

Photo-production of a heavy-quark pair: interplay between Sudakov and saturation effects **Cyrille Marquet** Centre de Physique Théorique **Ecole Polytechnique & CNRS**

Introduction

TMDs with unpolarized beams

TMDs are crucial to describe hard processes in polarized collisions (e.g. Drell-Yan and semi-inclusive DIS)

8 leading-twist TMDs

Sivers function

correlation between transverse spin of the nucleon and transverse momentum of the quark

Boer-Mulders function

correlation between transverse spin and transverse momentum of the quark in unpolarized nucleon

TMDs with unpolarized beams

TMDs are crucial to describe hard processes in polarized collisions (e.g. Drell-Yan and semi-inclusive DIS)

nucleon polarization

8 leading-twist TMDs

Sivers function

correlation between transverse spin of the nucleon and transverse momentum of the quark

Boer-Mulders function

correlation between transverse spin and transverse momentum of the quark in unpolarized nucleon

I will discuss those for gluons

 \rightarrow I consider only hadronic/nuclear states that are *unpolarized*

Small x and saturation

at small-x, the gluon transverse momentum plays an important role so what does small-x physics have to say about gluon TMDs ? 5

The saturation scale

The saturation scale $Q_s(x)$ is the momentum scale which characterizes the transition between the dilute and dense regimes

at small-x, the typical gluon transverse momentum is no more Λ_{QCD} , it is instead $Q_S(x)$

the dynamics is non-linear, but the theory stays weakly coupled $\ lpha_s(Q_s)\ll 1$

$Q\bar{Q}$ photo-production at small x

(*) the photon may also be virtual, but a large Q^2 value is not needed

The hard scale is: $|p_{1t}|, |p_{2t}| \sim \mathbf{P} \gg Q_s$

The semi-hard scale is:

$$|k_t|^2 = |p_{1t} + p_{2t}|^2 = |p_{1t}|^2 + |p_{2t}|^2 + 2|p_{1t}||p_{2t}|\cos\Delta\phi$$

 \rightarrow the small-x gluon's transverse momentum (di-jet imbalance)

The back-to-back regime: TMD factorization

Generic definitions of gluon TMDs

I consider only hadronic/nuclear states that are unpolarized

$$2\int \frac{d\xi^+ d^2 \boldsymbol{\xi}_t}{(2\pi)^3 p_A^-} e^{ixp_A^- \boldsymbol{\xi}^+ - ik_t \cdot \boldsymbol{\xi}_t} \left\langle A | \operatorname{Tr} \left[F^{i-} \left(\boldsymbol{\xi}^+, \boldsymbol{\xi}_t \right) F^{j-} \left(0 \right) \right] \middle| A \right\rangle$$
$$= \frac{\delta_{ij}}{2} \mathcal{F}(x, k_t) + \left(\frac{k_i k_j}{k_t^2} - \frac{\delta_{ij}}{2} \right) \mathcal{H}(x, k_t)$$

unpolarized gluon TMD

linearly-polarized gluon TMD

Generic definitions of gluon TMDs

I consider only hadronic/nuclear states that are unpolarized

$$2\int \frac{d\xi^+ d^2 \boldsymbol{\xi}_t}{(2\pi)^3 p_A^-} e^{ixp_A^- \boldsymbol{\xi}^+ - ik_t \cdot \boldsymbol{\xi}_t} \left\langle A | \operatorname{Tr} \left[F^{i-} \left(\boldsymbol{\xi}^+, \boldsymbol{\xi}_t \right) F^{j-} \left(0 \right) \right] \middle| A \right\rangle$$
$$= \frac{\delta_{ij}}{2} \mathcal{F}(x, k_t) + \left(\frac{k_i k_j}{k_t^2} - \frac{\delta_{ij}}{2} \right) \mathcal{H}(x, k_t)$$

unpolarized gluon TMD

linearly-polarized gluon TMD

• at small x, $\mathcal{F} = \mathcal{H}$ in the linear (a.k.a. BFKL) regime:

$$\mathcal{F}(x, k_t) = UGD(x, k_t) + \mathcal{O}(Q_s^2/k_t^2)$$
$$\mathcal{H}(x, k_t) = UGD(x, k_t) + \mathcal{O}(Q_s^2/k_t^2)$$

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015)

CM, Roiesnel, Taels (2017)

so-called unintegrated gluon distribution

The back-to-back regime at LO

$$|p_{1t}|, |p_{2t}| \gg |k_t|, Q_s$$

• a factorization can be established in the small *x* limit, for nearly back-to-back di-jets Dominguez, CM, Xiao and Yuan (2011)

$$d\sigma \propto H^{ij}(\mathbf{P}) \Big[\frac{1}{2} \delta^{ij} \mathcal{F}(x, k_t) + \Big(\frac{k^i k^j}{k_t^2} - \frac{1}{2} \delta^{ij} \Big) \mathcal{H}(x, k_t) \Big]$$

hard factors

The back-to-back regime at LO

$$|p_{1t}|, |p_{2t}| \gg |k_t|, Q_s$$

 a factorization can be established in the small x limit, for nearly back-to-back di-jets
Dominguez, CM, Xiao and Yuan (2011)

$$d\sigma \propto H^{ij}(\mathbf{P}) \Big[\frac{1}{2} \delta^{ij} \mathcal{F}(x, k_t) + \Big(\frac{k^i k^j}{k_t^2} - \frac{1}{2} \delta^{ij} \Big) \mathcal{H}(x, k_t) \Big]$$

hard factors

 gauge links are missing in the previous definition, their structure for this process implies that the gluon TMDs are of the Weizsäcker Williams type, which at small-x gives

$$\mathcal{F}_{WW}(x,k_t) = -\frac{4}{g^2} \int \frac{d^2 \mathbf{x} d^2 \mathbf{y}}{(2\pi)^3} \, e^{-ik_t \cdot (\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[(\partial_i U_{\mathbf{x}}) U_{\mathbf{y}}^{\dagger} (\partial_i U_{\mathbf{y}}) U_{\mathbf{x}}^{\dagger} \right] \right\rangle_x$$

similarly for H_{WW} with projection onto the other 2d Lorentz structure

ITMD factorization

provides matching with BFKL at $k_t \sim P$

$$d\sigma \propto H^{ij}(\mathbf{P}, k_t) \Big[\frac{1}{2} \delta^{ij} \mathcal{F}(x, k_t) + \Big(\frac{k^i k^j}{k_t^2} - \frac{1}{2} \delta^{ij} \Big) \mathcal{H}(x, k_t) \Big]$$

hard factors

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016) Altinoluk, Boussarie, Kotko (2019)

ITMD factorization

provides matching with BFKL at $k_t \sim P$

$$d\sigma \propto H^{ij}(\mathbf{P}, k_t) \Big[\frac{1}{2} \delta^{ij} \mathcal{F}(x, k_t) + \Big(\frac{k^i k^j}{k_t^2} - \frac{1}{2} \delta^{ij} \Big) \mathcal{H}(x, k_t) \Big]$$

hard factors

Kotko, Kutak, CM, Petreska, Sapeta, van Hameren (2015 - 2016) Altinoluk, Boussarie, Kotko (2019)

- TMD factorization involves $H^{ij}(\mathbf{P}, k_t = 0)$ needs $\mathbf{P} \gg k_t, \ Q_s$
- improved TMD (ITMD) factorization involves $H^{ij}(\mathbf{P}, k_t) = H^{ij}(\mathbf{P}, k_t = 0) + \sum_n c_n (k_t/\mathbf{P})^n$ also valid away from $\Delta \Phi = \pi$, when $k_t \sim \mathbf{P}$

all-order resummation of higher "kinematic" twists

Processes sensitive to ${\cal H}$

• factorization may be rewritten

$$d\sigma \propto H^{ns}(\mathbf{P}, k_t)\mathcal{F}(x, k_t) + H^h(\mathbf{P}, k_t)\Big(\mathcal{H}(x, k_t) - \mathcal{F}(x, k_t)\Big)$$

= 0 in BFKL regime

projections onto "non-sense" polarization $H^{ns} = H^{ij}k^ik^j/k_t^2$

projections onto linear polarization $H^{h} = H^{ij}(k^{i}k^{j}/k_{t}^{2} - \delta^{ij}/2)$

emergence, due to non-linear effects, of small-x gluons which are not fully linearly polarized

Processes sensitive to ${\cal H}$

• factorization may be rewritten

$$d\sigma \propto H^{ns}(\mathbf{P}, k_t)\mathcal{F}(x, k_t) + H^h(\mathbf{P}, k_t)\Big(\mathcal{H}(x, k_t) - \mathcal{F}(x, k_t)\Big)$$

= 0 in BFKL regime

projections onto "non-sense" polarization $H^{ns} = H^{ij}k^ik^j/k_t^2$

projections onto linear polarization $H^{h} = H^{ij}(k^{i}k^{j}/k_{t}^{2} - \delta^{ij}/2)$

- processes for which the H^h hard factors are non-zero:
 - dijets in deep inelastic scattering (e+p or e+A)
 - heavy-quark pair production (in photo-production or p+A collisions)
 - trijets or more

Altinoluk, Boussarie, CM, Taels (2019 - 2020) Altinoluk, CM, Taels (2021)

the polarized gluons come with a $cos(2\phi)$ modulation (at small k_t / P) where ϕ is the angle between k_t and P

Forward $Q\bar{Q}$ pair in p+A collisions

• preliminary study performed for HL-LHC yellow report

CM, Giacalone (2018)

soft-gluon resummation needs to be implemented as well important near $\Delta \phi = \pi$, when log(**P**/k_t) becomes large

NLO corrections and QCD evolution: di-jet case

Resumming large logarithms

Simultaneous resummation of high-energy $\ln(1/x)$ and Sudakov $\ln(Q^2/\mathbf{k}_{\perp}^2)$ logarithms?

Longstanding problem, studied using many different approaches, including recently:

SW: Balitsky, Tarasov (2015)

RO: Balitsky (2021-2023)

HEF: Deak, Hautmann, Jung, Kutak, van Hameren, Sapeta, Hentschinski (2016-2021) **BFKL**: Nefedov (2021)

PB: Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek (2022)

CGC: Mueller, Xiao, Yuan (2011); Hatta, Xiao, Yuan, Zhou (2017-2021); Stasto, Wei, Xiao, Yuan (2018); PT, Altinoluk, Beuf, Marquet (2022); Caucal, Salazar, Schenke, Venugopalan (2022-2023)

Real emission diagrams

Altinoluk, Boussarie, CM and Taels (2020)

linearly-polarized gluon TMD involved at NLO, even for photo-production

see also

Caucal, Salazar and Venugopalan (2021) Bergabo and Jalilian-Marian (2022) Iancu and Mulian (2023)

Virtual diagrams

Caucal, Salazar and Venugopalan (2021)

full NLO CGC is UV, soft, collinear finite, rapidity divergences give small-x evolution

see also Taels, Altinoluk, Beuf and CM (2022) Bergabo and Jalilian-Marian (2022)

The back-to-back regime at NLO

full NLO + TMD limit

Taels, Altinoluk, Beuf and CM (2022)

Remnants of soft-collinear generate Sudakov double log with wrong sign! $d\sigma_{\rm NLO}^{\rm TMD} = d\sigma_{\rm LO}^{\rm TMD} \times \frac{\alpha_s N_c}{4\pi} \ln \left(\frac{\mathbf{P}_{\perp}^2 (\mathbf{b} - \mathbf{b}')^2}{c_0^2} \right)^2 \qquad \frac{\mathbf{P}_{\perp}^2 \sim \mu^2}{(\mathbf{b} - \mathbf{b}')^2 \sim 1/\mathbf{k}_{\perp}^2}$

this is due to an over-subtraction of the small-x rapidity logarithms

Sudakov and small-x logs aren't completely separated in phase space!

Kinematically-constrained evolution

Taels, Altinoluk, Beuf and CM (2022)

To obtain
$$d\sigma_{\text{TMD}}^{\text{NLO}}$$
 " = " $d\sigma_{\text{TMD}}^{\text{LO}} \times \left(-\frac{\alpha_s N_c}{4\pi}\right) \ln^2(\mathbf{P}^2 |\mathbf{x} - \mathbf{y}|^2)$

and then write

$$\mathcal{F}_{WW}(x,k_t;P) = -\frac{4}{g^2} \int \frac{d^2 \mathbf{x} d^2 \mathbf{y}}{(2\pi)^3} e^{-ik_t \cdot (\mathbf{x}-\mathbf{y})} e^{-S_{sud}(\mathbf{P},\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[(\partial_i U_{\mathbf{x}}) U_{\mathbf{y}}^{\dagger} (\partial_i U_{\mathbf{y}}) U_{\mathbf{x}}^{\dagger} \right] \right\rangle_x$$

, re-summing the small-x logs and Sudakov logs separately, the rapidity subtraction must be altered

this leads to a kinematically-constrained small-x evolution

Kinematically-constrained evolution

Taels, Altinoluk, Beuf and CM (2022)

To obtain
$$d\sigma_{\text{TMD}}^{\text{NLO}}$$
 "=" $d\sigma_{\text{TMD}}^{\text{LO}} \times \left(-\frac{\alpha_s N_c}{4\pi}\right) \ln^2(\mathbf{P}^2 |\mathbf{x} - \mathbf{y}|^2)$

and then write

 $\mathcal{F}_{WW}(x,k_t;P) = -\frac{4}{g^2} \int \frac{d^2 \mathbf{x} d^2 \mathbf{y}}{(2\pi)^3} \ e^{-ik_t \cdot (\mathbf{x}-\mathbf{y})} e^{-S_{sud}(\mathbf{P},\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[(\partial_i U_{\mathbf{x}}) U_{\mathbf{y}}^{\dagger} (\partial_i U_{\mathbf{y}}) U_{\mathbf{x}}^{\dagger} \right] \right\rangle_x$

, re-summing the small-x logs and Sudakov logs separately, the rapidity subtraction must be altered this leads to a kinematically-constrained small-x evolution

→ in the small-x evolved LO contribution, the kernel of the JIMWLK equation now contains an extra theta term $\theta \left[(k_g^+/k_f^+) \mathbf{P}^2 - \mathbf{k}_g^2 \right]$

confirmed beyond large Nc and double logs in

Caucal, Salazar, Schenke, Venugopalan (2022)

Asymmetry supressed by evolution

• without Sudakov resummation, the CGC predicts sizable $\langle \cos(2\phi) \rangle$

 $d\sigma \propto H_F(\mathbf{P})\mathcal{F}(x,k_t) + \cos(2\phi)H_H(\mathbf{P})\mathcal{H}(x,k_t)$

$$<\cos(2\phi)>\propto rac{\mathcal{H}(x,k_t)}{\mathcal{F}(x,k_t)}$$

with ${\mathcal F} \ \& \ {\mathcal H} \$ of similar magnitude

Asymmetry supressed by evolution

without Sudakov resummation, the CGC predicts sizable $\langle \cos(2\phi) \rangle$ ٠

 $d\sigma \propto H_F(\mathbf{P})\mathcal{F}(x,k_t) + \cos(2\phi)H_H(\mathbf{P})\mathcal{H}(x,k_t)$

$$<\cos(2\phi)>\propto rac{\mathcal{H}(x,k_t)}{\mathcal{F}(x,k_t)}$$

with $\mathcal{F} \& \mathcal{H}$ of similar magnitude

however TMD evolution suppresses the asymmetry

Boer, Mulders, Zhou and Zhou (2017)

Caucal, Salazar, Schenke, Stebel and Venugopalan (2024)

Heavy quark-antiquark pair

CM, Y. Shi and C. Zhang, in preparation

• we computed the Sudakov factor for heavy quark production

following the method in Hatta, Xiao, Yuan, Zhou (2021), we obtain:

$$\mathcal{F}_{WW}(x,k_t;P) \longrightarrow -\frac{4}{g^2} \int \frac{d^2 \mathbf{x} d^2 \mathbf{y}}{(2\pi)^3} \ e^{-ik_t \cdot (\mathbf{x}-\mathbf{y})} e^{-S_{sud}(\mathbf{P},\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[(\partial_i U_{\mathbf{x}}) U_{\mathbf{y}}^{\dagger} (\partial_i U_{\mathbf{y}}) U_{\mathbf{x}}^{\dagger} \right] \right\rangle_x \\ \times \left[1 - \alpha_s \sum_{n>0} c_{2n} \cos(2n\phi_{\mathbf{P},\mathbf{x}-\mathbf{y}}) \right]$$

additional $\cos(2n\phi)$ factor implies non-zero asymmetry for the \mathcal{F} term

CM, Y. Shi and C. Zhang, in preparation

EIC γ+A

UPC γ+A

with Sudakov factor: the contribution of linearly-polarized gluons is negligible

CM, Y. Shi and C. Zhang, in preparation

the y+A / y+p suppression survives after the Sudakov factor is included

CM, Y. Shi and C. Zhang, in preparation

UPC y+A

UPC y+A/y+p

higher harmonics are even more sensitive to non-linear effects

Conclusions

 to match collinear physics and small-x physics in the linear BFKL regime, the necessity of a kinematical constraint in the small-x evolution was recognized a long time ago (led to CCFM equation)

Ciafaloni ('88); Andersson, Gustafson, Samuelsson ('96); Kwiecinski, Martin, Sutton ('96); Salam ('98)

• more recently, that necessity also emerged in CGC calculations, often in connection with the issue of negative NLO cross sections

Beuf (2014); Hatta, Iancu (2016); Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2019)

- now it also appears in the context of two-scale processes and TMD physics
- heavy-quark photo-production provides a good testing ground for these theoretical developments, UPC measurements will be attempted at the LHC, and then we'll have the EIC