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Introduction



TMDs with unpolarized beams

TMDs are crucial to describe hard processes in polarized collisions

(e.g. Drell-Yan and semi-inclusive DIS)
nucleon polarization
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| will discuss those for gluons >\/

- | consider only hadronic/nuclear states that are unpolarized



Small x and saturation
A

saturation
region

In 1/x

Y
non-perturbative region

Adcp In Q?
Og ~ 1 Og <1
at small-x, the gluon transverse momentum plays an important role
so what does small-x physics have to say about gluon TMDs ? 5



The saturation scale

The saturation scale Qq(x) is the momentum scale which characterizes
the transition between the dilute and dense regimes

at small-x, the typical gluon transverse momentum is no more Aqcp , it is instead Qg(x)
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the dynamics is non-linear, but the theory stays weakly coupled (@) < 1



QQ photo-production at small x

P2

" P v

<kt> ™~ Qs
X QS(CC) > AQCD

P—>
\/\ (*) the photon may also be virtual,

but a large Q2 value is not needed

The hard scaleis: |pit|, |p2t| ~ P > Qs

The semi-hard scale is:

ke|” = Ip1t + pat|® = [p1el” + [p2t|” + 2|pael|pat|cosA¢

- the small-x gluon’s transverse momentum (di-jet imbalance)



The back-to-back regime.:
TMD factorization



Generic definitions of gluon TMDs

| consider only hadronic/nuclear states that are unpolarized
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Generic definitions of gluon TMDs

| consider only hadronic/nuclear states that are unpolarized
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unpolarized gluon TMD linearly-polarized gluon TMD

« atsmallx, F/ = H inthe linear (a.k.a. BFKL) regime:
.F(:C, kt) — UGD(Q’:, kt) i O(Q?/k?) Kotko, Kutak, CM, Petreska,

Sapeta, van Hameren (2015)
2 2
H(w, ki) = U?D(xv k) + O(Q5/kE) o Roiesnel, Taels (2017)

so-called unintegrated gluon distribution 10



The back-to-back regime at LO
P1el; [p2e] > |k, Qs

« a factorization can be established in the small x limit, for nearly

back-to-back di-jets Dominguez, CM, Xiao and Yuan (2011)

do oc H (P) [%5“?(33, ki) + (kk]f — %5”')7%(33, kt)}
t

}

hard factors
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The back-to-back regime at LO
P1el; [p2e] > |k, Qs

« a factorization can be established in the small x limit, for nearly

back-to-back di-jets Dominguez, CM, Xiao and Yuan (2011)

L)

do oc HJ(P) [%5@7?(3:, ky) + (
}

hard factors

« gauge links are missing in the previous definition, their structure for
this process implies that the gluon TMDs are of the Weizsacker
Williams type, which at small-x gives

2 2
o (@, ) — __/dxd e~k oY) (Ty [(8;U5) UL (8:Uy ) US] ).

similarly for H,,, with projection onto the other 2d Lorentz structure
12



ITMD factorization
provides matching with BFKL at k; ~ P
k'kJ
ki

do x H%’j(P, k) [%&j}-(% k) + (

l

hard factors

_ %5@) H(z, kt)]

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016)
Altinoluk, Boussarie, Kotko (2019)
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ITMD factorization
provides matching with BFKL at k; ~ P
k'kJ
ki

do o Hij(P, k) [%5@}-(37: ki) + (

l

hard factors

— %5ij) H(zx, kt)]

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016)
Altinoluk, Boussarie, Kotko (2019)

- TMD factorization involves H* (P, k, = 0)
needs P > ki, Q

« improved TMD (ITMD) factorization involves

Hij(P: ki) = Hij(P: ke = 0) + Z cn(ke/P)" all-order resummation of
n higher “kinematic” twists

also valid away from A® = 1, when k; ~ P
14



Processes sensitive to H

 factorization may be rewritten

do o< H™ (P, k) F(x, ki) + H" (P, kt) (’H(a:, ki) — Flz, k't))

| z -

—

= 0in BFKL regime

projections onto
‘non-sense” polarization v
" — Hz‘j kzkj/th projections onto linear polarization

H" = HY9(E'K [k? — 6% /2)

emergence, due to non-linear effects, of
small-x gluons which are not fully linearly polarized
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Processes sensitive to H

 factorization may be rewritten

do o< H™ (P, ky)F(z, ki) + H"(P, k) (H(.a-:, ki) — F(z, kt))

| z "

N

= 0in BFKL regime

projections onto
“non-sense” polarization v
™ — [ k,zkj/th projections onto linear polarization

H" = HY9(E'K [k? — 6% /2)

. processes for which the H h hard factors are non-zero:

- dijets in deep inelastic scattering (e+p or e+A)
- heavy-quark pair production (in photo-production or p+A collisions)

- trijets or more Altinoluk, Boussarie, CM, Taels (2019 - 2020)
Altinoluk, CM, Taels (2021)

the polarized gluons come with a cos(2¢) modulation

(at small k, / P) where ¢ is the angle between k; and P 16



Forward QQ pair in p+A collisions

« preliminary study performed for HL-LHC yellow report

CM, Giacalone (2018)
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soft-gluon resummation needs to be implemented as well
important near A® = 11, when log(P/k;) becomes large
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NLO corrections and
QCD evolution: di-jet case

18



Resumming large logarithms

Simultaneous resummation of high-energy In(1/x) and Sudakov
In(Q?/ ki) logarithms?

Longstanding problem, studied using many different
approaches, including recently:

SW: Balitsky, Tarasov (2015)

RO: Balitsky (2021-2023)

HEF: Deak, Hautmann, Jung, Kutak, van Hameren, Sapeta, Hentschinski (2016-2021)
BFKL: Nefedov (2021)

PB: Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek (2022)

CGC: Mueller, Xiao, Yuan (2011); Hatta, Xiao, Yuan, Zhou (2017-2021); Stasto, Wei, Xiao,
Yuan (2018); PT, Altinoluk, Beuf, Marquet (2022); Caucal, Salazar, Schenke, Venugopalan
(2022-2023)
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Real emission diagrams

Altinoluk, Boussarie, CM and Taels (2020)

el
T~
o5 -
1
L '_?}"l
5\?{1
T

QSW QFS

linearly-polarized gluon TMD involved at NLO, even for photo-production

see also

Caucal, Salazar and Venugopalan (2021)
Bergabo and Jalilian-Marian (2022)
lancu and Mulian (2023)
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Virtual diagrams

Caucal, Salazar and Venugopalan (2021)
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full NLO CGC is UV, soft, collinear finite,
rapidity divergences give small-x evolution

Taels, Altinoluk, Beuf and CM (2022)

see also
Bergabo and Jalilian-Marian (2022)
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The back-to-back regime at NLO

full NLO + TMD limit Taels, Altinoluk, Beuf and CM (2022)
—P, ~pay f
ki'=piL+Pa21 ‘ s .
©
P, ~py, /
Remnants of soft-collinear generate Sudakov double log with wrong sign!
N P2 b . bl 2.9 PZ ~ HZ

doﬁygzdagngas c111( 1 5 ) ) L T ,

Am o (b —b)" ~1/k]

this is due to an over-subtraction of the small-x rapidity logarithms

Sudakov and small-x logs aren’t completely separated in phase space!

22



Kinematically-constrained evolution

Taels, Altinoluk, Beuf and CM (2022)

. 9 9 L OéSNC
Toobtain  dontQ 7 =" dok{ ( g ) In*(P?|x — y|*)
and then write
d2xd2y —iky (x—Y) .~ Ssua(P,x—y) ) T
Furw (@ ky: P) = __/ the- (=) ¢ =Saua(PX=Y) (v [(9,U,) U3 (B Uy )UL]).

, re-summing the small-x logs and Sudakov logs separately, the
rapidity subtraction must be altered

this leads to a kinematically-constrained small-x evolution

23



Kinematically-constrained evolution

Taels, Altinoluk, Beuf and CM (2022)

. 9 9 L OéSNC
Toobtain  dontQ 7 =" dok{ ( g ) In*(P?|x — y|*)
and then write
d2xd2y —iky (x—Y) .~ Ssua(P,x—y) ) T
Furw (@ ky: P) = __/ the- (=) ¢ =Saua(PX=Y) (v [(9,U,) U3 (B Uy )UL]).

, re-summing the small-x logs and Sudakov logs separately, the
rapidity subtraction must be altered

this leads to a kinematically-constrained small-x evolution

MWLK

- in the small-x evolved LO contribution, the kernel of the J
equation now contains an extra theta term QT(k;/k]T)W -k

confirmed beyond large Nc and double logs in

Caucal, Salazar, Schenke, Venugopalan (2022)
24



Asymmetry supressed by evolution

« without Sudakov resummation, the CGC predicts sizable <cos(2¢)>

do x Hp(P)F(x, k) + cos(2¢0)Hy (P)H(x, kt)

H(zx, k)
F(z, k)

< cos(2¢) >x with F & H of similar magnitude

25



Asymmetry supressed by evolution

« without Sudakov resummation, the CGC predicts sizable <cos(2¢)>

do x Hp(P)F(x, k) + cos(2¢0)Hy (P)H(x, kt)

H(zakt)

with F & of similar magnitude
F(iﬂ,kt) H J

< cos(2¢) >

* however TMD evolution suppresses the asymmetry
Boer, Mulders, Zhou and Zhou (2017)

1
5k v2(%) : Caucal, Salazar, Schenke, Stebel
full NLO and Venugopalan (2024)

I LO + Sudakov & BK

—2— e LO

g, [GeV] 26



Heavy quark-antiquark pair

27



Asymetry with heavy QQ pair

« we computed the Sudakov factor for heavy quark production

following the method in Hatta, Xiao, Yuan, Zhou (2021), we obtain:

4

d?xd?y
(2m)?

o~ ikt (x=Y) p—Ssua(P,x~y) <Tr [(@-Ux)U;(ain)Ul] >:1:

X |1 — oy Z Can, COS(2NPP x—y )
n>0

additional cos(2n¢) factor implies non-zero asymmetry for the F term

28
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Asymetry with heavy QQ pair

CM, Y. Shi and C. Zhang, in preparation
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with Sudakov factor: the contribution of
linearly-polarized gluons is negligible
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Asymetry with heavy QQ pair

CM, Y. Shi and C. Zhang, in preparation
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the y+A/ y+p suppression survives after the Sudakov factor is included



Asymetry with he
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higher harmonics are even more sensitive to non-linear effects
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Conclusions

to match collinear physics and small-x physics in the linear BFKL
regime, the necessity of a kinematical constraint in the small-x
evolution was recognized a long time ago (led to CCFM equation)

Ciafaloni ('88); Andersson, Gustafson, Samuelsson ('96);
Kwiecinski, Martin, Sutton ('96); Salam ('98)

more recently, that necessity also emerged in CGC calculations,
often in connection with the issue of negative NLO cross sections

Beuf (2014); Hatta, lancu (2016);
lancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2019)

now it also appears in the context of two-scale processes and
TMD physics

heavy-quark photo-production provides a good testing ground for
these theoretical developments, UPC measurements will be
attempted at the LHC, and then we’ll have the EIC
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