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The talk is based on the recent theoretical work in :
Computing Light-Front Wave Functions Without Light-Front Quantization: A

Large-Momentum Effective Theory Approach, Xiangdong [i, Yizhuang Liu (Phys.
Rev. D 105 (2022), reprint 2106.05310)

For a review of LaMET, see the review article

Large-momentum effective theory, Rev. Mod. Phys. 93 (2021)
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Introduction to QFT on the Light-Front

= Basic information on QFT on LF.
1. Equal time QFT: time-like time t, space
like space z.
2. QFT onthe LF: light-like time x* =
% (t + z) and light-like space x~ =
1
B (t—2).

3. Discovered by Dirac as early as 1940s*.

*P. A. M. Dirac, Rev. Mod. Phys. 21, 392
(1949)



Introduction to QFT on the Light-Front
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High energy limit of QFT— QFT on the LF!

Large rapidity gap sources the light-cone structure.

Natural realization of the IMF for Feynman’s parton model.

Formal infinite momentum limit in old-fashioned perturbation theory.
Simplification occurs: vanishing of backward-moving diagrams.

Factorization conjecture: PDFs, DAs are naturally expressed as LF
correlators.

S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept. 301,
299 (1998)



Introduction to QFT on the Light-Front
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B Many body Hamiltonian for LF quantization:

2
1. PT|Pt) = Z"I‘TJ, |P*): P~ is LF Hamiltonian and P* is LF momentum.

2. P~ = H;r = H) +V, expressed in terms of LF free-fields.

3. k™ is supported in [0, o] — vanishing of vacuum diagrams— formal
equality between interacting and free vacuum |0;,,;) = |0 free).

4. Partons (k* > 0) well separated from zero modes (k™ = 0).

S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept. 301,
299 (1998)



Introduction to QFT on the Light-Front
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B Expansion in the free Fock-basis:
IP*) = XN=0 | dTy ¥n (ki = x;P*, k; )[1a’ (ki k;1)]0).
1. The Yy (x;, ki) is called LFWF amplitudes.

2. They can be expressed as matrix elements
Yy (ki = %P, k1) ~ (O|TTak], ki )IPY).

3. Formal normalizability: Y | dTy [y |? = 1.
4. LF gauge AT = 0 for gauge theory.

S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept. 301,
299 (1998)
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Conceptual difficulties of LF formulation of QFT

E— _ e = = — S — — =

Non-Euclidean high energy limit of QFT is already not easy
1. Above threshold, the formidable sign problem.

2. Below threshold, rapidity logs are hard (space-like sudakov
form factor). Lack of systematic multi-scale analysis in rapidity
space.

3. Below threshold w1thout rapldlty logs (F (xB, ) when xg >

1). ln = is easy but In u_ + ln — is hard.

LF QFT in Hamiltonian formalism can only be more challenging.



P

Conceptual difficulties of LF formulation of QFT

1. The zero-mode problem: k™ = 0 modes fail to decouple completely.
Vacuum is not trivial at all !

2. Exists even in 2-D scalar field theory. Partially solved in Discrete LF
quantization for 2-D models**.

e The part in the red blob can
not be calculated in naive
implementation of LFPT*.

 Corresponds to vacuum
condensate (0]¢?|0).

*J. Collins, (2018), arXiv:1801.03960
**H. C. Pauli and S. J. Brodsky, Phys. Rev. D32,
2001(1985)

e ————— — ———— s — —
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Conceptual difficulties of LF formulation of QFT

E— _ - = = — S — — =

3. Besides the zero-mode problem, there are additional LF divergences of LF
PT when k* — 0. Caused by phase space measure + polarization
enhancement+ instantaneous diagram.

4. In 4D gauge theory, the divergence can be more than logarithmic and
splits over many different diagrams. No simple pattern.

5. Very hard to regulate in a way consistent with gauge invariance and
Lorentz invariance. No consistent regulator known up to now.

6. UV divergence usually become more complicate. Example: the benign 2D
massive Gross-Neveu.

Xiangdong Ji, Yizhuang Liu
(2106.05310)



Conceptual difficulties of LF formulation of QFT

EA————— - ——

* Why such ditficulties ? Because QFT on LF is an effective theory
in the non-trivial large rapidity (large momentum/LF) limit.

= More transcendental than & = ; — 0o, LF QFT # Fuclidean QFT.
» Constructing LF QFT from Euclidean QFT:

1. Rapidity renormalization: remove small k™ contribution
causing LF divergence.

2. UV matching: hard scale induced by the large rapidity limit.

Xiangdong Ji, Yizhuang Liu
(2106.05310)

———— = - —



Outline

EA—————

= Introduction to QFT on the Light-Front

» Conceptual difficulties of LF formulation of QFT
» LFWF amplitudes without LF quantization

» LaMET formulation of LFWF amplitudes
» Example: leading LFWF of pseudo-scalar mesons.



LFWF amplitudes without LF quantization
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= LFWF amplitudes as LF correlation functions.
Wiy (xi, biu, 1) = [ T1d2;e*#(0|PTI®} (in + bi) | P)

. (Lt
1 <I>£—"(€) = Pexp [—lfo din-A(An + E)] ¢;(&). Gauge
invariant fields with light-like gauge links attached.
2. Equivalent to A* = 0 gauge without gauge links.

3. Transverse gauge link at infinity required in singular gauges.

Xiangdong Ji, Yizhuang Liu
(2106.05310)



LFWEF without LF quantization
Rapldlty dlvergences of the

form f ——. Non-cancelling
LF dlvergence

The LFWFs

Y; (blue) and Yy
(red). The gauge
links disappear in
AT = 0 gauge.




- - i 1: Nucl. Phys. B193, 381 (1981), J.C. Collins and D
LFWEF without LF quantization S T, o oo SR A T, R
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= Rapidity divergences for infinitely long gauge links. Regulator needed.

= Off light-cone (1,2) : n - n + e~ p. Gauge link tilted away from LF.
Approaches LFas Y — oo,

* On light-cone : Gauge link along light-cone.
1. The delta-regulator (a) : et 44T @)  gif ax~a*@De™® 1

o BT e
2. The LF lengthregulator (b) : et/ ¥ AT (x7) ; glly dx™A%(x7)

3. The exponential regulator (c) and many others. Detined through final-state

cuts, not applicable for LFWFs. a: Phys. Rev. D 93, 011502 (2016). M.G. Echevarria,
|.Scimemi, and A. Vladimirov

b: Phys. Rev. Lett. 125, 192002 (2020), A. Viadimirov

c: Nucl. Phys. B 960, 115193 (2020), Y.Li, D.Neill, and
H Y 7hi



LFWF without LF quantization

S — _ e = = — S — — =

+2
= Rapidity divergence factorizes*: exp[Ky (b;, 1) In - 656-—i0]‘
1. Kjy: generalized Collins-Soper kernels or rapidity anomalous

dimensions. Known to order a2 for N = 2(double-parton)**.
2. Constant part is scheme dependent . Must be renormalized in a
scheme independent way.

3. For N = 1, reduces to the case of TMDPDFs***.

*A. Vladimirov, JHEP 04, 045 (2018)
**A. Vladimirov, JHEP 12, 038 (2016)
***J. C. Collins and D. E. Soper, Nucl. Phys. B193
(1981)



LFWEF without LF quantization

A. Vladimirov, JHEP 12, 038 (2016)
Xiangdong Ji, Yizhuang Liu

C—————

* One needs generalized soft
functions to renormalize the
rapidity divergence.

1. SE(b;y,u,6%,67) =
(OF [1C*(b;1,67,67)|0)
defined with N + 1 Wilson-
line cusps.

2. See the figure for the Shape
of C*(upper) and C~
(lower).

210605810




LFWEF without LF quantization Xiangdong Ji. Yizhuang Liu
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» With the help of generalized soft function Sy, one can define
the rapidity renormalized LFWF amphtudes

. 11) (x !b J_!ula )
¢ﬁ (xiJ biJ_J U, (l) — allmo L .
20 |stiumse?vn,s)

1. Rapidity divergence cancels. Scheme independent.

2. The rapidity scales {; = 2x2P+ 2¥n as a result of rapidity
renormalization.

3. Rapidity evolution in {; is controlled by K} again.
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LaMET formulation of LFWFs

Xiangdong Ji, Yizhuang Liu
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= Similar to the TMDPDFs, we define the quasi-LFWF amplitudes.

~ . Jldre2i%i(0|PyII®F (Ainz+b;i;L)|P)
~(x;, b; ) = lim :
Wiy (%2 bis 1, Gz6) = lim N7

1L q);_l- (§;L) = Pexp Lig f:L_CZ A% (& + Anz)d/ll ¢; (&) with gauge
link along space -like direction n, = (0,0,0,1).

2. Zg: expectation value of N + 1 Wilson-lines. Removes large L
divergence.

3. Rapidity scales {,; = 4x{P? generated.



LaMET formulation of LFWFs

The quasi-LFWF
amplitude Y5 (upper)
and Zg (lower).




Rapidity evolution of quasi-LFWFs

S — = e = = — S — — =

= One can show * that 1’/;% (xi, biy, p, {5 ;) satisfies the rapidity

evolution equation:

d ——
d In PZ In Il}ﬁ (xi’ biJ—’ K, (Z,i) = KN (biJ_: ﬂ) + Zi G((z,i; [1) .

1. Non-perturbative part: Collins-Soper kernel Ky (b;, u).

2. Perturbative part: G({,;, #). Ky + X; G is RG invariant.

3. Collins-Soper kernel can be extracted from ratios.**

**Ji, Sun, Xiong, and Yuan, arXiv:1405.7640.
***Ebert, Stewart, and Zhao, arXiv:1811.00026.
***Shanahan,Wagman, and
Zhao,arXiv:2003.0606.



Factorization of quasi-LFWF amplitudes

X|angdong Ji, Yizhuang Liu
— f {2106.05310)— — — —

= Atlarge P?, the quasi-LFWF factorizes

A

czz —i0

In—=—Kpn(bj 1) Cz,i
¢ﬁ(xit ARY (z,i)\/SrN (biJ.r I*l) =€ S Gt NEOLLE HN ( )¢N (xi' biJ.' K, (l)

+{, i— lO
In—%L —

Thee™ & NPl i qneto K v term of rapidity evolution of 1.

B. The perturbative kernel Hj (ZZ ") is due to G term of rapidity evolution .

o 0O

FWFs.

The 3 is the targeting L]

The factor S,y (b;, 1) is the generalized reduced soft function.



Factorization of quasi-LFWF amplitudes

» The reduced diagram.

1. Hard (H), collinear (C) and
soft (S) sub-diagrams.

2. Hard cores are
disconnected with each-
other: no convolution.

. Can also be derived in soft-
collinear effective theory.




The reduced SOft fllIlCtiOIl Xiangdong Ji, Yizhuang Liu
_(2106.05310)

C—————

» The reduced soft function can be defined in two ways.

1. Inon-light-cone schemes, it is defined as a ratio

: S_(bl J_)l'l')6+)6_)
S b; = lim — - -
TN( L ”) 6+;6__)0 SN(bil,ﬂ,a-l-,nz)SN(bil,ula_inZ)

2. In off-light-cone scheme, generalized soft function at large rapidities
Sy (b1, 1, Y,Y") = exp[Ky (i1, 1) In[Fe¥*Y" —i0] + Dy (by, p)]-

3. Syn (bi1, 1) = exp [-Dy(b,, )] is the rapidity independent part.

4. Can be simulated through form-factors.

———— s - —
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Example: leading LFWF for a pseudo-scalar meson

E— = e = = — S — — _——

» The LFWEF is defined with the same operator as TMDPDFs.
» The quasi-LFWEF is defined with the same operators as quasi-TMDPDFs.

» Same anomalous dimensions, rapidity evolutions as TMDPDFs.

LEWF (left).
Quasi LFWF and Zg, (right).




Example: leading LFWF for a pseudo-scalar meson

E— _ e = = — S — — =

» The matching formula reads .
zi~ —io

~ In—Z_—k. (b 2
VE, (o b m G NS B = e 0 0 THE (32) (o by )
1. Two rapidity scales {, = 4x%(P?)? and {; = 4%¥%(P?)?.x + x = 1.

2. The hard kernel relates to TMDPDF cases through: HTMD( =) = ‘Hl ((z) :

y

3. The S, (b, ) the same as the case of TMDPDFs.
4. Imaginary part non-vanishing. Required by analyticity. Scale-invariant at 1-loop.



Example: leading LFWF for a pseudo-scalar meson
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» The reduced soft function can be obtained through a space-like form-factor.

» Preliminary lattice results of S, exists.

The reduced diagram of the The reduced diagram of the form

quasi LFWV Pzq (x, by, p, P). factor (P’ [@Ty (b )PT(0)|P).

P L™
7% R
P s N
VoV NG
7 \
-t
€ v
A
/




The light-meson formalism of S,

Ji, Y. Liu, and Y.-S. Liu, arXiv:1910.11415.

S —

Ji, Liu, Liu, Zhang, and Zhao, arXiv:2004.03!

A. Form factor allows form factors factorization into . FWFs.

B. Quasi LFWEF factorize into LFWYV and S,,.

C. Therefore,

S‘r (bJ.' I't) —

(P'[$ry(b)PTH(0)|P)

Lattice

4

[ dx dx'H(x, x Yt (x', by, p, PYP(x, by, p, P)|

/

PQCD

The reduced diagram of the form
factor (P' [Ty (b )Py (0)|P) .




The light-meson formalism of S;1 atiice Parton Gollaboration, arxiv:2005.14572

E— = e = = — S — — =

/ L xT a(fm) csu ki* my " (MeV)
3.34 24% x 48 0.098 2.06686 0.13675 333

1—loop "\;'."" '."'..,., e ,.('\.I.(\\ )
S/,M_S 864 0.13622 54T

P?=1.05GeV, y=2.17

P? =1.58GeV, y = 3.06 CLS A654

P?=2.11GeV, y = 3.98

Preliminary results of S, by LPC . Only tree-level matching.



The hght’meson forma]ism Of Srl Yuan Li and others, arxiv:2106.13027

(L/a)’ xT/a a (fm) Qflsea
247 x 48 0.093 0.0 5

L1 =loop

';Sm _ _ >
QA flvo M0 Qflv2 My | QL3 My3

0.0053 350 545 | 0.018 640 | 0.03 827

. 1L =loop

S 15

Table I. Parameters of the ensemble used in this work. We
list the spatial and temporal extents, L/a and T'/a, the lattice
spacing a, the sea quark mass jis.,, the pion mass m..,, the
number of configurations used, N.,,s, and four valence quark
masses jLyi for 7 = 0,1,2,3 together with the associated pion
masses my,;. All the pion masses are given in units of MeV.

3 04 05 06 0. , ,
b lfim ETMC configuration

Figure 2. The lattice results of S(b,) for various momenta,

together with the one-loop perturbative result S%%“”" and its

. ~/1-1 . . . [
variant | m””" with a including up to 4 loops. The scale p

in Eq. (17) is set as pu =2 GeV.

Preliminary results of S, . Only tree-level matching.



Summary and Outloog,

» QFT on LF is an effective theory in the infinite rapidity limit.

» LFWF amplitudes can be defined as LF correlators without LF
quantization.

» LaMET provides a natural Euclidean formulation of LFWF
amplituds.

» Implementation of one-loop matching for lattice calculation.

= Better understanding of LF limit, scheme dependence.

e ——— = = = — ———— = — — = -



