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Kilonovae

Kilonova (KN):  electromagnetic transient event associated 

with compact object mergers (at least one neutron star).

GW170817’S accompanying mult i -spectral EM transient shows 

decay on long and short t imescales. 

Simplest model: red (high opacity) + blue ( low opacity) 

components

Important heating mechanism: radioact ive decay of r -process 

nuclei
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GW170817 Composite
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Rapid neutron capture builds 

up population that decays on 

time scales of  hours-days 

(and beyond)

Time Scales
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Time Scales*
* from J. Miller’s 

talk
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r-Process Site: Post-Merger Disk

Magnetically driven accretion disk forms after merger 

event

r-Process occurs in different ejection “sites”:

- Wind driven off material in mid-plane

- Material gets entrained in semi-relativistic jet

Z

      X 
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Scope

Nucleosynthesis 

calculations
probe

Uncertainties from 

unknown nuclear 

properties of nuclei 

far from stability

on Nuclear energy generation

Light curve evolution

Abundance patterns

GRνMHD 

simulations
probe

Evolution of post-

merger accretion disk
for Thermodynamic evolution 

in prep with G. McLaughlin, J. Miller, M. Mumpower

DOI 10.3847/1538-4357/acaf56  with J. Engel, G. McLaughlin, M. Mumpower, E. Ney, R. Surman
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“Trajectory”

Thermodynamic evolution as a 

function of time: necessary for 

nucleosynthesis.
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More neutron rich

Less fission

0.02

Single Trajectory:

0.18 0.21

Linear Combinations:

Parameterized Ye
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Sources of Nuclear Uncertainty
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Chabanat +  ( 1998) Korte la inen + (2012) Duf lo+  ( 1995)

Aboussir +  ( 1995) Mö l ler+  (2016) Gor ie ly+  (2013)

Gor ie ly+  (2013) Myers+ ( 1996) L iu+  (2011 )

*Experimental data from AME2016 (Wang+2017, Audi+2017)

Most basic nuclear property: mass

Common approach: fit parameters to 

experimental data, extrapolate to 

make predictions about unknown 

nuclei

Each mass model associated with 

fission barrier height model

Mass Model
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Möller (MLR)

~ slower rate*

Marketin (MKT)
Marketin+ 2016

Ney (NES)

Ney+ 2020

NES / MLR03 MLR / MLR03 MKT / MLR03
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FAM+QRPA Covariant DFTQRPA+FRDM

Beta Decay Rates
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Nuclear Heating



Effective Nuclear Heating

ሶQ t = ෍

𝑖

 𝑓𝑖 𝑀𝑒𝑗 , 𝑣𝑒𝑗 , 𝑡  ሶ𝑞𝑖 𝑡  𝑀𝑒𝑗

Thermalization efficiency: how effectively decay 

products can heat ejecta (function of time, ejecta mass, and 

characteristic velocity)

Total effective heating Thermalization efficiency Nuclear Heating Ejecta mass

Thermalizat ion based on Kasen & Barnes (2019)
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Ye=0.02

- Upper limit of heating 

uncertainty set by 

fission of few mass 

models

- Beta models differ in 

behavior of 

dominating fission 

heating

Uncertainties in Effective Nuclear Heating
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Ye=0.02 Ye=0.18

- Alpha heating 

becomes more 

important <100 days

- Beta models differ in 

predicting when 

alpha tends to 

dominate + late-time 

tail shape of fission 

heating
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- Much more 

overlap, total 

heating tends to be 

set by beta (and 

some alpha) decay

- Overall effect on 

beta decay heating 

is small

Ye=0.02 Ye=0.18 Ye=0.21

Uncertainties in Effective Nuclear Heating
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Light Curve



Similar procedure as effective heating calculation (ref Metzger 2017) 

Shell model for ejecta: the mass of each shell, Mv, depends on the velocity, v, of that shell (100 shells evenly distributed 

between 0.1c and 0.4c)

Time evolution of the energy of a shell:

𝑑𝐸𝑣

𝑑𝑡
=

𝑀𝑣

𝑀𝑒𝑗

ሶ𝑄 𝑡, 𝑣 −
𝐸𝑣

𝑡
−

𝐸𝑣

𝑡𝑑,𝑣 + 𝑡𝑙𝑐,𝑣

Diffusion timescale 

(depends on opacity)

Light-crossing

timescale

Luminosity

Effective heating Adiabatic expansion

Light Curve Shell Model
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~70% more heating 

can yield ~50% 

brighter light curve 

(NES:MLR)

~40% less heating 

can yield ~50% 

dimmer light curve 

(MKT:MLR)

Light Curves
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Differences in beta decay rates 

affect heating from alpha 

heaters with measured decay 

times, especially:

224 Ra

222 Rn220 Rn

218 Po216 Po214 Po212 Po

Z,  N

Critical Nuclei: Alpha Decay

Logarithmic Ratio
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Z,  N

Theoretical 

branching 

ratios affect 

spontaneous 

fission heating

Critical Nuclei: Spontaneous Fission (et al)
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Nuclear Cosmochronometry



A star’s metallicity (Fe) can be taken as a proxy for age. 

Some stars have very low metallicity (metal-poor) but high 

content of r-process material. These r-process enhanced stars 

are taken to have been enriched by a single r-process event.

Metal-poor stars

r-Process enhanced

metal-poor stars

r-Process Enhanced Stars

INT 23-2  | 17kalund@ncsu.edu

*Refer to E. Holmbeck’s talk



Ages from Nuclear Physics

Basic Initial Assumption : Each star has been enriched by some single r -process event
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- 232 Th  &  238 U: produced exclusively via r-process (t1/2 = 14 Gyr, 4.486 Gyr respectively)

𝑡 = 46.67Gyr − 𝑙𝑜𝑔𝜖

Th

Eu
obs

+ 𝑙𝑜𝑔𝜖

𝑇ℎ

𝐸𝑢
0

𝑡 = 14.84 Gyr − 𝑙𝑜𝑔𝜖

U

Eu obs
+ 𝑙𝑜𝑔𝜖

U

𝐸𝑢 0

𝑡 = 21.80 Gyr − 𝑙𝑜𝑔𝜖

U

Th obs
+ 𝑙𝑜𝑔𝜖

U

Th 0

Final abundance of NSM simulation

= 

“ Initial ” r-process enrichment

Basic Initial Assumption : Each star has been enriched by some single r -process event

How to Find Ages
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Star Name Reference

HE1523-0901 Frebel+2007

CS29497-004 Hill+2017

J2038-0023 Placco+2017

CS31082-001 Siquiera Mello+2013

J0954+5246 Holmbeck+2018
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Astronomical Sample: Uranium
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- Europium product ion h igh ly  sens i t ive to  

average Ye and f iss ion y ie ld

- Underabundance of  ac t in ides can lead to  

negat ive age pred ic t ions

Abundances for Cosmochronometry
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- Europium product ion h igh ly  sens i t ive to  

average Ye and f iss ion y ie ld

- Underabundance of  ac t in ides can lead to  

negat ive age pred ic t ions
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50 /50 K & T

...if observational error bars are taken into 

consideration:

- Ages equal using all three chronometer 

pairs: Th

Eu
=

U

Eu
=

U

Th

- Age estimate and overlap depends on 

beta-decay model

Ages Can Agree*
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- Run nucleosynthesis 

calculations out to selected 

age

- Compare full abundance 

pattern to observation

“Fit” to Observation
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A peek at some ongoing 

work
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Neutrinos in the disk are neither trapped nor free -streaming, therefore neutrino transport is essential

Disk Ye

Neutrino 

interactions

Thermodynamic 

evolution 

of the disk

Magnetic 

fields
depends on depend on depends on

Evolution of Post-Merger Disk
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Ejection mechanism

Mass of ejecta

Ejecta velocity

Neutrino evolution timescale

could affect

𝛽 =
𝑃𝑔𝑎𝑠

𝑃𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

Decreas ing in i t ia l  f ie ld  s t rength

Variable Field Strength
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Procedure

GRMHD simulations
with nubhlight (Miller +)

produce

Tracers: thermodynamic evolution
(>400 ,000  t o ta l )

for

Nucleosynthesis
with PRISM (Mumpower+)
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Some Preliminary Results
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Lund+ in prep



Jets capable of producing overall 

small amounts of actinides, but 

high mass fraction

High entropy jets allow for 

higher Ye for 

lanthanide/act inide production

Stronger init ial B f ield yields 

higher ejecta mass, with higher 

lanthanide and actinide richness

Some Preliminary Results
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Lund+ in prep



Thank you!

There is  a weal th of  physics in the unknown propert ies of  nuclei  far  f rom 

stabi l i ty  that  can impact  key k i lonova related quant i t ies

- Iden t i f ied  key  measured  and unmeasured  nuc le i  impor tan t  fo r  nuc lear  

hea t ing  on  l igh t  curve - re levant  t ime sca les .

- Exp lo red  a  var ie ty  o f  theore t ica l  nuc lear  mode ls  as  a  source  o f  

uncer ta in ty  fo r  nuc lear  energy  genera t ion .

- Probed lan than ide /ac t in ide  abundances fo r  cosmic  da t ing  o f  r -p rocess  

enhanced meta l -poor  s ta rs .

2 2 0 8 .06 373 ,   2 0 1 0 .0366 8 ,   2 0 1 0 .11 182

Conclusions
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