SUBA-Jet

A New Coherent Jet Energy Loss Model For Heavy Ion Collisions

Alexander Lind

with Iurii Karpenko, Joerg Aichelin, Pol-Bernard Gossiaux, Martin Rohrmoser, and Klaus Werner

INT Workshop 21r-2b

Probing QCD at High Energy and Density with Jets Institute for Nuclear Theory, University of Washington Seattle, Washington, USA 20 October 2023

Jets in Heavy Ion Collisions

- Interactions between jet partons and the QGP medium leads to modifications of jet properties
 - ---> Jet Energy Loss / Quenching
- **SUBA-Jet:** Monte Carlo for jet energy loss in heavy ion collisions

High Virtuality Regime

Vacuum Parton Shower

- Monte Carlo of a vacuum parton shower originally developed by Martin Rohrmoser
- Evolution according to the DGLAP equations from high virtuality $Q_{max} \sim p_T$ to low virtuality Q_0

"Vacuum" Parton Shower in Medium

• Medium interactions for high Q regime resulting in virtuality increase, similar to YaJEM (T. Renk, 2008)

Low Virtuality Regime

Medium-Induced Single Radiation

- Inelastic collision:
 Single gluon emission from
 single medium scattering
- Original result from Gunion-Bertsch (1982) Generalised to massive case by Aichelin, Gossiaux, Gousset (2014)

- Initial Gunion-Bertsch seed: i.e. radiation of a **preformed gluon** from a single scattering (Each parton can generate a number of preformed gluons)
- Gunion-Bertsch cross-section from scalar QCD

$$\frac{\mathrm{d}\sigma^{Qq \to Qqg}}{\mathrm{d}x \,\mathrm{d}^2 k_T \,\mathrm{d}^2 l_t} = \frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}^2 l_t} P_g(x, k_T, l_T) \theta(\Delta) \qquad \qquad \frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}^2 l_t} \sim \frac{8\alpha_s^2}{9(l_T^2 + \mu^2)^2}$$

Medium-Induced Single Radiation

Medium-Induced Single Radiation

Coherency and the LPM Effect

 The formation of the radiated gluon is a quantum mechanical process

Formation time:
$$t_f \sim \sqrt{\frac{\omega}{\hat{q}}}$$

- Coherence effects: Landau-Pomeranchuk-Migdal (LPM) effect
- Have to take into account multiple scatterings with the medium during the formation time

$$N_s = \frac{t_J}{\lambda}$$

L = path length of medium

Alexander Lind

 $\overline{\alpha_s T}$

Implementation of the LPM Effect

- At each timestep:
 - Elastic scattering with prob. $\Gamma_{
 m el}\Delta t$

$$\Gamma_{\rm el}^q = \left(1 + \frac{N_f}{N}\right) \frac{(N^2 - 1)T^3}{\pi \hbar c} \frac{4\alpha_s^2}{\mu^2}$$

- Radiation of preformed gluon with prob. $\Gamma_{\rm inel}\Delta t$
- BDMPS-Z spectrum at intermediate energies achieved by suppressing GB seed by $1/N_{\rm S}$

Like in Zapp, Stachel, Wiedemann, JHEP 07 (2011), 118

The Algorithm

Flow diagram:

Algorithm for the coherent medium-induced gluon radiation in our model

Various parameters and settings can be changed and tuned to compare distributions

The Monte Carlo

First Results

We want to reproduce theoretical expectation and check effect of model parameters

Reproduction of the BDMPS-Z Limit

Alexander Lind

INT Jet Workshop

14 / 41

Reproduction of the BDMPS-Z Limit

INT Jet Workshop

16 / 41

Reproduction of the 3 Regimes

Double differential plot in N_{s} and ω

Red line: $\langle N_s \rangle$ vs. ω

$$N_S \sim t_f \sim \sqrt{\omega}$$

Reproduction of the 3 Regimes

Choice of phase accumulation of the preformed (trial) gluons:

• More general formula:

$$\Delta \varphi = \frac{2P_Q \cdot k}{E_Q} \Delta t$$

• What is used in JEWEL:

$$\Delta \varphi = \frac{k_T^2}{\omega} \Delta t$$

• Including thermal gluon mass:

$$\Delta \varphi = \frac{m_g^2 + k_T^2}{\omega} \Delta t$$

Alexander Lind

Alexander Lind

Alexander Lind

Alexander Lind

INT Jet Workshop

24 / 41

• Conserve k⁺?

- Considered by BDMPS-Z
- Conserve energy?
- Reduce energy?
 - Energy gain by the medium parton is subtracted from the projectile parton

Alexander Lind

INT Jet Workshop

30/41

Large difference at small $k_{\scriptscriptstyle T}$

Alexander Lind

Large difference at small $k_{\scriptscriptstyle T}$

Alexander Lind

Large difference at small $k_{\scriptscriptstyle T}$

Alexander Lind

Alexander Lind

INT Jet Workshop

34 / 41

Alexander Lind

The energy reduction case is larger at $N_s = 1$ \rightarrow Larger probability of emission

Alexander Lind

The Role of the Colinearity Hypothesis

Colinearity hypothesis

$$k_T \ll \omega$$

The Role of the Colinearity Hypothesis

Colinearity hypothesis

$$k_T \ll \omega$$

Alexander Lind

Looking Forward: Towards More Realism

Next step:

- Interface with vHLLE to get hydro evolution of the medium
- Running strong coupling in elastic scatterings
- Start with high virtuality partons
- Sampling of initial parton p_{T}

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_T} \sim p_T^{-6.5}$$

• Run with hadronisation and jet finding

Looking Forward: Effect on the Medium

The jet also affects the medium

(b) t=8 fm/c

Xin-Nian Wang's talk from Monday

Alexander Lind

Summary

- We have presented a new model for jet energy loss in heavy ion collisions
- Implementation in a Monte Carlo framework
- 1st step done:
 - Reproduction of the BDMS radiation energy spectrum
 - Shown effects of different model assumptions
- **2nd step:** First results with hydro evolution interface to vHLLE
- **3rd step:** Implementation within the new EPOS4
 - EPOS4+JETS Initial state, hydro, and hadronisation from EPOS4

Thank you for your attention!

Backup Slides

The Role of Scattering Centre mass m_q

Energy spectrum

Effect of mass of scattering centre in the initial GB seed

The Role of Scattering Centre mass m_q

Gluon k_T

Effect of mass of scattering centre in the initial GB seed

Effect of Path Length

Energy spectrum for different path lengths (medium sizes)