Heavy Quark Hadronization in pp, pA and AA Collisions

Ming Liu Los Alamos National Laboratory

INT Heavy Flavor Physics Workshop, Week 3 October 17-21, 2022

Outline

• HQ as a probe for QGP

Importance of understanding HQ hadroproduction

➢ Final state interactions, non-universality of HQ FF

• New opportunity

➤sPHENIX at RHIC

Heavy Quark (HQ) to Probe QGP

• Quark diffusion in QGP: v₂

➢Flow, medium interactions

- Quark energy loss in QGP: R_{AA}
 - Collisional vs radiative
 - ➤Mass dependence

Role of Mass in Heavy Quark Energy Loss - A beautiful but over simplified picture

Experimentally we measure hadrons, not quarks ... - hadronization to connect observables with QGP parameters

HQ FF assumed universal in all pT in most models until recently (~2018)

A good approximation at high energy e+e-/ep:

- Independent fragmentation in vacuum
- Universal FF

$$x_B = E_B/E_{\text{beam}}$$

000

e+e- ->7⁰ -> b bar

В

Data: Charm Hadronization in e⁺e⁻ and ep

Xin's talk, yesterday

Heavy Quark Hadronization in p+p

- Break down of the universality of FF at "low pT"

 Final state interactions with nuclear medium modifies bquark hadronization

Significant at low pT ~<20 GeV (~5x M_b)

Let's Re-exam the HQ Hadroproduction ...

10/20/22

HQ Production in p+p at RHIC

• One-pair of Q-Qbar produced from one hard-scattering

Double-charm possible but rare

Multi-parton interactions important (MPI)

• Final state interaction (FSI) matters

- "Independent fragmentation", like in vacuum, at very high pT
- Coalescence and interactions with nuclear media important at low pT, mostly local?

Hadronization time scale expected very short

– MPI and FSI Important

 Strong enhancement vs event multiplicity

Default PYTHIA significantly underestimate data

• With MPI and color reconnection PYTHIA agrees better with data

Given the small proton size, clear evidence of short hadronization time in p+p collisions, ~ 1fm

- Strong consequence on HI data interpretation
- Local or long-range correlation?

Bottom Quarks: pp and AA

Hints of Bs enhancement in AA?

HQ Hadronization at "high pT" in pp and AA - mostly follows pQCD

рр

AA

b-Jets in ppjet substructure

- Deviation at large radius

J/Psi-Jets in pp - flat distribution?

- Quite different from expectation
- J/Psi production mechanisms
 - ➤ CEM
 - ➢ NRQCD
 - ➢ Jet fragmentation

≻…

HF in AA Collisions – more complicated !

- Charm-quark pair yield: pQCD
 Same per nucleon pair
- Enhancement in AA at low pT
 - ➢FSI important, centrality
 - Models with fragmentation and coalescence agree with data better

More precision data needed to better understand HQ hadronization

Ming Liu@ INT HF 2022

New Opportunity at RHIC - sPHENIX: 2023-2025

• Open HF jet in AuAu

- Beauty jets
 Charm jets
 J/Psi jets
- Open HF hadrons

Quarkonia

Charm – many <c-cbar> in central AuAu
 J/Psi : strong coalescence
 Beauty – single <b-bbar> in central AuAu
 Upsilon: no coalescence

Open HF Tagging with MVTX - Monolithic-active-pixel-sensor based VerTeX detector

- MVTX key parameters: (ALPIDE)
 - pixel size: 27um x 29 um
 - ultra-thin stave: 0.35%X₀
 - Integration time: ~5us
- Multi-tracks w/ large DCA
- 2nd vertex mass
- Exclusive hadron reconstruction

b-jet efficiency

10/20/22

Work in Progress: from Full Monte Carlo Simulations

PYTHIA 8 p+p with full detector GEANT sim + reco

KFParticle package implemented for exclusive HF hadron reconstruction

From Quark to Hadron in QGP

- Critical to understand the hadronization process

- Hadron production strongly affected by the QCD environment
 - Non-perturbative process important at low pT, coalescence etc.
 - Strong multiplicity dependence observed in p+p, pA and AA ... @RHIC and LHC
 - Study the breakdown of pQCD factorization at low pT ...
- High precision measurements of HF meson and baryons in sPHENIX

From Quarks to Hadrons (Cont.)

- More exclusive HF hadrons D^{+/-}, Ds, Bs yields etc.
- Event multiplicity dependence

Precision "Flow" Measurements of B-hadron and b-Jets

$$B \rightarrow \overline{D^0} + X$$
 (B.R. 60%)

Many factors affect the HF hadron production:

- Heavy quark energy loss in QGP
- Heavy b-quark diffusion in QGP
- Heavy quark hadronization in QGP

b-jet flow, pQCD:Energy loss induced v2?

Summary and Outlook

- HQ are excellent probes for QGP study
 - mass-dependent, energy loss, flow
 - \blacktriangleright strong coupling with QGP
- Critical to understand the HF hadroproduction mechanisms
 - Breakdown of FF universality at pT ~<20GeV, but also most</p> interesting region to study
 - FSI and coalescence important even in pp and pA
 - Multiplicity dependence requires further study
- HF jets are important to isolate non-perturbative effects from QGP

> Energy loss

- New! sPHENIX online early 2023
 - Very rich HF physics program
 - Complementary to LHC

Outer HCa SC Magnet

Inner HCal

EMCal TPC

INT

Backup

HQ Flow and Energy Loss

HQ Diffusion in QGP

Model calculations

Classical Brownian motion:

Shuang Li and Jinfeng Liao, Eur. Phys. J. C (2020) 80: 671

The sPHENIX Experiment

MVTX beam view R = 2.5 - 4.0 cm

Key capabilities:

- Full azimuth, |eta| < 1.1
- High trigger rate ~15kHz, collect all central AuAu
- EMCal: high pT direct photons
- Inner and outer HCals: jets
- Precision tracking: HF and more
 - 0.2 < pT < 40 GeV

Trigger-less streaming readout, p+p and pAu

sPHENIX Run Plan

	Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
۱			[GeV]	Weeks	Weeks	z <10 cm	z < 10 cm
	2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
	2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
						4.5 (6.2) pb ⁻¹ [10%-str]	
	2024	p [↑] +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
						0.01 pb ⁻¹ [10%-str]	
	2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

Work in Progress

 $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$ Events/ (0.0005 GeV) 10² |y(Kππ_s)| < 1 0.0 < p_(Kππ_s) < 20.0 Ge 40 30 20 10 Pythia signal ⊟Bkg. ■D*[±] 3 2 **sPHENIX** Simulation 0.14 0.145 0.15 0.155 0.16 0.165 0.17 m(Kππ_s)-m(Kπ) [GeV]

For D*, pT ~> 1.5GeV, with soft pion pT > 0.2GeV

A Puzzle or Not

– No event multiplicity dependence?

Similar values for pT integrated ratios

- Low pT dominant,
- Coalescence and breakup
- Missing anything?

• pp, $\sqrt{s} = 13 \text{ TeV}$

▼ pp, √s = 5.02 TeV

 $\mathbf{v}_{\mathbf{c}}^{+}$

|y| < 0.5

stat.

syst.