

Kilonova as a probe of r-process nucleosynthesis

Gabriel Martínez-Pinedo "The r-process and the nuclear EOS after LIGO-Virgo's third observing run" INT Workshop, May 23-27, Seattle, USA

TECHNISCHE UNIVERSITÄT

DARMSTADT

HELMHOLTZ

EN

Collaborators

UMONS

Université de Mons

UNIVERSITÄT BIELEFELD

Universidad Autónoma de Madrid

- A. Bauswein, **A. Flörs**, O. Just, **G. Leck**, **L. Shingles**, N. Rahman, **V. Vijayan**,
- Z. Xiong
- P. Amaro, J. P. Marques, J. M. Sampaio, **R. Silva**

S. Sim

J. Deprince, M. Godefroid, S. Goriely

H. Carvajal, P. Palmeri, P. Quinet

C. Robin

S. Giuliani, L. Robledo

R process modelling

Astrophysical environment should provide enough neutrons per seed for the r process to operate $A_{\text{final}} = A_{\text{initial}} + n_{\text{seed}}$

HELMHOLTZ

Benchmark against observations:

- Indirect: Solar and stellar abundances (contribution many events, chemical evol.)
- Direct: Kilonova electromagnetic emission (single event, sensitive Atomic and Nuclear Physics)

3

Kilonova: signature of the r-process

Line of view GW170817

Metzger & Berger 2012

Kilonova: An electromagnetic transient due to long term radioactive decay of r-process nuclei

- Direct probe of the formation r-process nuclei
- Electromagnetic counterpart to Gravitational Waves
- Diagnostics physical processes at work during merger

R-process in mergers

- Different sources of ejecta with different properties (Y_e)
- Role of equation of state
- Role of neutrinos

- Physics of neutron-rich and heavy nuclei
- Radioactive energy deposition
- Thermalization decay products (Barnes+ 2016, Kasen+ 2019)
- Spectra formation: atomic data depends on ejecta evolution (LTE vs NLTE)

Energy levels - Opacity

57 La Lanthanum 138.90547	58 Cerium 140,316	59 Pr Praseodymium 140.90766	60 Nd Neodymium 144.242	Promethium	62 Sm Samarium 150.36	63 Eu Europium 151,964	64 Gd Gadolinium 157.25	65 Tb Terbium 158.92535	66 Dy Dysprosium 162,500	67 Ho Holmium 164.93033	68 Erbium 107259	69 Tm Thulium 168.93422	70 Yb Ytterbium 173.045	71 Lu Lutetium 174.9668
Actinium	90 Th Thorium 232,0377	Protactinium	92 Uranium 236.02891	93 Np Neptunium	Plutonium	95 Americium (243)	96 Cm Curium (247)	97 Bek Berkelium	98 Californium (251)	99 Es Einsteinium (252)	Fermium (257)	101 Md Mendelevium (2541)	Nobelium	Lawrencium

- Early evolution ($t \leq 1$ week, local thermodynamic equilibrium)
 - Bound-bound opacities
 - Not enough data: levels and transitions (theory: Gaigalas+ 2019, Tanaka+ 2020, Fontes+ 2020)
- Nebular evolution ($t \gtrsim 1$ week, non LTE)
 - Electron-ion cross sections, photoionization cross sections, recombination coefficients (Hotokezaka+ 2021, Pognan+ 2022)

Atomic opacities and spectral modelling

Systematic opacity calculations

TARDIS!

- All elements between Iron and Actinides computed using Flexible Atomic Code [Gu CJP 86, 675 (2008), <u>https://github.com/flexible-atomic-code/fac</u>], U Lisbon same set of configurations than Tanaka et al 2020.
- Extended set of configurations to ensure convergence low lying states and density of levels
- Benchmark against data or calculations with alternative codes (HFR, U Mons)

Kerzendorf & Sim, MNRAS 440, 387 (2014)

- Inner boundary: only early spectra possible
- **ARTIS** Kromer & Sim, MNRAS 398, 1809 (2009) <u>https://github.com/artis-mcrt/artis</u>
 - 3D Monte Carlo Radiative Transfer
 - Consistent description of energy deposition, transport and spectral formation
 - 3D geometry ejecta

7

Both photospheric and nebular epochs.

GSĬ

HELMHOLTZ

Atomic Opacities (LTE)

Sobolev optical depth (for a line l)

 Expansion opacity (homologous expanding material, not used in the radiation transport modelling)

$$\kappa_{\exp}^{\rm bb} = \frac{1}{\rho ct} \sum_{l} \frac{\lambda_l}{\Delta \lambda_{\rm bin}} (1 - e^{-\tau_l})$$

- Lanthanides and Actinides: large contribution to opacity, more highly ionized than iron-group
 - Early phases: double ionized
 - After ~ 2 days: single ionized
- Single ionized material has higher bound-bound opacity than double ionized
- Ionization transition can potentially be observed in the spectrum

GSI F(4

Level energies: Nd II

∎s s i Fair @ UNIVERSITÄT DARMSTADT Consider enough configurations to achieve convergence low lying states and level densities.

Legend

- FAC_SD - Gaigalas+19(FAC) - Gaigalas+19 - NIST

Opacities after energy matching to • known levels

Energy [eV]

Level density: Nd II

 Large number configurations required to reproduce level density up to ionization energy

G. Martínez-Pinedo / Kilonova: probe r-process nucleosynthesis

Expansion opacity: Nd II

- Good agreement with published results
 [Gaigalas et al, ApJS 240, 29 (2019)]
- Small differences due to different atomic codes

 $\rho = 10^{-13} \text{g cm}^{-3}$ T = 5000 K

Expansion opacity: Nd III

- Differences below 2000 Å
- Very limited measured data available
- Calibration to levels difficult

 $\rho = 10^{-13} \mathrm{g} \, \mathrm{cm}^{-3}$ $T = 5000 \, \mathrm{K}$

Expansion opacity: Nd

Good agreement with Gaigalas+ 2019 for $T \leq 5000$ K

Actinides vs Lanthanides

- How do the Actinides opacities compare to Lanthanides?
- Important to identify Actinides to determine what are the heavier elements produced.
- Actinides may be an important source of heating at late times (Zhu+ 2018, Wu+ 2019)

G. Martínez-Pinedo / Kilonova: probe r-process nucleosynthesis

Expansion opacity: U III

 Benchmark against calculations using HFR code (U Mons). Confirms larger opacity of U III vs Nd III

Modelling a Nd kilonova

Exponential density profile $\rho(v, t_{exp}) = \rho_0 \left(\frac{t_0}{t_{exp}}\right)^3 \left(\frac{v}{v_0}\right)^{-\Gamma}$ with power-law index $\Gamma = 3$

Increase the Nd mass fraction from 10⁻⁵ to 10⁻¹

Low abundance:

^{- Sr II} only line blanketing

High abundance: line blanketing in addition to spectral features in the NIR

Modelling a Nd kilonova

Low abundance:

^{- Sr II} only line blanketing

High abundance: line blanketing in addition to spectral features in the NIR

ARTIS Developments

- Non-thermal particle deposition (Shingles+ 2020 and 2022, SN Ia):
 - continuous input of high-energy decay particles that do not thermalize efficiently, their energy distribution stays non-Maxwellian
 - non-thermal electron distribution by numerically solving the Spencer & Fano (1954) equation using the method of Kozma & Fransson (1992)
 - integrating over the energy distribution, we obtain rates for non-thermal ionization, excitation, and heating
- ARTIS developments for Kilonova
 - Kilonova: non-thermal effects expected as early as 3 days (Pognan+ 2022)
 - Non-thermal solver: non-LTE level populations, binned radiation field and detailed photoionisation rate estimators (Shingles+ 2020)
 - Decays included in a more generalize way
 - 2502 nuclides with alpha and beta-minus decay data from ENDF/B-VII.1 (Chadwick+ 2011 via Hotokezaka's data file)
 - Abundance calculation from Bateman equation describing decays (no capture reactions, no fission)
 - Gamma-ray decay spectra from NNDC and full transport
 - Particle emission using average kinetic energy per decay local but non-instantaneous deposition (assumed to be fully trapped)

L. Shingles

HELMHOLTZ

G. Martínez-Pinedo / Kilonova: probe r-process nucleosynthesis

Light curve and spectra from mergers

- Dynamical ejecta from SPH simulations including neutrinos (ILEAS): simulation by V. Vijayan (1.35-1.35 M_{\odot} , SFHo EoS, 0.004 M_{\odot} ejecta)
- Abundances determined from detailed network calculations
- 1D average (extension to 3D planned)
- ARTIS follows density (homologous) and abundance evolution (decays) while calculating radiative transfer
- Grey opacities based on Tanaka+ 2020 with Ye dependence.
 Future: line-by-line Sobolev treatment with detailed composition and NLTE level populations

HELMHOLTZ

Radioactive heating: ARTIS vs network

Abundance evolution vs network

Comparison with Barnes+ 2016 approximation

1D light curve

1D light curve

Summary

- Systematic calculations of bound-bound opacities in progress
 - Calibrated to data when available
 - Benchmarks of different atomic structure codes
- Implementation in radiative transfer codes TARDIS and ARTIS in progress
- Future: extension to Non-LTE (Nebular) phases.