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Overview

Goal: study QFTs through lattice models with finite dimensional local Hilbert space

Our model: qubit regularization1 of traditional lattice models

This talk: reproduce the physics of 2d QCD using qubit regularization
▶ The critical theory: Wess-Zumino-Witten (WZW) model
▶ Phase diagram: gapped/gapless
▶ Confinement properties: confined/deconfined

Methods: strong coupling analysis and tensor network

1H. Liu and S. Chandrasekharan, 2022, Symmetry arXiv: 2112.02090 (hep-lat)
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2d QCD Lagrangian

SU(N) Yang-Mills theory coupled to N massless Dirac fermions

L = − 1

2g2
trF 2 + ψ̄αi /Dψα + 2λ tr(JL · JR)

λ = 0 =⇒ full chiral symmetry. Generically, λ ̸= 0 on the lattice. For now, we assume λ = 0.

Phases of 2d QCD
Pure Yang-Mills: gapped
Large quark number: gapless
Intermediate: bosonization analysis
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Bosonization of 2d QCD

N Dirac fermions without gauge fields: SO(2N) global symmetry.

Low-energy physics: SO(2N)1 WZW model.

Gauge SU(N) symmetry, low-energy physics: SO(2N)1
/
SU(N)1 coset WZW model.

Coset WZW model is gapped if and only if c = 0.2

Gk WZW model central charge c(Gk) =
k dim(G)
k+h∨

Gk

/
Hk′ WZW model central charge c = c(Gk)− c(Hk′)

2D. Delmastro et al., 2023, JHEP arXiv: 2108.02202 (hep-th)
3 21

2108.02202


Examples

SU(N) gauge theory with N massless Dirac fermions:

c = c(SO(2N)1)− c(SU(N)1) = N − (N − 1) = 1

For N = 2, SO(4) ∼= SU(2)s × SU(2)c, coset is SU(2)1 WZW model in the charge sector.

U(1) gauge theory with a charge q Dirac fermion:

c = c(U(1)1)− c(U(1)q2) = 1− 1 = 0

SU(N) gauge theory with N2 − 1 massless adjoint Majorana fermions:

c = c(SO(N2 − 1)1)− c(SU(N)N ) =
1

2
(N2 − 1)− 1

2
(N2 − 1) = 0
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Traditional Hamiltonian lattice gauge theory

Kogut-Susskind Hamiltonian

H = t
∑
⟨i,j⟩

(cα†i Uαβ
ij c

β
j +H.c.) +

g2

2

∑
⟨i,j⟩

(
La2
ij +Ra2

ij

)
− 1

4g2

∑
□

(W□ +W †
□)

Gauge generator: Ga
i = cα†i T a

αβc
β
i + La

i,i+1 +Ra
i−1,i

Gauge invariant states |ψ⟩ satisfy Ga
i |ψ⟩ = 0 ∀i, a⇐⇒

∑
a(G

a
i )

2|ψ⟩ = 0 ∀i.

Single gauge link Hilbert space: Hij
∼= L2(G) for gauge group G
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Qubit regularization

|g⟩ ∈ L2(G), where g ∈ G

Under GL ×GR, |g⟩ 7→ |h−1
L ghR⟩ ∈ L2(G)

As a representation of GL ×GR, L2(G) decomposes into:

L2(G) =
⊕
λ∈Ĝ

Vλ ⊗ V ∗
λ (Peter-Weyl theorem)

Qubit regularization: project to Q ⊆ Ĝ irreps with projector ΠQ:

HQ :=
⊕
λ∈Q

Vλ ⊗ V ∗
λ
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Regularization schemes for G = SU(N)

ŜU(N): Young diagrams with at most N − 1 rows.

Q = {◦, , , , · · · , , }

Reasons

Single flavor fermion representations: easily form singlets with fermions

Contains all N-ality: string tensions at large distance are dictated by N-ality

Smallest quadratic Casimir among each N-ality: minimize g2

2

(
La2 +Ra2

)
In g2 →∞ limit: same physics as traditional theory

If we are only interested in deep IR physics of fundamental quarks in 2d:

Q̄ = {◦, , } = {1, N, N̄}
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SU(2)

H =
g2

2

∑
⟨i,j⟩

(
La2
ij +Ra2

ij

)
+ t

∑
⟨i,j⟩

(cα†i Uαβ
ij c

β
j +H.c.) + U(n↑ −

1

2
)(n↓ −

1

2
)

Link Hilbert space: ◦ ⊕

g2 > 0: prefer ◦ link over link

U > 0: prefer spin states (↑ and ↓) over charge states ◦ (↑↓ and empty)
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Phase analysis

U →∞: Only spin sector survives, only two states, gapped

↑ ↓ ↑ ↓ ↑ ↓

↓ ↑ ↓ ↑ ↓ ↑

(Cannot be trivially gapped due to ’t Hooft anomaly)

U → −∞: Only charge sector survives, spin chain physics,
gapless

↑↓ ↑↓ ↑↓

↑↓ ↑↓ ↑↓

g2 →∞: Only charge sector survives, gapless

↑↓ ↑↓ ↑↓

Traditional theory:

Infinitely many states,
but when g2 > 0, all
other states are
separated with a finite
gap

Infinitely many link
sectors, but when
g2 > 0, all other link
sectors are separated
with a finite gap

Same
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Phase diagram

Gapless

Gapped
?

U

g2
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Confinement analysis

Put two test quarks and pull them apart, see how the energy changes:

U →∞: exchange singlet link with doublet link, deconfined

↑ ↓ ↑ ↓ ↑ ↓

↓ ↑ ↓ ↑ ↓ ↑↑ ↓

U → −∞: Raise all links in-between from singlet to doublet, confined

↑↓ ↑↓ ↑↓↑ ↓

g2 →∞: Screened by quarks, deconfined

↓ ↑↓ ↑↓ ↑↑ ↓

Traditional theory: same analysis, same results.
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Confinement diagram

Deconfined

Confined

?

U

g2
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SU(N)

Fermion local Hilbert space:

kF (N-ality)
|0⟩ ←→ ◦ 0

cα1†|0⟩ ←→ 1

cα1†cα2†|0⟩ ←→ 2

...
cα1† · · · cαN−1†|0⟩ ←→ N − 1

cα1† · · · cαN†|0⟩ ←→ ◦ N ≡ 0

Gauss’ law on each site:

−kL + kF + kR ≡ 0 mod N

Quadratic Casimir for N-ality k link:

c2(k) =
N + 1

N
k(N − k)

Gauge invariant configurations for any kF that
minimize c2(kL) + c2(kR):

kL = 0 or kR = 0
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Phase analysis

U coupling gaps two fermion singlets. Analysis is similar, for example,

U →∞: Ground state is four-fold degenerate

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
When g2 > 0, all other states will be separated by a finite energy gap.

U → −∞ or g2 →∞: Only two fermion singlet survives, spin chain physics, gapless

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦
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Tensor network implementation

ITensor3

Gauge invariance: Penalty on
∑

i⟨ψ|
∑

a(G
a
i )

2|ψ⟩

Test quark on site i: Penalty on
(
⟨ψ|

∑
a(G

a
i )

2|ψ⟩ − ⟨qi|
∑

a(G
a
i )

2|qi⟩
)2

3M. Fishman et al., 2022, SciPost Phys. Codebases
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Gapless at g2 = 0, U = 0
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Marginal operator, level crossing and critical point

SU(2)1 WZW has SU(2)L × SU(2)R symmetry
Lowest 5 states: (sL, sR) = (0, 0) and ( 12 ,

1
2 )

On the lattice: chiral symmetry is broken
λJL · JR is allowed, can be tuned by U

SU(2)L × SU(2)R
broken−−−−→ SU(2)diag

(sL, sR) = (
1

2
,
1

2
) −→ stot = 1, 0

⟨JL · JR⟩ =
1

2
⟨(JL + JR)

2 − J2
L − J2

R⟩

=
1

2

(
stot(stot + 1)− sL(sL + 1)− sR(sR + 1))

λ is marginal, β-function:

dλ

dµ
= − 1

2π
λ2
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Phase diagram
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Phase boundary
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Confinement diagram
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Conclusions

Reproduced the 2d QCD physics (gapped/gapless, confined/deconfined) using
finite-dimensional local Hilbert space
▶ At g2 = 0 and U = 0, the low-energy physics is SU(2)1 WZW model perturbed by a tiny

marginally irrelevant operator
▶ g2 term (electric field term) is marginally irrelevant; g2 = 0 exhibits weak confinement

=⇒ Lattice g2 = 0 corresponds to continuum g2 ≳ 0

Suggests qubit regularization as a promising method even in higher dimension and for
more complex gauge theories
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Thanks for attention!
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