LFWFs from large momentum effective theory (LaMET)

Yizhuang Liu, Jagiellonian University

The talk is based on the recent theoretical work in:

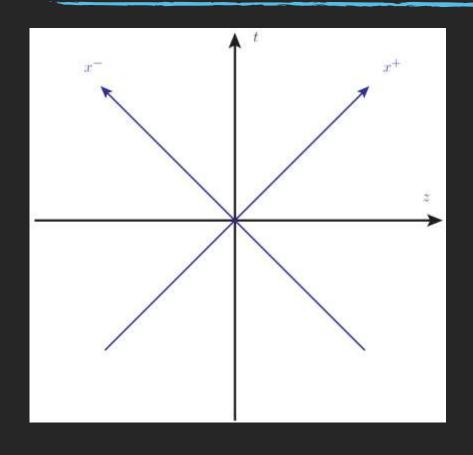
Computing Light-Front Wave Functions Without Light-Front Quantization: A Large-Momentum Effective Theory Approach, Xiangdong Ji, Yizhuang Liu (Phys. Rev. D 105 (2022), reprint 2106.05310)

For a review of LaMET, see the review article

Large-momentum effective theory, Rev. Mod. Phys. 93 (2021)

Outline

- Introduction to QFT on the Light-Front
- Conceptual difficulties of LF formulation of QFT
- LFWF amplitudes without LF quantization
- LaMET formulation of LFWF amplitudes
- Example: leading LFWF of pseudo-scalar mesons.



- Basic information on QFT on LF.
- 1. Equal time QFT: time-like time t, space like space z.
- 2. QFT on the LF: light-like time $x^+ = \frac{1}{\sqrt{2}}(t+z)$ and light-like space $x^- = \frac{1}{\sqrt{2}}(t-z)$.
 - 3. Discovered by Dirac as early as 1940s*.

*P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949)

High energy limit of QFT → QFT on the LF!

- 1. Large rapidity gap sources the light-cone structure.
- 2. Natural realization of the IMF for Feynman's parton model.
- 3. Formal infinite momentum limit in old-fashioned perturbation theory. Simplification occurs: vanishing of backward-moving diagrams.
- 4. Factorization conjecture: PDFs, DAs are naturally expressed as LF correlators.

- Many body Hamiltonian for LF quantization:
- 1. $P^-|P^+\rangle = \frac{m^2}{2P^+}|P^+\rangle$: P^- is LF Hamiltonian and P^+ is LF momentum.
- 2. $P^- \equiv H_{LF} = H_{LF}^0 + V$, expressed in terms of LF free-fields.
- 3. k^+ is supported in $[0, \infty] \to \text{vanishing of vacuum diagrams} \to \text{formal equality between interacting and free vacuum <math>|0_{int}\rangle = |0_{free}\rangle$.
- 4. Partons $(k^+ > 0)$ well separated from zero modes $(k^+ = 0)$.

Expansion in the free Fock-basis:

$$|P^{+}\rangle = \sum_{N=0}^{\infty} \int d\Gamma_{N} \ \psi_{N}(k_{i}^{+} = x_{i}P^{+}, k_{i\perp}) \prod a^{\dagger}(k_{i}^{+}, k_{i\perp}) |0\rangle.$$

- 1. The $\psi_N(x_i, k_{i\perp})$ is called LFWF amplitudes.
- 2. They can be expressed as matrix elements $\psi_N(k_i^+ = x_i P^+, k_{i\perp}) \sim \langle 0 | \prod a(k_i^+, k_{i\perp}) | P^+ \rangle$.
- 3. Formal normalizability: $\sum_{N} \int d\Gamma_{N} |\psi_{N}|^{2} = 1$.
- 4. LF gauge $A^+ = 0$ for gauge theory.

S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept. 301, 299 (1998)

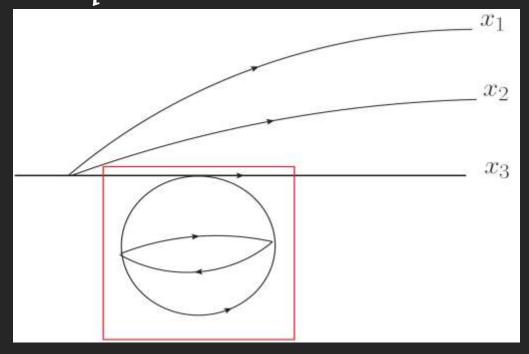
Outline

- Introduction to QFT on the Light-Front
- Conceptual difficulties of LF formulation of QFT
- LFWF amplitudes without LF quantization
- LaMET formulation of LFWF amplitudes
- Example: leading LFWF of pseudo-scalar mesons.

Non-Euclidean high energy limit of QFT is already not easy

- 1. Above threshold, the formidable sign problem.
- 2. Below threshold, rapidity logs are hard (space-like sudakov form factor). Lack of systematic multi-scale analysis in rapidity space.
- 3. Below threshold without rapidity logs $(F(x_B, \frac{Q^2}{m^2}))$ when $x_B > 1$. $\ln \frac{Q^2}{m^2}$ is easy but $\ln \frac{Q^2}{\mu^2} + \ln \frac{\mu^2}{m^2}$ is hard.
- LF QFT in Hamiltonian formalism can only be more challenging.

- 1. The zero-mode problem: $k^+ = 0$ modes fail to decouple completely. Vacuum is not trivial at all!
- 2. Exists even in 2-D scalar field theory. Partially solved in Discrete LF quantization for 2-D models**.



- The part in the red blob can not be calculated in naïve implementation of LFPT*.
- Corresponds to vacuum condensate $\langle 0|\phi^2|0\rangle$.

*J. Collins, (2018), arXiv:1801.03960 **H. C. Pauli and S. J. Brodsky, Phys. Rev. D32, 2001(1985)

- 3. Besides the zero-mode problem, there are additional LF divergences of LF PT when $k^+ \to 0$. Caused by phase space measure + polarization enhancement+ instantaneous diagram.
- 4. In 4D gauge theory, the divergence can be more than logarithmic and splits over many different diagrams. No simple pattern.
- 5. Very hard to regulate in a way consistent with gauge invariance and Lorentz invariance. No consistent regulator known up to now.
- 6. UV divergence usually become more complicate. Example: the benign 2D massive Gross-Neveu.

- Why such difficulties? Because QFT on LF is an effective theory in the non-trivial large rapidity (large momentum/LF) limit.
- More transcendental than $\xi = \frac{1}{m} \to \infty$. LF QFT \neq Euclidean QFT.
- Constructing LF QFT from Euclidean QFT:
- 1. Rapidity renormalization: remove small k^+ contribution causing LF divergence.
- 2. UV matching: hard scale induced by the large rapidity limit.

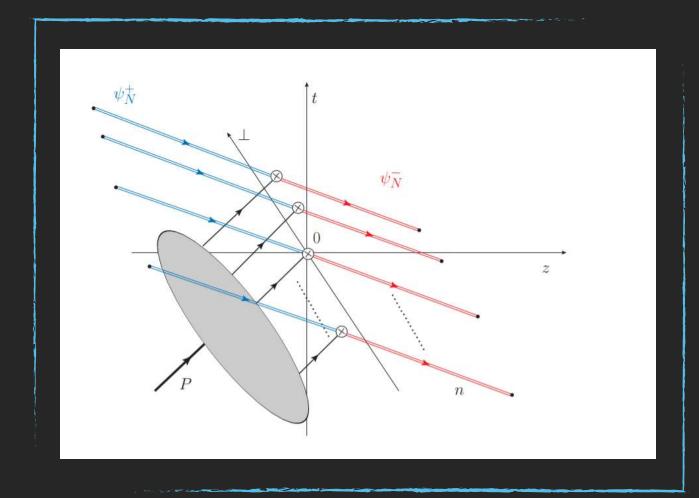
Outline

- Introduction to QFT on the Light-Front
- Conceptual difficulties of LF formulation of QFT
- LFWF amplitudes without LF quantization
- LaMET formulation of LFWF amplitudes
- Example: leading LFWF of pseudo-scalar mesons.

LFWF amplitudes without LF quantization

- LFWF amplitudes as LF correlation functions. $\psi_N^{\pm}(x_i, b_{i\perp}, \mu) = \int \prod d\lambda_i e^{i\lambda_i x_i} \langle 0 | P_N \prod \Phi_i^{\pm}(\lambda_i n + b_{i\perp}) | P \rangle$
- 1. $\Phi_i^{\pm}(\xi) = Pexp\left[-i\int_0^{\pm\infty} d\lambda \, n \cdot A(\lambda n + \xi)\right] \phi_i(\xi)$. Gauge invariant fields with light-like gauge links attached.
- 2. Equivalent to $A^+ = 0$ gauge without gauge links.
- 3. Transverse gauge link at infinity required in singular gauges.

LFWF without LF quantization



Rapidity divergences of the form $\int \frac{dk^+}{k^+}$. Non-cancelling LF divergence.

The LFWFs ψ_N^+ (blue) and ψ_N^- (red). The gauge links disappear in $A^+ = 0$ gauge.

LFWF without LF quantization 1: Nucl. Phys. B193, 381 (1981), J.C. Collins and D 2: Phys. Rev. D 71, 034005(2005), X.D Ji, J.P. Ma,

- Rapidity divergences for infinitely long gauge links. Regulator needed.
- Off light-cone (1,2): $n \to n \pm e^{-2Y}p$. Gauge link tilted away from LF. Approaches LF as $Y \to \infty$.
- On light-cone: Gauge link along light-cone.
- 1. The delta-regulator (a): $e^{i\int dx^-A^+(x^-)} \rightarrow e^{i\int dx^-A^+(x^-)}e^{-\delta^-|x^-|}$
- 2. The LF length regulator (b): $e^{i\int dx^-A^+(x^-)} \rightarrow e^{i\int_0^{L^-}dx^-A^+(x^-)}$.
- 3. The exponential regulator (c) and many others. Defined through final-state cuts, not applicable for LFWFs. a: Phys. Rev. D 93, 011502 (2016). M.G. Echevarria, I.Scimemi, and A. Vladimirov
 - b: Phys. Rev. Lett. 125, 192002 (2020), A. Vladimirov
 - c: Nucl. Phys. B 960, 115193 (2020), Y.Li, D.Neill, and H X 7hu

LFWF without LF quantization

- Rapidity divergence factorizes*: $\exp[K_N(b_{i\perp}, \mu) \ln \frac{P^{+^2}}{\mp \delta^+ \delta^- i0}]$.
- 1. K_N : generalized Collins-Soper kernels or rapidity anomalous dimensions. Known to order α_s^2 for N=2 (double-parton)**.
- 2. Constant part is scheme dependent. Must be renormalized in a scheme independent way.
- 3. For N = 1, reduces to the case of TMDPDFs***.

```
*A. Vladimirov, JHEP 04, 045 (2018)

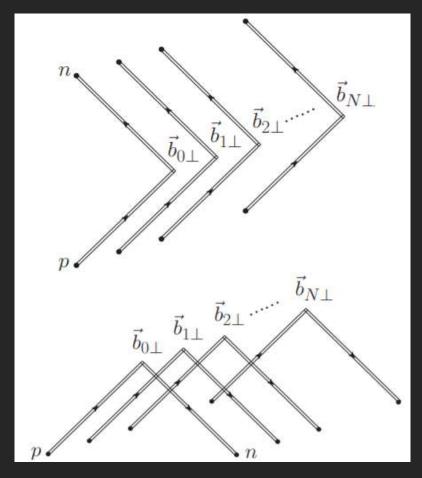
**A. Vladimirov, JHEP 12, 038 (2016)

***J. C. Collins and D. E. Soper, Nucl. Phys. B193 (1981)
```

LFWF without LF quantization

- One needs generalized soft functions to renormalize the rapidity divergence.
- 1. $S_N^{\pm}(b_{i\perp}, \mu, \delta^+, \delta^-) = \langle 0 | T \prod C^{\pm}(b_{i\perp}, \delta^+, \delta^+) | 0 \rangle$ defined with N + 1 Wilsonline cusps.
- 2. See the figure for the Shape of C^+ (upper) and C^- (lower).

A. Vladimirov, JHEP 12, 038 (2016) Xiangdong Ji, Yizhuang Liu (2106.05310)



• With the help of generalized soft function S_N^{\pm} , one can define the rapidity renormalized LFWF amplitudes.

$$\psi_N^{\pm}(x_i,b_{i\perp},\mu,\zeta_i) = \lim_{\delta^-\to 0} \frac{\psi_N^{\pm}(x_i,b_{i\perp},\mu,\delta^-)}{\sqrt{s_N^{\pm}(b_{i\perp},\mu,\delta^-e^{2y_n},\delta^-)}}.$$

- 1. Rapidity divergence cancels. Scheme independent.
- 2. The rapidity scales $\zeta_i = 2x_i^2 P^{+2} e^{2y_n}$ as a result of rapidity renormalization.
- 3. Rapidity evolution in ζ_i is controlled by K_N again.

Outline

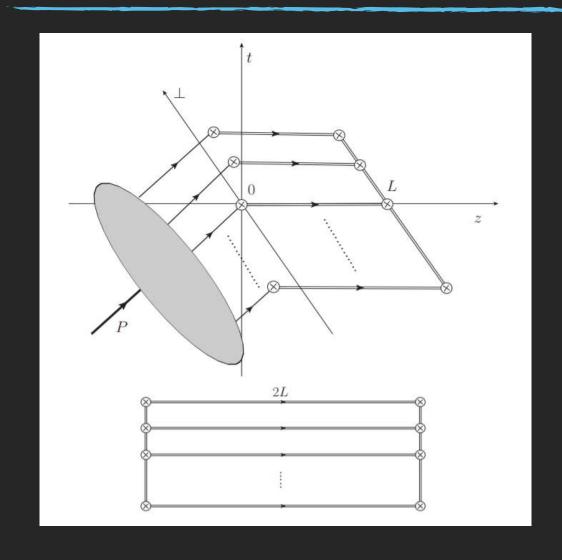
- Introduction to QFT on the Light-Front
- Conceptual difficulties of LF formulation of QFT
- LFWF amplitudes without LF quantization
- LaMET formulation of LFWF amplitudes
- Example: leading LFWF of pseudo-scalar mesons.

Similar to the TMDPDFs, we define the quasi-LFWF amplitudes.

$$\widetilde{\psi_N^{\pm}}(x_i, b_{i\perp}, \mu, \zeta_{z,i}) = \lim_{L \to \infty} \frac{\int \prod d\lambda_i e^{-i\lambda_i x_i} \langle 0 | P_N \prod \Phi_i^{\pm}(\lambda_i n_z + b_{i\perp}; L) | P \rangle}{\sqrt{Z_E(2L, b_{i\perp}, \mu)}}.$$

- 1. $\Phi_i^{\pm}(\xi; L) = \mathcal{P} \exp \left[ig \int_0^{\mp L \zeta^z} A^z(\xi + \lambda n_z) d\lambda\right] \phi_i(\xi)$ with gauge link along space –like direction $n_z = (0,0,0,1)$.
- 2. Z_E : expectation value of N+1 Wilson-lines. Removes large L divergence.
- 3. Rapidity scales $\zeta_{z,i} = 4x_i^2 P_z^2$ generated.

LaMET formulation of LFWFs



The quasi-LFWF amplitude $\widetilde{\psi_N}$ (upper) and Z_E (lower).

Rapidity evolution of quasi-LFWFs

• One can show •• that $\widetilde{\psi_N^{\pm}}(x_i, b_{i\perp}, \mu, \zeta_{z,i})$ satisfies the rapidity evolution equation:

$$\frac{d}{d \ln P^z} \ln \widetilde{\psi_N^{\pm}}(x_i, b_{i\perp}, \mu, \zeta_{z,i}) = K_N(b_{i\perp}, \mu) + \sum_i G(\zeta_{z,i}, \mu).$$

- 1. Non-perturbative part: Collins-Soper kernel $K_N(b_{i\perp}, \mu)$.
- 2. Perturbative part: $G(\zeta_{z,i}, \mu)$. $K_N + \sum_i G$ is RG invariant.
- 3. Collins-Soper kernel can be extracted from ratios.***

**Ji, Sun, Xiong, and Yuan, arXiv:1405.7640.

***Ebert, Stewart, and Zhao, arXiv:1811.00026.

***Shanahan, Wagman, and
Zhao, arXiv:2003.0606.

Factorization of quasi-LFWF amplitudes

Xiangdong Ji, Yizhuang Liu (2106.05310)

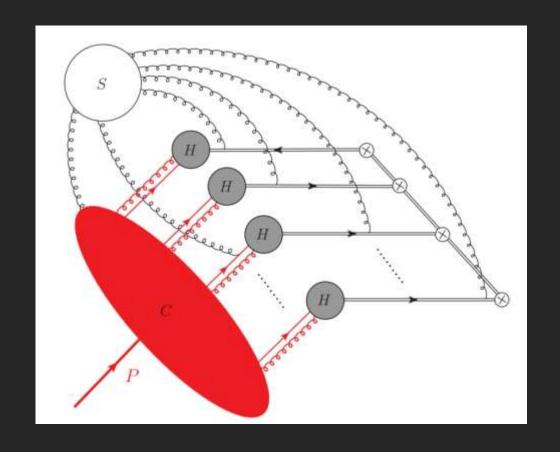
• At large P^z , the quasi-LFWF factorizes

$$\widetilde{\psi_N^{\pm}}(x_i, b_{i\perp}, \mu, \zeta_{z,i}) \sqrt{S_{rN}(b_{i\perp}, \mu)} = e^{\ln \frac{\mp \zeta_{z,i} - i0}{\zeta,i} K_N(b_{i\perp}, \mu)} H_N^{\pm} \left(\frac{\zeta_{z,i}}{\mu^2}\right) \psi_N^{\pm}(x_i, b_{i\perp}, \mu, \zeta_i)$$

- A. The $e^{\ln \frac{\mp \zeta_{z,i} i0}{\zeta,i} K_N(b_{i\perp},\mu)}$ is due to K_N term of rapidity evolution of $\widetilde{\psi}_N$.
- B. The perturbative kernel $H_N^{\pm}\left(\frac{\zeta_{z,i}}{\mu^2}\right)$ is due to G term of rapidity evolution.
- C. The ψ_N^{\pm} is the targeting LFWFs.
- D. The factor $S_{rN}(b_{i\perp}, \mu)$ is the generalized reduced soft function.

Factorization of quasi-LFWF amplitudes

- The reduced diagram.
- 1. Hard (H), collinear (C) and soft (S) sub-diagrams.
- 2. Hard cores are disconnected with each-other: no convolution.
- Can also be derived in softcollinear effective theory.



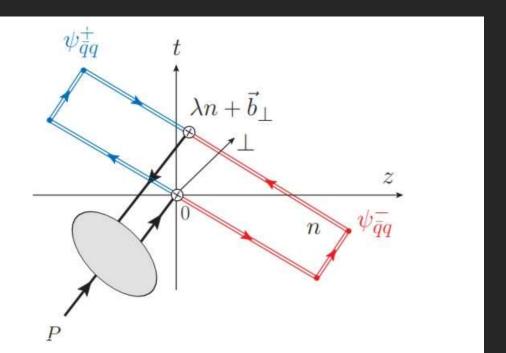
- The reduced soft function can be defined in two ways.
- 1. In on-light-cone schemes, it is defined as a ratio $S_{rN}(b_{i\perp},\mu) = \lim_{\delta^+,\delta^-\to 0} \frac{S_N^-(b_{i\perp},\mu,\delta^+,\delta^-)}{S_N^-(b_{i\perp},\mu,\delta^+,n_z)S_N^-(b_{i\perp},\mu,\delta^-,n_z)}$
- 2. In off-light-cone scheme, generalized soft function at large rapidities $S_N^{\pm}(b_{i\perp},\mu,Y,Y') = \exp[K_N(b_{i\perp},\mu)\ln[\mp e^{Y+Y'}-i0]+\mathcal{D}_N(b_{\perp},\mu)].$
- 3. $S_{rN}(b_{i\perp},\mu) = \exp[-\mathcal{D}_N(b_{\perp},\mu)]$ is the rapidity independent part.
- 4. Can be simulated through form-factors.

Outline

- Introduction to QFT on the Light-Front
- Conceptual difficulties of LF formulation of QFT
- LFWF amplitudes without LF quantization
- LaMET formulation of LFWF amplitudes
- Example: leading LFWF of pseudo-scalar mesons.

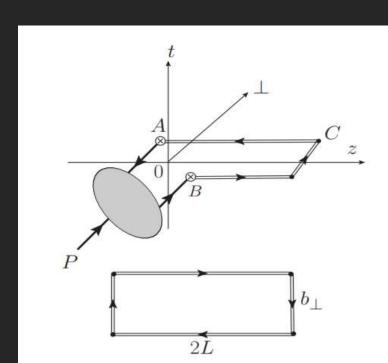
Example: leading LFWF for a pseudo-scalar meson

- The LFWF is defined with the same operator as TMDPDFs.
- The quasi-LFWF is defined with the same operators as quasi-TMDPDFs.
- Same anomalous dimensions, rapidity evolutions as TMDPDFs.



LFWF (left).

Quasi LFWF and Z_E (right).



Example: leading LFWF for a pseudo-scalar meson

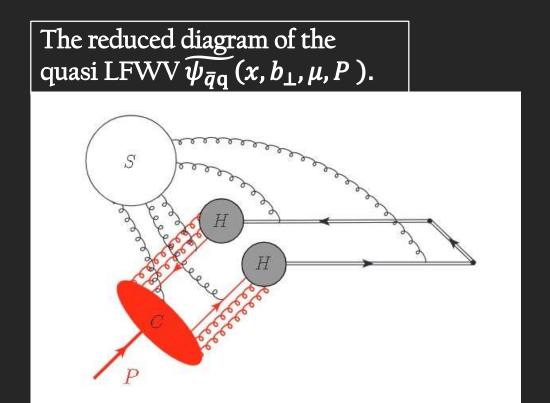
The matching formula reads

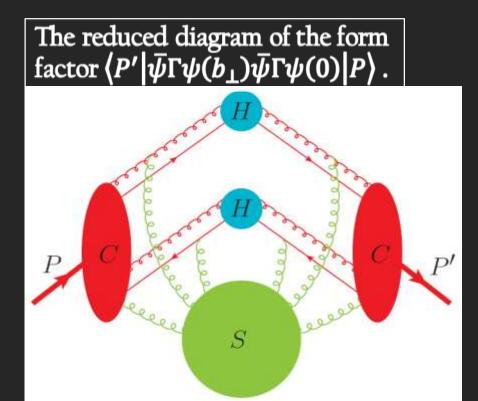
$$\widetilde{\psi_{\bar{q}q}^{\pm}}(x,b_{\perp},\mu,\zeta_{z,i})\sqrt{S_{r1}(b_{\perp},\mu)} = e^{\ln\frac{\mp\zeta_{z,i}-i0}{\zeta,i}K_{1}(b_{\perp},\mu)} \prod H_{1}^{\pm}\left(\frac{\zeta_{z,i}}{\mu^{2}}\right)\psi_{\bar{q}q}^{\pm}(x,b_{\perp},\mu,\zeta_{i})$$

- 1. Two rapidity scales $\zeta_z = 4x^2(P^z)^2$ and $\overline{\zeta_z} = 4\overline{x}^2(P^z)^2$. $x + \overline{x} = 1$.
- 2. The hard kernel relates to TMDPDF cases through: $H_{TMD}(\frac{\zeta_z}{\mu^2}) = \left| H_1^{\pm} \left(\frac{\zeta_z}{\mu^2} \right) \right|^2$.
- 3. The $S_{r1}(b_{\perp}, \mu)$ the same as the case of TMDPDFs.
- 4. Imaginary part non-vanishing. Required by analyticity. Scale-invariant at 1-loop.

Example: leading LFWF for a pseudo-scalar meson

- The reduced soft function can be obtained through a space-like form-factor.
- Preliminary lattice results of S_{r1} exists.

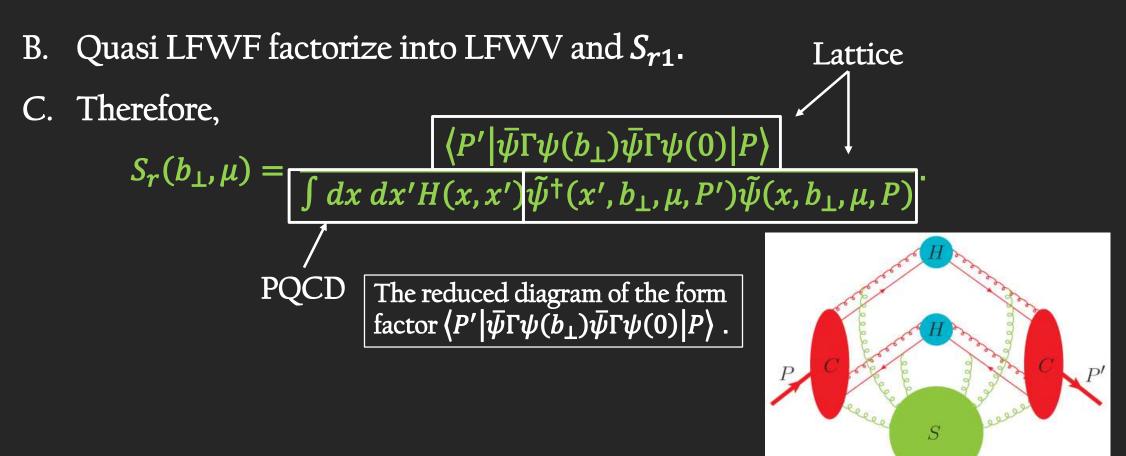




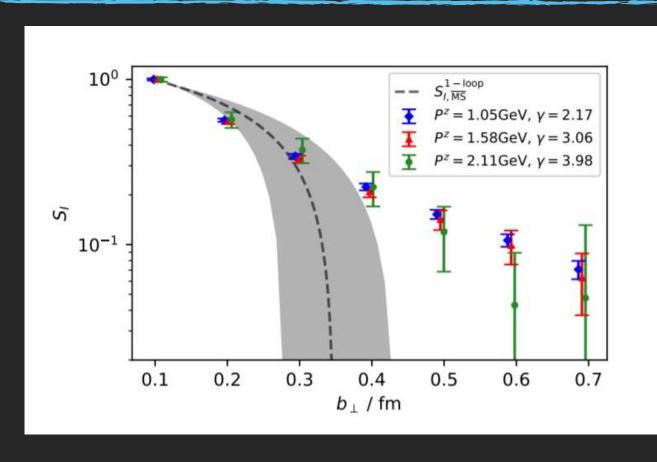
The light-meson formalism of S_{r1}

Ji, Y. Liu, and Y.-S. Liu, arXiv:1910.11415. Ji, Liu, Liu, Zhang, and Zhao, arXiv:2004.039

A. Form factor allows form factors factorization into LFWFs.



The light-meson formalism of S_{r1} Lattice Parton Collaboration, arXiv:2005.14572



β	L^3	×	T	a (fm)	c_{sw}		$m_{\pi}^{\rm sea}({ m MeV})$
3.34	$24^{3} \times 48$		48	0.098	2.06686	0.13675	333
					N_{cfg}	κ_l^v	$m_{\pi}^{v} \; (\text{MeV})$
					864	0.13622	547

CLS A654

Preliminary results of S_r by LPC. Only tree-level matching.

The light-meson formalism of S_{r1} Yuan Li and others, arxiv:2106.13027

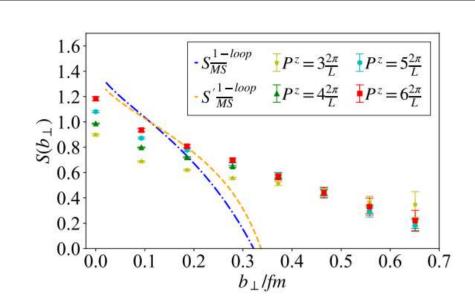


Figure 2. The lattice results of $S(b_{\perp})$ for various momenta, together with the one-loop perturbative result $S_{\overline{\rm MS}}^{1-{\rm loop}}$ and its variant $S_{\overline{\rm MS}}^{\prime 1-{\rm loop}}$ with α_s including up to 4 loops. The scale μ in Eq. (17) is set as μ = 2 GeV.

$(L/a)^3$	$\times T/a$	a (fm)		$a\mu_{sea}$	m_{sea}^{π}		N_{conf}
$24^{3} \times 48$		0.093		0.0053	350		126
$a\mu_{v0}$	m_{v0}^{π}	$a\mu_{v1}$	m_{v1}^{π}	$a\mu_{v2}$	m_{v2}^{π}	$a\mu_{v3}$	m_{v3}^{π}
0.0053	350	0.013	545	0.018	640	0.03	827

Table I. Parameters of the ensemble used in this work. We list the spatial and temporal extents, L/a and T/a, the lattice spacing a, the sea quark mass μ_{sea} , the pion mass m_{sea}^{π} , the number of configurations used, N_{conf} , and four valence quark masses μ_{vi} for i=0,1,2,3 together with the associated pion masses m_{vi}^{π} . All the pion masses are given in units of MeV.

ETMC configuration

Preliminary results of S_r . Only tree-level matching.

Summary and Outlook

- QFT on LF is an effective theory in the infinite rapidity limit.
- LFWF amplitudes can be defined as LF correlators without LF quantization.
- LaMET provides a natural Euclidean formulation of LFWF amplituds.
- Implementation of one-loop matching for lattice calculation.
- Better understanding of LF limit, scheme dependence.