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Standard Model

Gauge interactions were central to 
all discoveries (except higgs)

What if the BSM states at attainable 
energies don’t have SM gauge charges?

Dark Sectors
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Dark Matter from Dark Sectors
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Interactions between SM 
and DS responsible for 

transferring energy to DS 

DM

DM

χ

χ

Interactions in the DS can 
set the dark matter 
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Dark Sector Portals

DARK
SECTOR

● Dark Matter
● Neutral Naturalness
● Neutrino masses
● Strong CP
● ...
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Dark Sector Portals

DARK
SECTOR
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Outline

▶ Signals from dark photon decays 
in supernovae

▶ Transient gamma-rays from dark 
photons in neutron star mergers e +

e-

x

γ
γ
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Visibly decaying dark photon

● Larger couplings prime 
target for accelerator probes

● At small couplings, not 
enough luminosity: use 
astrophysical sources
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Look for the messenger

DARK
SECTOR

▶ Searching for the messenger between SM and DS is a broad 
approach to searching for dark sectors

▶ Focus on dark photon searches when it is the lightest dark state

Theoretical targets for ε ?
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Target: dark matter abundance

Freeze-in

Is there enough energy 
transferred to dark sector?
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Extreme Astrophysical Environments

Core-collapse supernovae Binary neutron star merger

MeV dark sector factories
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Visible signals from dark photons 
produced in supernovae

* DeRocco, Graham, Kasen, GMT, Rajendran, JHEP  (2019) 
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Core-collapse supernova
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Core-collapse supernova
▶ When the iron-core of very massive stars collapses, infalling 

matter gives rise to a hot proto-neutron star (cools in ~10s)

R (km)

R (km)
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Dark photon production

* Rrapaj and Reddy, Phys. Rev. C (2015)
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Supernova cooling constraints

➔ Traditional SN constrains: dark 
photons cannot cool SN faster 
than neutrino emission:

➔ This corresponds to incredible 
large luminosity. If the dark 
photon decays visibly, should be 
able to extend the constraints to 
much weaker couplings

Chang, Essig, McDermott, JHEP (2017)
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Galactic positron injection

Dark photon decays → large number of positrons:

▶ 511 keV line observations limit galactic positron injection:
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Long lived particle constraint
Progenitor star

109 km

➔ In order to be “injected” in galaxy, positrons 
must be produced outside progenitor:
➢ 109 km for typical type II SN
➢ 2 x 107 km for type Ib/c SN (~10% of ccSN)

➔ Annihilations between e+ e- produced by the 
decay can also decrease positron injection.
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Gamma rays from SN1987a
● In 1987 we detected a nearby type II supernovae and had the first 

detection of SN neutrinos
● The Gamma Ray Spectrometer aboard SMM had sensitivity to 

gamma rays coming from that supernovae
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Combined Constraints

freeze-in
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A gamma-ray flash from dark 
photons in neutron star mergers

* Diamond, GMT, PRL (2022)
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Supernova bound required long lifetime

▶ Are there systems that get to similar temperature and density 
with less “shielding”?

➔ Two neutron stars (nuclear densities) 
collide with orbital speeds ~ c

➔ Forms high density remnant with 
temperatures ~ 50 MeV

➔ Remnant life-time ~ 10 – 1000 ms
➔ Low density environment away from 

merger (1000 km)

Neutron Star Mergers
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Multi-messenger probe

gravitational waves
photons

Look for coincident signals: 
gw as a trigger
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BNS merger remnant

Perego, A., Bernuzzi, S., Radicce, D., Eur. Phys. J. A 55, 124
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Simplified remnant profile

Spherical shell emission 

5 km5 km

Perego, A., Bernuzzi, S., Radicce, D., Eur. Phys. J. A 55, 124
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Dark photon luminosity

This is an enormous luminosity, can 
we actually see it?
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Transient photons

Signal duration set by shell 
width

Initially:
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Relevant dynamics

Expansion Annihilation Bremsstrahlung
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Thermal limit

Annihilation Bremsstrahlung

Detailed balance: Temperature decreases
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Signal

Thermal spectrum with T ~ 100 keV
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Signal region

Within Fermi-GBM 
sensitivity (100 kpc)

Thermal spectrum, 
T ~ O(100) keV
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Backgrounds from sGRB

● Short Gamma Ray Burst is expected to follow a 
BNS merger

● Originates from relativistic jet: beamed
● In this case, for same distance, luminosity 

would have large variance. Statistically 
distinguish dark sector signal from sGRB

● One potential irreducible background would be 
wide angle emission. Still poorly understood.

● Timing, duration and spectrum can also be used
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Tentative constraints from GW170817
Using simplified remnant model, and comparing timing and 
duration of signal to observed gamma ray burst:
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Promising future

▶ Currently, prompt emissions rely on large field of view telescopes, 
subject to larger backgrounds

▶ Mid-band gravitational wave detectors would detect binary 
significantly before merger and improve localization

▶ Many proposals for new low MeV telescopes, such as AMEGO
▶ To use this signal for discovery will require better modeling of the 

expected signal from short gamma ray bursts (sGRB)
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Conclusions
▶ Dark sectors are motivated extensions of the standard model 

whose experimental consequences extend over the 3 frontiers
▶ In models in which the interactions of dark sector particles and 

the standard model are very weak, extreme astrophysical systems 
provide one of the most promising opportunities for discovery

▶ Stable dark sector particles produced in supernovae could be 
searched for using large direct detection experiments (e.g. LZ)

▶ Unstable particles can produce very bright photon signals, both 
in supernovae and in neutron star mergers

▶ Many directions to explore, and significant experimental 
improvement expected for the future 
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