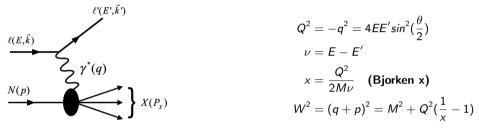
MARATHON experiment

Hanjie Liu

BNL

PVDIS workshop 2022


▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

- Experiment overview
- Data analysis and cross section ratio results
- F_2^n/F_2^p results and d/u

MARATHON experiment

• Inclusive electron deep inelastic scattering on ³He, ³H, ²H, ¹H

- Physics observables: cross section ratios between different targets
- Determine the F_2^n/F_2^p over the range from x=0.195 to x=0.825
- Put constraints on d/u quark ratio at high x
- Measure the ³He, ³H EMC ratio

• Cross section for inelastic electron-nucleon scattering:

$$\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4} \cos^2(\frac{\theta}{2}) [\frac{F_2(\nu, Q^2)}{\nu} + \frac{2F_1(\nu, Q^2)}{M} \tan^2(\frac{\theta}{2})]$$
$$F_1 = \frac{F_2(1+Q^2/\nu^2)}{2x(1+R)} \to \sigma \propto F_2$$

The measurements of $R = \sigma_L / \sigma_T$ show no A dependence at high Q^2 and $R \ll 1$.

F_2^n/F_2^p from $\sigma(^{3}\text{H})/\sigma(^{3}\text{He})$

Perform inclusive DIS on mirror nuclei ³H, ³He

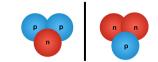
$$\frac{F_2^{^3H}}{F_2^{^3He}} = \frac{\sigma(^3H)}{\sigma(^3He)}$$

• ${}^{3}H$ and ${}^{3}He$ EMC type ratios:

$$R(^{3}He) = \frac{F_{2}^{^{3}He}}{2F_{2}^{p} + F_{2}^{n}}$$

 $R(^{3}H) = \frac{F_{2}^{^{3}H}}{F_{2}^{^{p}} + 2F_{2}^{^{n}}}$

define the "super-ratio" of EMC ratios in ${}^{3}H$ and ${}^{3}He$:


$$\mathcal{R}=rac{R(^{3}He)}{R(^{3}H)}$$

• Free neutron to proton structure functions:

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

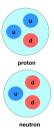
- measure $F_2^{^3He}/F_2^{^3H}$

- ${\mathcal R}$ is determined by theory

(1)

(2)

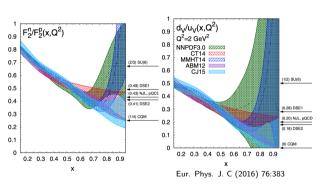
Quark-Parton Model:

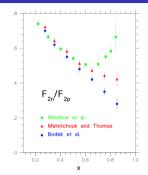

$$F_2^p(x) = x[(\frac{2}{3})^2(u^p + \overline{u}^p) + (-\frac{1}{3})^2(d^p + \overline{d}^p) + (-\frac{1}{3})^2(s^p + \overline{s}^p)]$$

$$F_2^n(x) = x[(\frac{2}{3})^2(u^n + \overline{u}^n) + (-\frac{1}{3})^2(d^n + \overline{d}^n) + (-\frac{1}{3})^2(s^n + \overline{s}^n)]$$

Assume isospin symmetry and neglect sea quark distributions:

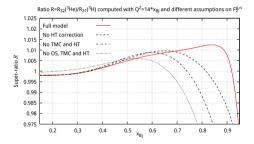
$$u^p(x) = d^n(x) \equiv u(x)$$
 $d^p(x) = u^n(x) \equiv d(x)$


$$rac{F_2^n}{F_2^p}=rac{1+4m{d/u}}{4+m{d/u}}$$


 F_2^n/F_2^p is one of the best methods to determine the d/u ratio.

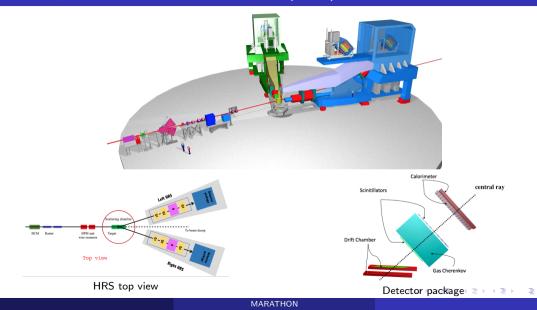
・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

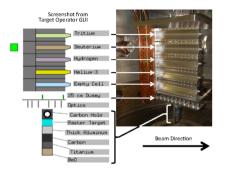
3



- F_2^n/F_2^p extracted from SLAC d/p DIS data using different nuclear corrections
- Since there is no free neutron target, inclusive DIS on the deuteron has been used to extract Fⁿ₂ for decades
- However, the nuclear corrections inside deuteron are model dependent.

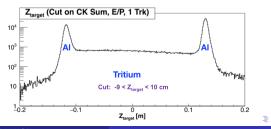
Super-ratio ${\mathcal R}$

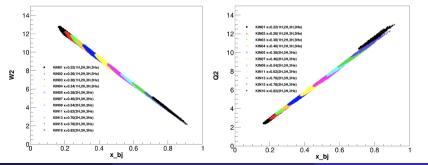

- ${}^{3}H$ and ${}^{3}He$ are mirror nuclei. The nuclear corrections should be similar.
- ${\cal R}$ has been calculated in theory to deviate from 1 up about 1% by taking into account all possible effects


Super-ratio ${\mathcal R}$ calculated by S. Kulagin and R. Petti

• An iterative procedure could eliminate the nucleon structure function dependence in the F_2^n/F_2^p extraction.

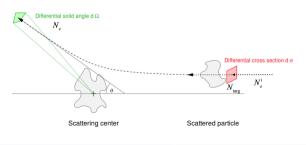
Hall A High Resolution Spectrometers (HRS)


Targets


Tritium target

- Low activity (\sim 1k Ci)
- Sealed cell
- 40K gas
- Beam current \leq 22.5 uA

MARATHON Kinematics


- Experiment ran on January-April 2018;
- Beam energy 10.6 GeV;
- $\bullet\,$ Average current $\sim\,20\,$ uA
- $\bullet\,$ Scattering angle: 17 $^\circ$ 36 $^\circ\,$
- Cover the Bjorken x range 0.19 < x < 0.83 ($W^2 > 3 GeV^2$)
- Took DIS data on ³H, ³He, ²D, ¹H

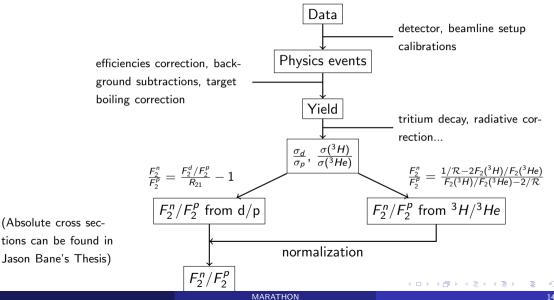
< ∃ →

Cross section ratio extraction

- Cross section: $\frac{d\sigma}{d\Omega dE'} \approx \frac{Yield}{\Delta F' \Delta \Omega}$
- When bin different σ_A in same bins, the ratio of the cross sections is equal to the ratio of yields: $\sigma_{A1}/\sigma_{A2} = Yield_{A1}/Yield_{A2}$
- Data yield: $Yield = \frac{N_e}{N_e^i \cdot N_{targ}}$

 N_e : number of scattered electrons detected; N_{targ} : number of target particles; N_e^i : number of incident electrons;

$$Yield = \frac{N_e}{N_e^i \cdot N_{targ}}$$

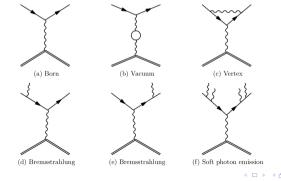

•
$$N_e = (N_e^{raw} - N_{e^+} - N_{EC}) \cdot C_{eff} \cdot C_{DT} \cdot ACC(E', \theta)$$

- *N*_{e⁺}: charge symmetric background;
- N_{EC}: target end cap background;
- *C_{eff}*: the efficiencies of detectors;
- *C*_{DT}: DAQ deadtime correction;
- $ACC(E', \theta)$: the spectrometer acceptance function;
- C_{eff} , $ACC(E', \theta)$ are canceled in the yield ratio
- $N_{targ} \propto rac{ au}{m_A}$

target thickness τ changes when beam is on \rightarrow target boiling correction

•
$$N_e^i = I \cdot t$$

13 / 26


14 / 26

Radiative correction

- The yield extracted from data does not correspond to the born process
- There are higher order QED processes:
 - External radiations: when electrons pass through materials, they lose energy due to ionization and bremsstrahlung

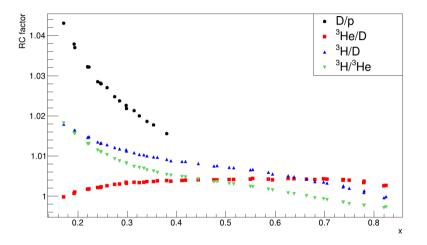
MARATHON

• Internal radiations: during scattering, higher order Feynman diagrams contribute

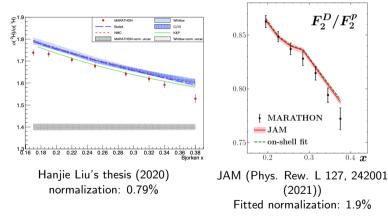
▶ < ⊒ ▶

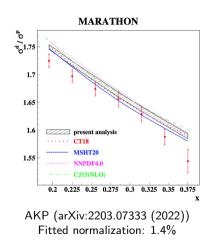
$$\sigma_{rad}(E_s, E_p) = \int_0^T \frac{dt}{T} \int_{E_s \min(E_p)}^{E_s} \int_{E_p}^{E_p \max(E'_s)} dE'_p I(E_s, E'_s, t) \sigma_r(E'_s, E'_p) I(E'_p, E_p, T-t)$$

(Mo. & Tsai method, SLAC-PUB-848 (1971).)

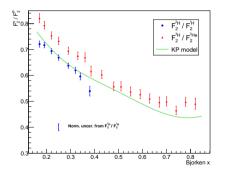

- I(E, E', t): the probability of energy loss due to the external radiation.
- T: total path length before and after scattering.

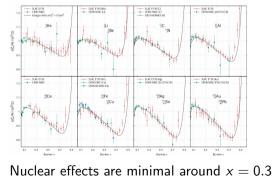
- For ³*H* and ³*He* born cross section model, we use F_2^d from Bodek *et al.* ¹ and the EMC model $(F_2({}^{3}He)/F_2^d)$ from S. Kulagin and R. Petti (KP) ²
- RC error is the deviation caused by using different cross section models


```
<sup>2</sup>Nucl Phys A765 (2006) 126
```


¹Phys. Rev. D20, 1471 (1979)

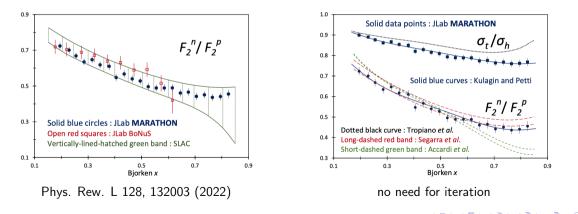
Radiative correction


σ^d/σ^p from MARATHON



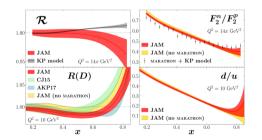
F_2^n/F_2^p extraction - Experimental method

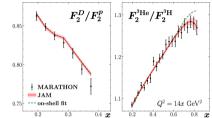
- $R(d) = \frac{F_2^a}{F_2^n + F_2 p}$ from K&P model is used to extract F_2^n / F_2^p from σ^d / σ^p
- Super-ratio \mathcal{R}_{ht} from K&P model is used to extract F_2^n/F_2^p from $\sigma({}^{3}He)/\sigma({}^{3}H)$

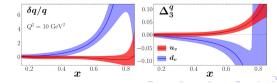


Compilation of EMC Effect Data by S. Kulagin and R. Petti SLAC E139-CERN

F_2^n/F_2^p Result - Experimental method

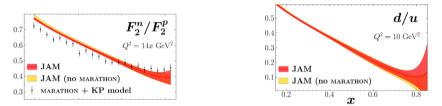

• In order to match the F_2^n/F_2^p extracted from σ_h/σ_t to that from σ_d/σ_p at x = 0.31, σ_h/σ_t ratio at x = 0.31 had to be normalized by a multiplicative factor of 1.025 ± 0.007

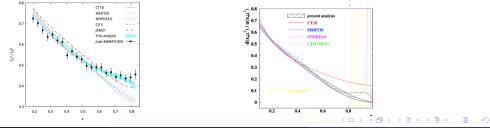



F_2^n/F_2^p and d/u Result - Global fitting

Global fitting with MARATHON data (based on JAM) Phys. Rew. L 127, 242001 (2021)

- Off-shell effect is implemented at PDFs level and isospin dependent
- Off-shell effect is different for different nuclei
- The 1.025 normalization on σ_h/σ_t is removed




MARATHON

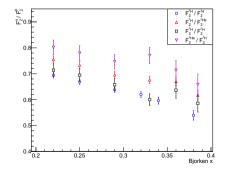
Discussions on F_2^n/F_2^p and d/u Result

• JAM: MARATHON data included in the fitting (Phys. Rew. L 127, 242001 (2021))

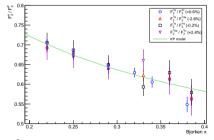
• AKP: MARATHON data not included in the fitting (arXiv:2203.07333 (2022))

- $\bullet\,$ The MARATHON σ_d/σ_{P} measurements agree with the model but slightly lower
- R(d) and \mathcal{R}_{ht} from Kulagin and Petti model are used in the F_2^n/F_2^P extraction
- ${}^{3}H/{}^{3}He$ data is scaled down by 2.5%
- The extracted F_2^n/F_2^p agrees well with the KP model
- Combining the information from JAM and AKP global analysis, MARATHON data gives more insight on nuclear effects than constraining the PDFs.
- The EMC ratio of ${}^{3}H$ and ${}^{3}He$ will be published in a separate paper

23 / 26


backup

Normalization


- The EMC ratios for different nuclei all cross 1 around x = 0.3
 - \rightarrow the nuclear effects are about 0 around x=0.3
 - $\rightarrow F_2^n/F_2^p$ extracted from different nuclei should be same around x = 0.3
- Extract F_2^n/F_2^p from $\sigma(^{3}H)/\sigma_d$ and $\sigma(^{3}He)/\sigma_d$ at x=0.3

25 / 26

Normalization

- The EMC ratios for different nuclei all cross 1 around x = 0.3
 - \rightarrow the nuclear effects are about 0 at x=0.3
 - $\rightarrow F_2^n/F_2^p$ extracted from different nuclei should be same around x = 0.3
- Extract \overline{F}_2^n/F_2^p from $\sigma(^{3}H)/\sigma_d$ and $\sigma(^{3}He)/\sigma_d$ at x = 0.3

Ratio	Normalization
$F_2^{^2H}/F_2^{^1H}$	+0.6%
$F_2^{^3H}/F_2^{^2H}$	-0.2%
$F_2^{^3He}/F_2^{^2H}$	+2.4%
$F_2^{^3H}/F_2^{^3He}$	-2.6%

• $F_2^{^{3}He}$ needs to be normalized by 2.4%

(This is from my thesis. They're not exactly the same as the published paper. Please use the published number.)