a Nd kilonova
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Exponential density profile

with power-law index Γ = 3

Increase the Nd mass 

fraction 

from 10-5 to 10-1

Low abundance: 

only line blanketing 

High abundance:

line blanketing in addition to 

spectral features in the NIR

A. Flörs



ARTIS Developments

▪ Non-thermal particle deposition (Shingles+ 2020 and 2022, SN Ia):

▪ continuous input of high-energy decay particles that do not thermalize efficiently, 

their energy distribution stays non-Maxwellian

▪ non-thermal electron distribution by numerically solving the Spencer & Fano 

(1954) equation using the method of Kozma & Fransson (1992)

▪ integrating over the energy distribution, we obtain rates for non-thermal 

ionization, excitation, and heating

▪ ARTIS developments for Kilonova

▪ Kilonova: non-thermal effects expected as early as 3 days (Pognan+ 2022)

▪ Non-thermal solver: non-LTE level populations, binned radiation field and 

detailed photoionisation rate estimators (Shingles+ 2020)

▪ Decays included in a more generalize way

▪ 2502 nuclides with alpha and beta-minus decay data from ENDF/B-VII.1 (Chadwick+ 

2011 via Hotokezaka’s data file)

▪ Abundance calculation from Bateman equation describing decays

(no capture reactions, no fission)

▪ Gamma-ray decay spectra from NNDC and full transport

▪ Particle emission using average kinetic energy per decay

local but non-instantaneous deposition (assumed to be fully trapped)
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L. Shingles



Light curve and spectra from 

mergers
▪ Dynamical ejecta from SPH simulations including neutrinos (ILEAS): 

simulation by V. Vijayan (1.35-1.35 𝑀⊙, SFHo EoS, 0.004 𝑀⊙

ejecta)

▪ Abundances determined from detailed network calculations

▪ 1D average (extension to 3D planned) 

▪ ARTIS follows density (homologous) and abundance evolution 

(decays) while calculating radiative transfer   

▪ Grey opacities based on Tanaka+ 2020 with Ye dependence. 

Future: line-by-line Sobolev treatment with detailed composition

and NLTE level populations
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L. Shingles



Radioactive heating: ARTIS vs 

network
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Good tracking 

of decay 

power

Fission not 

included, small 

contribution



Abundance evolution vs network
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Thermalization results
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Comparison with Barnes+ 2016 approximation 



1D light curve

24 G. Martínez-Pinedo / Kilonova: probe r-process nucleosynthesis

Ejected mass 0.004 𝑀⊙ is too low to explain AT2017gfo observations 



1D light curve
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Ejected mass increased by a factor 10 to 0.04 𝑀⊙

Late time break related to ejecta becoming transparent, nebular phase:

Hotokezaka & Nakar, ApJ 891, 152 (2020) 



Summary

▪ Systematic calculations of bound-bound opacities in 

progress

▪ Calibrated to data when available

▪ Benchmarks of different atomic structure codes

▪ Implementation in radiative transfer codes TARDIS and 

ARTIS in progress

▪ Future: extension to Non-LTE (Nebular) phases.
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