The R_{pA} and v_2 puzzle of D^0 mesons in p–Pb collisions at the LHC

Zi-Wei Lin East Carolina University (ECU)

Heavy flavor workshop (22-3), Institute of Nuclear Theory, October 20, 2022

Outline

- The $D^0 R_{pA}$ and v_2 puzzle
- An improved multi-phase transport model
- A solution of the R_{pA}/v_2 puzzle with the Cronin effect
- Effects from parton scatterings & Cronin effect
- Summary

Based on 2210.07767 with Chao Zhang, Liang Zheng, Shusu Shi, supported by NSF grant No. PHY-2012947

The $D^0 R_{pA}$ and v_2 puzzle

It has been a challenge to describe both data simultaneously:

- sizable $v_2 \rightarrow$ significant charm quark interaction with medium \rightarrow suppression of charm high p_T spectrum in pA and R_{pA} (above)
- Studies based on color glass condensate can describe D and J/ ψ v₂, no R_{pA} results yet. Cheng Zhang et al. PRL (2019), PRD (2020)

The $D^0 R_{pA}$ and v_2 puzzle

• Without charm quark scatterings (below),

- This was seen in an earlier study: ~ no suppression in R_{pA} , then v_2 is too small. Beraudo et al. JHEP (2016)
- A simultaneous description of the R_{pA} and v₂ data could disentangle different effects (*initial state correlations, cold nuclear, hot medium*) and help understand onset of collectivity & formation of parton matter or QGP

An improved multi-phase transport model

We use a multi-phase transport (AMPT) model for this study. It was constructed as a self-contained kinetic description of heavy ion collisions:

- evolves the system from initial condition to final observables;
- particle productions of all flavors from low to high p_T;
- non-equilibrium initial condition & dynamics (more important for small systems).

Improved heavy flavor (HF) productions in AMPT

 $gg \rightarrow gg$ cross section in leading-order pQCD $\frac{d\sigma}{dt} \sim \frac{9\pi\alpha_s^2}{2t^2}$ is divergent for massless g, for minijets (of ALL flavors).

But heavy flavor production does not need a cutoff due to heavy quark mass $>> \Lambda_{QCD}$ (e.g. in FONLL)

$$g + g \rightarrow Q + \overline{Q}, \quad q + \overline{q} \rightarrow Q + \overline{Q}, \dots$$

- So we remove the p_0 cut on HF productions Zheng et al. PRC (2020) in the two-component model HIJING for AMPT.
- Unlike HIJING, we include HF in σ_{jet} : $\sigma_{jet} = \sigma_{jet}^{LF} + \sigma^{HF}$
- We also correct factor of $\frac{1}{2}$ in certain σ_{iet} channels

Improved heavy flavor (HF) productions in AMPT

- Old/public AMPT charm yield << data
- Removing p₀ in HF production greatly enhances charm yield
- AMPT model now well describes world data on total $c\bar{c}$ cross section

Local scaling for self-consistent size dependence in AMPT

Lund symmetric string fragmentation function: $f(z) \propto z^{-1}(1-z)^{a_L} e^{-b_L m_T^2/z}$ b_L typical values (in 1/GeV²): ~ 0.58 (PYTHIA6.2), 0.9 (HIJING1.0), 0.7-0.9 (AMPT for pp)

 $b_L \sim 0.15$ is needed for string melting AMPT to describe the bulk matter at high energy AA collisions. This corresponds to a much higher string tension κ : $(p_T^2) \propto \kappa \propto \frac{1}{b_L(2+a_L)}$ ZWL et al. PRC (2005)

pp and AA collisions need different values of $\mathbf{b}_{\mathbf{L}}$; same for Chao Zhang et al. PRC (2019)

minijet cutoff \mathbf{p}_0 (for modern PDFs, is related to $Q_s \propto A^{1/6}$) Zheng et al. PRC (2020)

 \rightarrow We scale them with local nuclear thickness functions:

$$b_L(s_A, s_B, s) = \frac{b_L^{p_P}}{[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\beta(s)}}$$

$$p_0(s_A, s_B, s) = p_0^{p_P}(s)[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\alpha(s)}$$

Chao Zhang

We fit charged hadron $\langle p_T \rangle$ in *pp* to determine $b_L^{pp} = 0.7$, then used central AuAu/PbPb $\langle p_T \rangle$ data to determine $\alpha(s)$, $\beta(s)$ versus energy \sqrt{s}

et al. PRC (2021)

Local scaling for self-consistent size dependence in AMPT

The scaling allows AMPT to self-consistently describe the system size dependence, including centrality dependences of AuAu & PbPb and smaller systems.

Chao Zhang et al. PRC (2021)

Centrality dependence of $< p_T >$ is now reasonable, much better than public AMPT (v2.26t9)

Structure of improved AMPT (String Melting version)

The AMPT model used in this R_{pA}/v_2 study contains all these improvements

A solution of the R_{pA}/v_2 puzzle with the Cronin effect

We implement the Cronin effect on initial charm quarks by broadening $c\bar{c} p_T$ with a random k_T sampled from

Mangano et al. NPB (1993) Vogt, PRC (2018, 2021)

 $w = w_0 \sqrt{1 + (n_{\text{coll}} - i)\delta}$ grows with # of NN collisions of the wounded nucleon(s).

 $f(\vec{k_{\rm T}}) = \frac{1}{\pi w^2} e^{-k_{\rm T}^2/w^2}$

Full model, with Cronin effect at $\delta=7$, $\sigma_{LQ}=0.5$ mb (for scatterings among u/d/s quarks), $\sigma_{HQ}=1.5$ mb (for scatterings of charm quarks with other partons), can describe both R_{pA} and v_2 data of D^0 mesons

A solution of the R_{pA}/v_2 puzzle with the Cronin effect

Without the Cronin effect (δ =0): if we get sizable v₂, then D⁰ R_{pA} is underestimated due to charm scatterings with the medium (via σ_{HQ}).

Black curve vs blue curve (*both at* $\sigma_{HQ}=1.5mb$): the Cronin effect significantly increases charm R_{pA} at moderate/high p_T but modestly decreases charm v_2

More on the Cronin effect

Often considered as transverse momentum broadening of a produced parton from a hard process due to multiple scatterings of initial parton(s) in the nucleus

• We take the k_T width as
$$w = w_0 \sqrt{1 + (n_{\rm coll} - i)\delta}$$

grows with n_{coll} : # of NN collisions of the wounded nucleon(s), *i*=1 for $c\bar{c}$ produced from the radiation of 1 wounded nucleon, =2 for $c\bar{c}$ produced from the collision of 2 wounded nucleons, This way, $w=w_0$ for pp collisions.

$$w_0 = (0.35 \text{ GeV}/c) \sqrt{b_{\rm L}^0 (2 + a_{\rm L}^0)/b_{\rm L}/(2 + a_{\rm L})} \propto \sqrt{\kappa}$$

motivated by $\kappa \propto \frac{1}{b_{\rm L}(2 + a_{\rm L})}$ for Lund string fragmentation.

Kopeliovich et al. PRL (2002) Kharzeev et al. PRD (2003) Vitev et al. PRD (2006) Accardi, hep-ph/0212148

Effects from parton scatterings & Cronin effect

Test results for charm quarks:

- parton scatterings are mostly responsible for generating charm v₂
- the Cronin effect modestly decreases charm v₂

- parton scatterings significantly suppress charm spectra at moderate/high p_T
- the Cronin effect significantly increases charm spectra at moderate/high p_T

At 5.02 TeV, the full model also reasonably describes

15

The full model at 8.16 TeV

at the same $\sigma_{LQ}=0.5mb$ or a smaller $\sigma_{LO}=0.3mb$:

This change of σ_{LQ} has ~no effect on D⁰ R_{pA} or v₂:

Summary

We have studied p-Pb collisions at LHC energies with an improved multi-phase transport model.

Including a strong Cronin effect allows a simultaneous description of the D⁰ meson R_{pA} and v_2 data (at $p_T \le 8 \text{ GeV/c}$)

Parton scatterings significantly suppress charm spectra at moderate/ high p_T , Cronin effect significantly increases charm spectra at moderate/high p_T and thus compensates for the effect from parton scatterings

Charm v_2 is found to be mostly generated by charm quark scatterings, Cronin effect modestly decreases the charm quark or meson v_2

The Cronin effect is expected to grow with the system size, so this implies the importance of including the Cronin effect in heavy flavor studies (especially R_{AA}) in large systems