
D meson RAA and v2 in a Boltzmann transport approach

Feng-Lei Liu

Central China Normal University

in collaboration with Wen-Jing Xing, Xiang-Yu Wu, Guang-You Qin, Shanshan Cao and

Xin-Nian Wang

Based on Eur.Phys.J.C 82 (2022) 4, 350

INT Program 2022



Outline
1 Background

2 LBT model: the Linear Boltzmann Transport model

3 Quasi-Particle model

4 QLBT model：improve LBT model by modeling QGP as a collection of
quasi-particles

5 Numerical Results:
1 D meason RAA and v2

2 Transport coefficient and spatial diffusion coefficient

6 Summary

1 / 49



1 Background

2 LBT model: the Linear Boltzmann Transport model

3 Quasi-Particle model

4 QLBT model：improvet LBT model by modeling QGP as a collection of
quasi-particles

5 Numerical Results

6 Summary

2 / 49



Heavy Qurak：Hard Probe in QGP

Ideal probe of QGP.

I mQ � TQGP

I mQ � ΛQCD

Explore the transport properties of
QGP through the energy loss of
heavy quarks.

I Describe D meason RAA and v2

I Extract q̂ and diffusion coefficient
Ds
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Heavy quark transport models

Shanshan Cao et.al Phys. Rev. C 99, 054907 (2019)

Two common transport approaches:
Langevin and Boltzmann transport
models.

LBT model

I Elastic scattering: Leading order
pQCD

I Inelastic scattering: high twist
model

Catania QPM

I Quasi Particle model

I Elastic scattering
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QLBT model motivation

Our QLBT model combines the linear Boltzmann Transport (LBT) model and
quasi particle model(QPM)

I Elastic process: leading order pQCD amplitude for elastic process, the Quasi Particle
model for equation of state of QGP.

I Inelastic process: high twist model.

5 / 49



1 Background

2 LBT model: the Linear Boltzmann Transport model

3 Quasi-Particle model

4 QLBT model：improvet LBT model by modeling QGP as a collection of
quasi-particles

5 Numerical Results

6 Summary

6 / 49



LBT model
In the LBT model 1, the evolution of the phase space distribution f1 of a given parton
(denoted as “1” below) is described using the Boltzmann equation as follows:

p1 · ∂f1(x1, p1) = E1 (Cel [f1] + Cinel [f1]),

where Cel and Cinel are collision integrals arising from elastic and inelastic processes.

1Zhu, Wang, PRL 2013; He, Luo, Wang, Zhu, PRC 2015; Cao, Tan, Qin, Wang, Phys.Rev.C 94
(2016) 1, 014909; Phys.Lett.B 777 (2018) 255-259
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LBT model

Cel [f1] ≡
∫

d3k
[
w
(
~p1 + ~k , ~k

)
f1
(
~p1 + ~k

)
− w

(
~p1, ~k

)
f1 (~p1)

]
where w

(
~p1, ~k

)
denotes the transition rate for parton ”1” from the momentum state

~p1 to ~p1 − ~k. Elastic Scattering (1 + 2 → 3 + 4 process):

w
(
~p1, ~k

)
≡
∑
2,3,4

w12→34

(
~p1, ~k

)
w12→34

(
~p1, ~k

)
= γ2

∫
d3p2

(2π)3
f2 (~p2)

[
1± f3

(
~p1 − ~k

)] [
1± f4

(
~p2 + ~k

)]
×vreldσ12→34

(
~p1, ~p2 → ~p1 − ~k , ~p2 + ~k

)
where the summation runs over all flavors in all possible “1 + 2 → 3 + 4” channels,
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LBT model
The elastic scattering rate for parton “1” through a given channel can be obtained
by integrating the transition rate over the exchange momentum ~k:

Γ12→34(~p1) =

∫
d3kw12→34

(
~p1, ~k

)
=

γ2

2E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

× f2(~p2)[1± f3(~p3)][1± f4(~p4)]S2(s, t, u)

× (2π)4δ(4)(p1 + p2 − p3 − p4)|M12→34|2,

where γ2 is the spin-color degeneracy factor of parton.

The leading order pQCD matrix elements are taken for |M12→34|2 (Qq → Qq, Qg
→ Qg).

Kinematic cut: S2(s, t, u) = θ(s ≥ 2µ2
D)θ(t ≤ −µ2

D)θ(u ≤ −µ2
D)
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LBT model
Using the δ-function and the azimuthal angular symmetry with respect to the ~p1

direction, scattering rate can be reduced to:

Γ12→34 (~p1,T ) =
γ2

16E1(2π)4

∫
dE2dθ2dθ4dφ4

× f2 (E2,T ) [1± f4 (E4,T )]S2(s, t, u) |M12→34|2

× E2E4 sin θ2 sin θ4

E1 − |~p1| cos θ4 + E2 − E2 cos θ24
where
cos θ24 = sin θ2 sin θ4 cosφ4 + cos θ2 cos θ4

E4 =
E1E2 − p1E2 cos θ2

E1 − p1 cos θ4 + E2 − E2 cos θ24
.

x

~p2

~p1

~p4

y

z

θ2
θ4

φ4
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LBT model
For convenience, we use more general form to define the following notation:

〈〈X (~p1,T )〉〉 =
∑

12→34

γ2

16E1(2π)4

∫
dE2dθ2dθ4dφ4

× X (~p1,T ) f2 (E2,T ) [1± f4 (E4,T )]S2(s, t, u)

× |M12→34|2
E2E4 sin θ2 sin θ4

E1 − |~p1| cos θ4 + E2 − E2 cos θ24
.

In particular, we have Γ = 〈〈1〉〉(scattering rate) and

q̂ =
〈〈

(~p3 − p̂1 · ~p3)2
〉〉

,

where q̂ denotes the momentum broadening and energy loss of jet parton, respectively,
per unit time due to elastic scattering.
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LBT model

Based above equation, Monte Carlo Simulation:

Use total rate Γ =
∑

i Γi to determine the probability of elastic scattering
Pel = 1− e−Γel∆t ≈ Γ∆t (∆t is small).

Use branching ratios Γi/Γ to determine the scattering channel.

Use the differential rate to sample the momentum space of the two outgoing
partons.
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LBT model

For Elastic Process: ∆Ecol from our MC simulation agrees with the semi-analytical
result.
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LBT model

Inlastic Process:The distribution function of radiated gluon（hight twist） 2

dNg

dxdk2
⊥dt

=
2αsCAP(x)k4

⊥
π(k2
⊥ + x2M2)4

q̂ sin2

(
t − ti
2τf

)
,

where k⊥ is the gluon transverse momentum with respect to the parent parton, αs is
the strong coupling.P(x) is the vacuum splitting function, τf is the formation time of
the radiated gluon in the form of τf = 2Ex(1− x)/(k2

⊥ + x2M2) with M being the
mass of the parent parton, and ti denotes the initial time or the production time of the
parent parton.

2Guo, Wang, PRL 2000, Majumder, PRC 2012; Zhang, Wang, Wang, PRL 2004
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LBT model
The average number of radiated gluons from single heavy quark

〈Ng 〉(t,∆t) = Γinel∆t = ∆t

∫
dxdk2

⊥
dNg

dxdk2
⊥dt

,

Poisson distribution for the number n of radiated gluons during ∆t

P(n) =
〈Ng 〉n

n!
e−〈Ng 〉

The inelastic scattering probability can be written as

Pinel = 1− e−Γinel∆t .

Monte Carlo Simulation:

Calculate < Ng > and Pinel

If gluon radiation happens, sample n gluons from Poisson distribution
Sample E and p of radiatied gluons using the differential radiation spectrum
First do 2→2 process, then adjust E and p of 2 + n final partons to guarantee E
and p conservation for 2→2+n process
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LBT model

For Inlastic Process: < Eg > from our MC simulation agrees with the semi-analytical
result.
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LBT model

Combine elastic and inelastic:

Total scattering probability:

Ptot = 1− e−(Γel+Γinel)∆t = Pel + Pinel − PelPinel.

The above probability can be splitted into two parts: pure elastic scattering with
probability Pel(1− Pinel) and inelastic scattering with probability Pinel.

Use Ptot to determine whether jet parton interact with thermal medium

If jet-medium interaction happens, then determine whether it is pure elastic or
inelastic

Then simulate 2→2 or 2 → 2 +n process
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LBT model

The parton energy loss for elastic and inelastic process increases as time increases in a
static medium.

18 / 49



1 Background

2 LBT model: the Linear Boltzmann Transport model

3 Quasi-Particle model

4 QLBT model：improvet LBT model by modeling QGP as a collection of
quasi-particles

5 Numerical Results

6 Summary

19 / 49



Quasi-Particle model

Figure by Mattuck

The system of interacting particles is
effectively represented
non-interacting massive particles.

The mass of quasi particles is viewed
as interaction among particles in the
system.

Real particle + ’cloud’ of other particle =
quasi particle
In quantum filed theory:
’bare’ particle + ’cloud’ = ’renormalized’
particle A guide to Feynman diagrams in the
many-body problem–Mattuck
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Quasi Particle model：describe the equation of state
We utilize the following forms (motivated by perturative QCD calculation) for the
temperature-dependent effective masses of quarks and gluons S. Plumari, W. M.

Alberico, V. Greco, C. Ratti, Phys. Rev. D84 (2011)

m2
g (T ) =

1

6

(
Nc +

1

2
Nf

)
g2(T )T 2,

m2
u,d ,s(T ) =

N2
c − 1

8Nc
g2(T )T 2,

The pressure can be calculated by summing over the contributions from different
constituents:

P(T ) =
∑
i

di

∫
d3p

(2π)3

p2

3Ei (p,T )
fi (p,T )− B(T ),
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Quasi Particle model：describe the equation of state
The energy density of the system can be obtained as follows:

ε(T ) =
∑
i

di

∫
d3p

(2π)3
Ei (p,T )fi (p,T ) + B(T ).

As for the entropy density, the bag constant B(T ) cancels:

s(T ) =
ε(T ) + P(T )

T
.

Motivated by the perturbative QCD calculation, we use the following parametric form
to model the temperature dependence of the coupling g(T ):

g2(T ) =
48π2

(11Nc − 2Nf ) ln
[

(aT/Tc+b)2

1+ce−d(T/Tc)2

]
where a, b, c and d are parameters to be determined by the equation of state data
from lattice QCD simulations.
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Bayesian statistical analysis method
We employ the Bayesian statistical analysis method, which can be simply summarized
as:

P(θ|data) =
P(θ)P(data|θ)

P(data)
.

In the above equation, P(θ|data) is the posterior distribution of the parameter set
given the experimental data, P(θ) is the prior distribution of the parameter set θ, and
P(data|θ) is the Gaussian likelihood between experimental data and the output for any
given set of parameters θ:

P(data|θ) =
∏
i

1√
2πσi

e
− (yi−yexp)2

2σ2
i ,

where yi denotes model calculation results, yexp denote the experiment or lattice QCD
data, σi denote the standard errors at each data point.
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Extract g(T) coupling constant
Lattice Data Parameters Prior Range

a [0.1, 10]
WB b [0, 1]

c [0, 10]
d [0, 2]

a [0, 10]
HQ b [-1, 1]

c [10, 80]
d [0, 10]

Table: The ranges of model parameters (a, b, c , d) used in the prior distributions.

WB: Wuppertal-Budapest lattice QCD group, HQ: HOT QCD lattice group.
During the g(T ) fitting process, the prior distributions of model parameters (a, b,
c, d) are taken as the uniform distribution within given ranges as shown in above
Table.

24 / 49



Extract g(T) coupling constant

1.0 2.0 3.0
T/Tc

4

8

12

16
s/

T3

QPM-WB 95% C.R.
Wuppertal-Budapest

1.0 2.0
T/Tc

4

8

12

16

s/
T3

QPM-HQ 95% C.R.
HOT QCD

Calibration of the entropy density s(T) as a function of temperature obtained
from the quasi-particle model against the lattice QCD data from both the
Wuppertal-Budapest (WB) and the Hot QCD (HQ) Collaborations.
Note that for the two sets of lattice QCD data, the values of Tc are a little
different: Tc = 150 MeV for WB and Tc = 154 MeV for HQ. To compare to
different lattice results, we also use different Tc values in our quasi-particle model.
The band show 95% confidence intervals for the calibrated parameter values.
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Extract g(T) coupling constant

0.0

0.2

0.4

0.6

0.8

1.0

a

0.4

0.6

0.8

1.0

b

4

6

8

10

c

1.5 2.0 2.5
a

0.4

0.5

0.6

0.7

d

0.6 0.8 1.0
b

4 6 8 10
c

0.4 0.5 0.6 0.7
d

0.0

0.2

0.4

0.6

0.8

1.0

a

1.0

0.5

0.0

0.5

1.0

b

40

60

80

c

6 8 10
a

0.3

0.4

0.5

0.6

d

1 0 1
b

40 60 80
c

0.3 0.4 0.5 0.6
d

WB HQ

Posterior distribution of parameters a, b, c,d as well as the correlations between
them(left pandel: WB, right panel: HQ).
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Mean and standard deviations of parameters (a, b, c , d)
Lattice Data Parameters Mean Values Standard Errors

a 2.063 0.1705
WB b 0.836 0.1186

c 7.792 0.9857
d 0.492 0.054

a 6.8899 1.055
HQ b 0.398 0.462

c 54.9825 12.76
d 0.449 0.0432

Table: The mean and standard deviations of parameters (a, b, c , d) in the coupling g(T )
extracted from Wuppertal-Budapest and Hot QCD lattice QCD data.
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g(T ) and Quasi Particle mass

1.0 2.0 3.0 4.0 5.0 6.0
T/Tc 

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

g

QPM-WB 95% C.R.
QPM-HQ 95% C.R.

1 2 3 4 5 6
T/Tc 

0.0

0.5

1.0

1.5

2.0

m
(G

eV
)

mg QPM-WB 95% C.R.
mg QPM-HQ 95% C.R.
mq QPM-WB 95% C.R.
mq QPM-HQ 95% C.R.

In the right panel, one can see that as T decreases, the quasi-particle masses first
decrease and then increase; the transition is around 1.4Tc

g(T) from WB is larger than HQ collaboration, which means that the interaction
caused by temperature dependent vertices makes the former enhance the
interaction between quasi pariticles and heavy quarks than the latter.
m(T) comes from that WB is larger than HQ, and the distribution of quasi
particles in the former is more dilute than that in the latter. This will reduce the
scattering probability of quasi particles and heavy quarks. 28 / 49
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QLBT model
Elastic Scattering (1 + 2 → 3 + 4 process), after introducing thermal mass, elastic
scattering rate can be reduced to

Γ12→34 =
γ2

16E1(2π)4

∫
dE2dθ2dθ4dφ4

× f2(E2,T )(1∓ f4(E4,T ))S2(s, t, u)
∣∣M12→34

∣∣2
× p2p4 sin θ2 sin θ4

E1 + E2 − p1 cosφ4
E4
p4
− p2 cos θ24

E4
p4

The parton 1 and 3 are intial and final heavy quarks. parton 2 and 4 denote intial
and final Quasi Particles.
The leading order pQCD matrix elements are taken for |M12→34|2.
Kinematic cut: S2(s, t, u) = θ(s ≥ 2µ2

D)θ(t ≤ −µ2
D)θ(u ≤ −µ2

D)
Note that the quasi-particle masses of the thermal partons have been included in
evaluating the Mandelstam variables s, t and u.
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QLBT model
scattering rate (fixed αs = 0.3)

100 101 102 103

P (GeV)
0.00

0.02

0.04

0.06

 (G
eV

)

T = 0.2 GeV
Total no mass
Total WB
Total HQ

100 101 102 103

P (GeV)

0.03

0.06

0.09

T = 0.3 GeV
cq--cq no mass
cq--cq WB
cq--cq HQ

100 101 102 103

P (GeV)

0.04

0.08

0.12

T = 0.4 GeV
cg--cg no mass
cg--cg WB
cg--cg HQ

100 101 102 103

P (GeV)
0.00

0.05

0.10

0.15

T = 0.5 GeV

αs is fixed at 0.3.
Compared with the mass of quasi particle to massless(red), scattering rate Γtot

and branch ratio Γi/Γtot reduce about half after including effective quasi partilce
mass (WB and HQ) when T equals 0.3 GeV.
As temperature increase, the difference in scattering rate due to mass of quasi
particle gradually decrease.
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QLBT model: T and E dependent coupling
Inelastic Process: Except for αs , the other implementations are same with LBT model
as decrobed in above section.

Q Qαs(E)

αs(T )g g

Q Qαs(E)

αs(T )g g

αs(E)

g

For vertices that connect to the jet partons (heavy quarks), we assume the
following parametric form(energy dependent):

αs(E ) =
12π

(11Nc − 2Nf ) log
[
(AE/Tc + B)2

] ,
where A, B are parameters to be fiited by D meason RAA and V2.
Vertices that connect to medium partons are temperature dependent . 32 / 49



Work Flow

The spatial distributions of the heavy quark production vertices are calculated
using the Monte-Carlo Glauber model, while their initial momentum distribution is
taken from the LO perturbative QCD calculation.

The QGP medium is simulated using the (3+1)-dimensional CLVisc hydrodynamic
model.(τ0=0.6 fm, η/s=0.08(LHC), 0.16(RHIC)).

Before the QGP phase (τ < τ0), heavy quarks are assumed to stream freely.

The subsequent heavy quark interaction with the QGP is described using our
QLBT model as described in the above content.

At the chemical freeze-out hypersurface (Tc), we convert heavy quarks into heavy
flavor hadrons using a hybrid coalescence-fragmentation hadronization model.
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Extract Energy dependent coupling constant
Lattice Data Parameters Prior Range

WB/HQ A [0.032, 0.16]
WB/HQ B [0.64, 15]

Table: The ranges of model parameters (A,B) used in the prior distributions.

The prior distributions for two parameters A and B are taken as uniform within
the ranges summarized in above Table.

In this work, we use mean value of g(T ) fitted by lattice data for QLBT model
caculations.

We apply the QLBT calculations on 100 sets of (A,B) parameters that are
sampled using the Latin-Hypercube algorithm, and then use the corresponding
results to train the Gaussian process emulator.
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D meason RAA and v2
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Using the Bayesian analysis, the nuclear modification factor RAA and the elliptic
flow v2 for D mesons at RHIC and the LHC are compared to the experimental
data.
No significant difference can be observed between applying the WB EoS and the
HQ EoS. 36 / 49



Extract Energy dependent coupling
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Two different lattice EoS are used in our analysis, they lead to similar values of A
and B for heavy-quark-medium interaction.
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Mean and standard deviations of parameters (A,B)

Lattice Data Parameters Mean Values Standard Errors

WB A 0.067 0.004
B 1.188 0.008

HQ A 0.067 0.0035
B 1.177 0.008

Table: The mean and standard deviations of parameters (A,B) in the coupling αs(EQ)
extracted from RAA and v2 using Wuppertal-Budapest and Hot QCD EOS.
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Energy dependent coupling

25 50 75 100
E (GeV)

0.10

0.20

0.30

0.40

0.50
s

QLBT-WB 95% C.R.
QLBT-HQ 95% C.R.

The energy-dependent running
coupling αs(E ) obtained from the
Bayesian analysis of D meson RAA

and v2.

Runing coupling αs(E ) is insensitive
to the choice of EoS due to the
competing effects between the
coupling strength g(T ) and the
thermal parton mass m(T ).
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Transport coefficient q̂/T 3
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q̂/T 3 ∝ αs(T )× αs(E ), due to the elastic scattering process.
The temperature-rescaled transport coefficient q̂/T 3 decreases as the medium
temperature T increases.
q̂/T 3 slightly decreases with the increase of the heavy quark energy E ,
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Diffusion coefficient Ds(2πT )
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Reasonable consistency between our results and other groups.

Ds(2πT ) increases with the increase of temperature in system, but decreases with
the increase of heavy quark energy.
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Shear viscosity
The formulas for the viscosities η are derived for a quasi-particle description with
bosonic and fermionic constituents S. Plumari, W. M. Alberico, V. Greco, C. Ratti, Phys.

Rev. D84 (2011)

η =
1

15T

∑
i

di

∫
d3p

(2π)3
τi
~p4

E 2
i

fi (1∓ fi )

1 2 3 4
T/Tc

10 1

100

/s

/s = 1/(4 )

WB mean a b c d
HQ mean a b c d
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Summary

We have developed a new QLBT model that improves the previous linear
Boltzmann transport (LBT) model by treating the QGP as a collection of
quasi-particles.
I g(T) have been obtained via calibrating the equation of state (EoS)
I Comparing the QLBT model results to the experimental data, we are able to extract

the heavy-quark-QGP coupling strength αs with the Bayesian analysis method.

Enhancement and attenuation effects of the energy loss caused by the coupling
strength and the quasi-particle distribution cancel each other out. As a result, the
energy loss of heavy quarks using g(T) fiited two lattice data is almost the same.

We extract the heavy quark transport parameter q̂ and diffusion coefficient Ds in
the temperature range of 1− 4 Tc and compare to the lattice QCD results and
other phenomenological studies.
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Thanks
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Back up: final energy of parton 4 for 1+2 → 3+4
After introducing thermal mass, elastic scattering rate can be reduced to

Γ12→34 =
γ2

16E1(2π)4

∫
dE2dθ2dθ4dφ4

× f2(E2,T )(1∓ f4(E4,T ))S2(s, t, u)
∣∣M12→34

∣∣2
× p2p4 sin θ2 sin θ4

E1 + E2 − p1 cosφ4
E4
p4
− p2 cos θ24

E4
p4

cos θ24 = sin θ2 sin θ4 cosφ4 + cos θ2 cos θ4

E4 =
(E1 + E2)B ±

√
A2(m2

4A
2 + B2 −m2

4(E1 + E2)2)

(E1 + E2)2 − A2

with A = |~p1| cos θ4 + |~p2| cos θ24, B = p1 · p2 + m2
4
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Backup: Temperature dependent bag constant
The energy density ε of the system is obtained from the pressure through the
thermodynamic relationship ε(T ) = TdP(T )/dT − P(T ), where pressure P of system
only depend on T.
In order to have above thermodynamic consistency, the following relationship has to be
satisfied (

∂Pqp

∂mi

)
T ,µ

= 0, i = u, d . . .

which gives rise to a set of equations of the form

∂B

∂mi
+ di

∫
d3p

(2π)3

mi

Ei
fi (Ei ) = 0

Bag constant B is Temperature dependent due to Temperature dependent effective
thermal mass of quasi particles.
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Backup: Shear viscosity
The formulas for the viscosities η are derived for a quasi-particle description with
bosonic and fermionic constituents S. Plumari, W. M. Alberico, V. Greco, C. Ratti, Phys.

Rev. D84 (2011)

η =
1

15T

∑
i

di

∫
d3p

(2π)3
τi
~p4

E 2
i

fi (1∓ fi )

d3p = p2dp sin θdθdψ.
In relaxtime approximation, shear viscosity depends on collision relax time τi given by
(HTL):

τ−1
q = 2

N2
C − 1

2NC

g2T

8π
ln

2k

g2
, τ−1

g = 2NC
g2T

8π
ln

2k

g2
,

where g is the coupling obtained and k is a parameter which is fixed by requiring that
τi yields a minimum of one for the quantity 4πη/s.

k if fixed to have a minimum η/s = 1/4π. For WB: k=23.3 and For HQ: k=22.7
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Backup: Guarantee E and p conservation for 2→2+n process
First do 2→2 process, record q⊥ and p2

p3 = p1 − q − k ,

p4 = p2 + q,

Using on shell condition and E and p conservation:

(p1 − q − k)2
0 = (p1 − q − k)2

x + (p1 − q − k)2
y + (p1 − q − k)2

z + M2,

(p2 + q)2
0 = (p2 + q)2

x + (p2 + q)2
y + (p2 + q)2

z

p1 p3

k

q

p2 p4

One can get q0 and qz from above
equation which used E and p conservation.
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