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Jets in Heavy Ion Collisions
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Sub-leading
jet

Quark-gluon
plasma

● Interactions between jet partons and the 
QGP medium leads to modifications of 
jet properties
 

           Jet Energy Loss / Quenching
● SUBA-Jet:

Monte Carlo for jet energy loss in heavy 
ion collisions

Leading
jet
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● Monte Carlo of a vacuum parton shower originally developed by Martin Rohrmoser
 

● Evolution according to the DGLAP equations from high virtuality Qmax ~ pT to low virtuality Q0

● Time evolution split into time steps, mean life time

Vacuum Parton Shower
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Time where initial 
parton reaches its
lowest virtuality

80%

10 GeV
50 GeV
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● Medium interactions for high Q regime resulting in virtuality increase,
similar to YaJEM (T. Renk, 2008)

“Vacuum” Parton Shower in Medium
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Choice of Q0 ?

INT Jet Workshop
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Medium-Induced Single Radiation
● Inelastic collision:

Single gluon emission from 
single medium scattering

● Original result from Gunion-Bertsch (1982)
Generalised to massive case by 
Aichelin, Gossiaux, Gousset (2014)

6 / 41Alexander Lind

Scattering
centre

● Initial Gunion-Bertsch seed: i.e. radiation of a preformed gluon from a single scattering 
(Each parton can generate a number of preformed gluons)

● Gunion-Bertsch cross-section from scalar QCD

INT Jet Workshop
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Energy
spectrum
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Gluon kT
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Coherency and the LPM Effect
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● The formation of the radiated gluon is a 
quantum mechanical process

Formation time:

● Coherence effects: 
Landau-Pomeranchuk-Migdal (LPM) effect

● Have to take into account multiple scatterings 
with the medium during the formation time 

gluon energy

medium modifications

path length of medium

INT Jet Workshop



Implementation of the LPM Effect
● At each timestep:

– Elastic scattering with prob.
 

– Radiation of preformed gluon 
with prob.

● BDMPS-Z spectrum at intermediate energies
achieved by suppressing GB seed by

Like in Zapp, Stachel, Wiedemann, 
JHEP 07 (2011), 118
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Suppression
GB

BDMPS-Z

GLV

Radiation energy spectrum:
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The Algorithm
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Flow diagram:

Algorithm for the coherent medium-induced 
gluon radiation in our model
  

Various parameters and settings can be 
changed and tuned to compare distributions



Hadronisation

EPOS or PYTHIA

SUBA-Jet

Vacuum Shower
+

In-medium induced
shower

Hydro Simulation

vHLLE
or

EPOS

Initial State

EPOS
or

custom

Jet finding

FastJet

The Monte Carlo
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Initial hard
jet parton

Partons

Analysis,
Plotting...

Hadrons
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First Results
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Consider brick medium
with constant temperature

We want to reproduce theoretical expectation
and check effect of model parameters

Mono-energy
(low virtuality)

quark gun Fixed



Gluon energy ω spectrum

Reproduces BDMPS-Z
for intermediate energies

Reproduction of the BDMPS-Z Limit
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Reproduction of the BDMPS-Z Limit
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Number of elastic 
scatterings NS

Reproduces BDMPS-Z
expectation
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Reproduction of the 3 Regimes
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Reproduction of the 3 Regimes
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The Role of the Phase Accumulation
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● More general formula:

● What is used in JEWEL:

● Including thermal gluon mass:

The Role of the Phase Accumulation
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Choice of phase accumulation
of the preformed (trial) gluons:

INT Jet Workshop
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Energy
spectrum
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Gluon kT
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Energy
spectrum

Effects at 
low energy
& low kT

INT Jet Workshop

Gluon kT
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Energy
spectrum

Effects at 
low energy
& low kT

INT Jet Workshop

Gluon kT

Number of
radiated
gluons per
jet ~ 5 -- 6
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Number of 
elastic scatterings

INT Jet Workshop
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Number of 
elastic scatterings

INT Jet Workshop

When neglecting the 
gluon mass in the 

phase accumulation, 
a larger path length 
is required to have 

a comparable overall 
number off radiations
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Number of 
elastic scatterings

INT Jet Workshop

Effects at 
low NS

When neglecting the 
gluon mass in the 

phase accumulation, 
a larger path length 
is required to have 

a comparable overall 
number off radiations



The Role of the Elastic Scatterings
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Choice of prescription in 
elastic scatterings:

● Conserve k+?
– Considered by BDMPS-Z

● Conserve energy?
● Reduce energy?

– Energy gain by the medium parton is 
subtracted from the projectile parton

INT Jet Workshop
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Same BDMS behaviour 
at intermediate energies

Difference at small 
energies

Energy
spectrum
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Same BDMS behaviour 
at intermediate energies

Difference at small 
energies

Energy
spectrum
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Same BDMS behaviour 
at intermediate energies

Difference at small 
energies

Energy
spectrum
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Large difference at
small kT

Gluon kT
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Large difference at
small kT

Gluon kT
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Large difference at
small kT

Gluon kT
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Number of 
elastic scatterings
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Number of 
elastic scatterings
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Number of 
elastic scatterings

The energy reduction
case is larger at NS = 1
 → Larger probability of 
      emission



The Role of the Colinearity Hypothesis
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The Role of the Colinearity Hypothesis
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Looking Forward: Towards More Realism

● Interface with vHLLE to get hydro 
evolution of the medium

● Running strong coupling in elastic 
scatterings

● Start with high virtuality partons

● Sampling of initial parton pT

● Run with hadronisation and jet finding

39 / 41Alexander Lind

Next step:

INT Jet Workshop



Looking Forward: Effect on the Medium
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Xin-Nian Wang’s talk from Monday

The jet also affects the medium

‘Wake wave’ 
in the medium 
due to the jet

INT Jet Workshop



Summary
● We have presented a new model for jet energy loss in heavy ion collisions

● Implementation in a Monte Carlo framework

● 1st step done: 
– Reproduction of the BDMS radiation energy spectrum
– Shown effects of different model assumptions

● 2nd step: First results with hydro evolution interface to vHLLE

● 3rd step: Implementation within the new EPOS4
– EPOS4+JETS – Initial state, hydro, and hadronisation from EPOS4
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Thank you for your attention!



B1Alexander Lind INT Jet Workshop

Backup Slides



The Role of Scattering Centre mass mq
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Energy spectrum

Effect of mass of scattering
centre in the initial GB seed
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The Role of Scattering Centre mass mq
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Gluon kT

Effect of mass of scattering
centre in the initial GB seed
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Effect of Path Length
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