Constraints on the nuclear symmetry energy Bill Lynch

Facility for Rare Isotope Beams ms at Michigan State University

Methods for EoS Constraints

- Find observables sensitive to Symmetry Energy (SE)
- Determine what each observable constrains such as $S(\rho_s)$, $L(\rho_s)$, $P_{sym}(\rho_s)$... and at what density or range of densities ρ_s the SE is constrained. •
- Choose a technique, such as Pearson correlations, Bayesian inference, crossover technique, analysis of the correlations of fit parameters along curves of constant χ^2 .
- Find the "sensitive" density ρ_s that is most accurately probed by that observable and the SE at that density

Comparison of Crossover and inclination analyses techniques.

 $\tau = \Delta S_0 / \Delta L = -\partial (\partial S(\rho_s) / \partial L) / (\partial S(\rho_s) / \partial S_0);$

 τ depends monotonically on $\rho_{\rm s}$

Facility for Rare Isotope Beams ; Michigan State University

Bayesian determination of SE

$$\begin{split} S(\rho) &= S_{kin}(\rho) + S_{int}(\rho) \\ S_{int}(\rho) &= S_{int}(\rho_{01}) + S'_{int}(\rho - \rho_{01}) \\ &+ \frac{1}{2}S''_{int}(\rho - \rho_{01})^2 + \frac{1}{6}S''_{int}(\rho - \rho_{01})^3 \end{split}$$

Where $S_{int}(0) &\equiv 0$

$$S_{kin}(\rho) = S_{kin}(\rho_0)(\rho / \rho_0)^{2/3} MeV$$

And "fit" is insensitive to $S_{kin}(\rho_0)$ for $12 MeV < S_{kin}(\rho_0) < 13 MeV$

S ₀₁	24.0±0.5 MeV		
L ₀₁	53.9±0.9 MeV		
К ₀₁	-42±31 MeV		

Bayesian Determination of pressure

Extrapolation to Neutron Stars

- Experimental data appear more consistent with stiffer NICER EoS.
- Low density data and quadratic EOS leads to underprediction of NS EoS
- With the cubic EoS, the overall trend of existing data extrapolates to the NICER constraints, while extrapolations of the quadratic EoS appear to provide too little pressure at high density.
- This might be less evident in a more constrained density functional.

Bayesian determination of SE Compared to Pawel's IAS+skins

$$S(\rho) = S_{kin}(\rho) + S_{int}(\rho)$$

$$S_{int}(\rho) = S_{int}(\rho_{01}) + S'_{int}(\rho - \rho_{01})$$

$$+ \frac{1}{2}S''_{int}(\rho - \rho_{01})^{2} + \frac{1}{6}S''_{int}(\rho - \rho_{01})^{3}$$
Where $S_{int}(0) \equiv 0$

Where $S_{int}(v)$

$$S_{kin}(\rho) = S_{kin}(\rho_0)(\rho / \rho_0)^{2/3} MeV$$

And "fit" is insensitive to $S_{kin}(\rho_0)$ for $12 MeV < S_{kin}(\rho_0) < 13 MeV$

S ₀₁	24.0±0.5 MeV	4.0±0.5 MeV		069+0 006 fm ⁻³	
L ₀₁	53.9±0.9 MeV	\Rightarrow	P_{cc}	0.33 ± 0.07 MeV/fm ³	
К ₀₁	-42±31 MeV		¹ cc	0.55-0.07 1016 071111	

Constraint	ρ/ρ ₀	S(ρ) (MeV)	L ₀₁ (MeV)	L (Mev)	K _{sym} (Mev)	P _{sym} (MeV/fm ³)
Masses	0.63	24.7±0.8				
Masses	0.72	25.4±1.1				
IAS	0.66	25.5±1.1				
HIC (I _{diff})	0.22	10.3±1.0				
α _D	0.31	15.9±1.0				
HIC(n/p)	0.43	16.8±1.2				
PREXII	0.67		71.5±22.6			
HIC(π)	1.45	52±13		79.5±38	47±256	10.9±8.7
HIC(n/p flow)	1.5	24.7±0.8		85±0.8	96±390	12.1±8.4
NICER-P _{SM}	2	24.7±0.8				24±14
NICER-P _{SM}	2	24.7±0.8				72±41
LIGO-P _{SM}	2.5	24.7±0.8				10±7
LIGO-P _{SM}	2.5	24.7±0.8				22±15

List of constraints on the SE used (not used) in the fits:

Symmetry Energy with constraints from NS

- Assuming the NS EoS is close to that of neutron matter, one may extrapolate the symmetry to the NS interior by assuming P_{sym}≈ P_{ns} - P_{sm} for matter in the NS interiors.
- Within that approximation, we can extend the ^β/_δ
 Constraint contours to 2.5 ρ₀. A better extrapolation obtained by solving the TOV equation will be presented next Tuesday by Betty Tsang.

Symmetry Pressure with constraints from NS

- Assuming the NS EoS is close to that of neutron matter, one may extrapolate the symmetry to the NS interior by assuming $P_{sym} \approx P_{ns} - P_{sm}$ for matter in the NS interiors.
- Within that approximation, we can extend the constraint contours to 2.5 ρ_0 . A better extrapolation obtained by solving the TOV equation will be presented next Tuesday by Betty Tsang.
- Addition of the LIGO constraint pulls the pressure down at higher densities.

