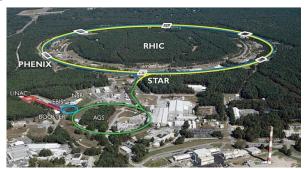


Advancing Nucleon and Pion Parton Distributions with Lattice QCD:
Insights and Impact on Global Analyses

Outline

- § Lattice QCD and Parton Distribution Functions
- § Selected Nucleon and Meson x-Dependent Parton Distributions
- § Impact of Lattice-QCD PDFs on Global Fits



Parton Distribution Functions

§ PDFs are universal quark/gluon distributions of nucleon

Many ongoing/planned experiments (BNL, JLab, J-PARC, COMPASS, GSI, EIC, EIcC, LHeC, ...)

Electron Ion Collider: The Next QCD Frontier

Imaging of the proton

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

EIC White Paper, 1212.1701; The Present and Future of QCD (2303.02579)

Global Analysis

- § Experiments cover diverse kinematics of parton variables
 - ➢ Global analysis takes advantage of all data sets

Theory Input

Global Analysis of PDFs

Exp't Input

§ Some choices made for the analysis

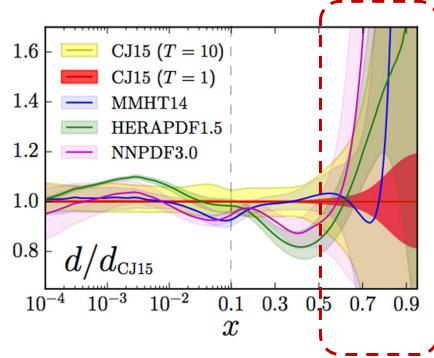
- > Choice of data sets and kinematic cuts
- \sim Strong coupling constant $\alpha_s(M_Z)$
- How to parametrize the distribution

$$xf(x,\mu_0) = a_0 x^{a_1} (1-x)^{a_2} P(x)$$

Assumptions imposed

SU(3) flavor symmetry, charge symmetry, strange and sea distributions

$$s = \bar{s} = \kappa (\bar{u} + \bar{d})$$

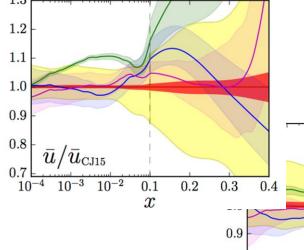


Global Analysis

§ Discrepancies appear when data is scarce

§ Many groups have tackled the analysis

> CTEQ, MSTW, ABM, JR, NNPDF, etc.



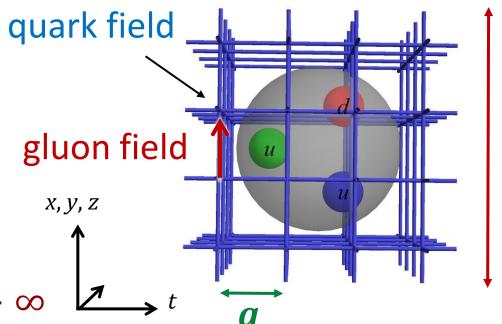
 q/q_{CJ15}

0.1

0.2

CTEQ-JLAB https://www.jlab.org/theory/cj/

0.3


Lattice QCD 101

- § Lattice QCD is an ideal theoretical tool for investigating the strong-coupling regime of quantum field theories
- § Physical observables are calculated from the path integral $\langle 0 | O(\bar{\psi}, \psi, A) | 0 \rangle = \frac{1}{7} \int \mathcal{D}A \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, e^{iS(\bar{\psi}, \psi, A)} O(\bar{\psi}, \psi, A)$

in **Euclidean** space

- ightharpoonup Quark mass parameter (described by m_{π})
- Impose a UV cutoff discretize spacetime
- Impose an infrared cutoff finite volume
- § Recover physical limit

$$m_\pi o m_\pi^{
m phys}$$
 , $m{a} o m{0}$, $m{L} o \infty$

Moments of PDFs

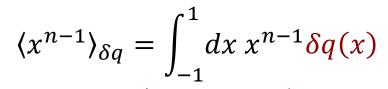
§ PDG-like rating system or average

 $\langle x^{n-1} \rangle_{\delta q} = \int_{-1}^{1} dx \ x^{n-1} \delta q(x)$

> Lattice representatives came together and devised a rating system

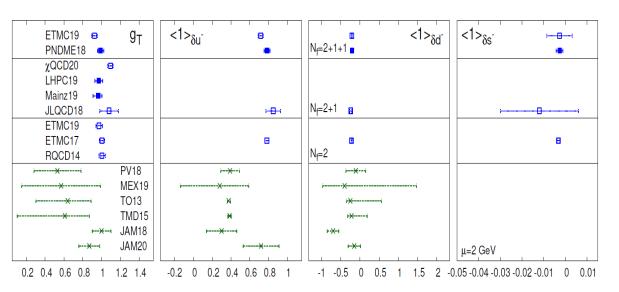
§ Lattice QCD/global fit status

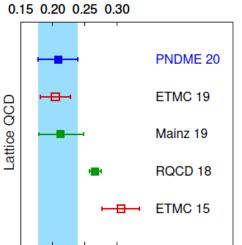
LatticePDF Report, 1711.07916, 2006.08636


Momen	nt Collaboration	Reference	N_f	DE	CE	FV	RE	ES		Value	Global Fit
	ETMC 19	(Alexandrou et al., 2019b)	2+1+1		*	0	*	*	**	0.926(32)	
g_T	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	0.989(32)(10)	
	$\chi \text{QCD} 20$	(Horkel <i>et al.</i> , 2020)	2+1		*	0	*	*	†	1.096(30)	
	LHPC 19	(Hasan et al., 2019)	2+1	0	*	0	*	*	*	0.972(41)	
	Mainz 19	(Harris et al., 2019)	2+1	*	0	*	*	*		$0.965(38)(^{+13}_{-41})$	0.10 - 1.1
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		1.08(3)(3)(9)	
	ETMC 19	(Alexandrou et al., 2019b)	2		*	0	*	*	**	0.974(33)	
	ETMC 17	(Alexandrou et al., 2017d)	2		*		*	*		1.004(21)(02)(19)	
	RQCD 14	(Bali et al., 2015)	2	0	*	*	*			1.005(17)(29)	
$\langle 1 \rangle_{\delta u}$	ETMC 19	(Alexandrou et al., 2019b)	2+1+1		*	0	*	*	**	0.716(28)	-0.14 — 0.91
	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	0.784(28)(10)	
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		0.85(3)(2)(7)	
	ETMC17	(Alexandrou et al., 2017d)	2		*		*	*		0.782(16)(2)(13)	
$\langle 1 \rangle_{\delta d}$	ETMC 19	(Alexandrou et al., 2019b)	2+1+1		*	0	*	*	**	-0.210(11)	-0.97 — 0.47
	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	-0.204(11)(10)	
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		-0.24(2)(0)(2)	
	ETMC17	(Alexandrou et al., 2017d)	2		*		*	*		-0.219(10)(2)(13)	
$\langle 1 \rangle_{\delta s}$	ETMC 19	(Alexandrou et al., 2019b)	2+1+1		*	0	*	*	**	-0.0027(58)	
	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	-0.0027(16)	N/A
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		-0.012(16)(8)	
	ETMC 17	(Alexandrou et al., 2017d)	2		*		*	*		-0.00319(69)(2)(22)	

Moments of PDFs

§ PDG-like rating system or average


§ LatticePDF Workshop



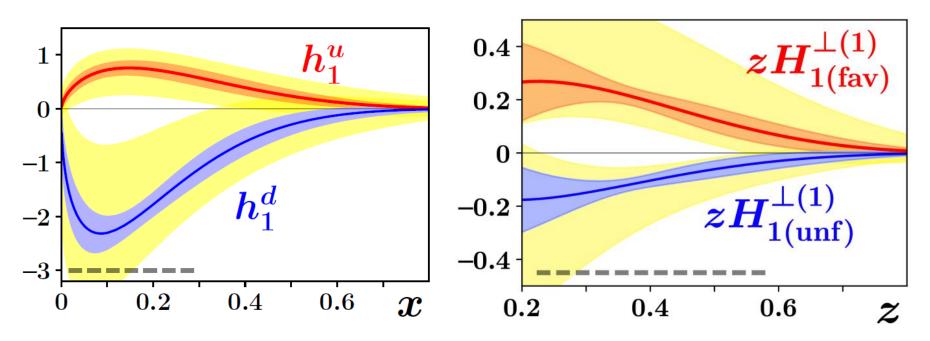
Lattice representatives came together and devised a rating system

§ Recent lattice QCD/global fit status

LatticePDF Reports, 1711.07916, 2006.08636

0.15 0.20 0.25 0.30 $\langle x \rangle_{\delta u - \delta d}$


S. Mondal et al 2005.13779



From Charges to PDFs

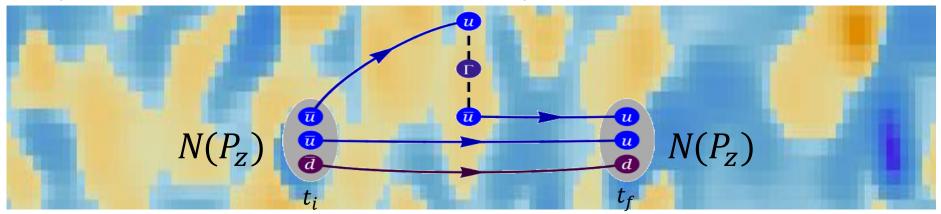
§ Improved transversity distribution with LQCD tensor charge, $g_T = \int_{-1}^{1} dx \, (h_1^u(x) - h_1^d(x))$

- **≈** Global analysis with 12 extrapolation forms: $g_T = 1.006(58)$
- > Use to constrain the global analysis fits to SIDIS π^\pm production data from proton and deuteron targets

Lin, Melnitchouk, Prokudin, Sato, 1710.09858, Phys. Rev. Lett. 120, 152502 (2018)

Outline

- § Lattice QCD and Parton Distribution Functions
- § Selected Nucleon and Meson x-Dependent Parton Distributions
- § Impact of Lattice-QCD PDFs on Global Fits



Lattice Parton Method

§ Large-momentum effective theory (LaMET)/quasi-PDF (X. Ji, 2013; See 2004.03543 for review)

§ Compute quasi-distribution via

$$\tilde{q}(x,\mu,P_z) = \int \frac{dz}{4\pi} e^{-izk_z} \left\langle P \left| \bar{\psi}(z) \Gamma \exp\left(-ig \int_0^z dz' A_z(z')\right) \psi(0) \right| P \right\rangle$$

§ Recover true distribution (take $P_z \rightarrow \infty$ limit)

$$\tilde{q}(x,\mu,P_{Z}) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{P_{Z}}\right) q(y,\mu) + O\left(\frac{M_{N}^{2}}{P_{Z}^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{(xP_{Z})^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P_{Z})^{2}}\right)$$
X. Xiong e.a., 1310.7471; J.-W. Chen e.a., 1603.06664

Lattice Parton Method

§ Large-momentum effective theory (LaMET)/quasi-PDF (X. Ji, 2013; See 2004.03543 for review)

Additional source of systematics: P_z

Smaller P_z gives better signal but larger systematics (like how heavier pion mass gives better precision)

New parameters in *x*-dependent methods to pay attention to

$$\tilde{q}(x,\mu,P_z) = \int \frac{dz}{4\pi} e^{-izk_z} \left\langle P \left| \bar{\psi}(z) \Gamma \exp\left(-ig \int_0^z dz' A_z(z')\right) \psi(0) \right| P \right\rangle$$

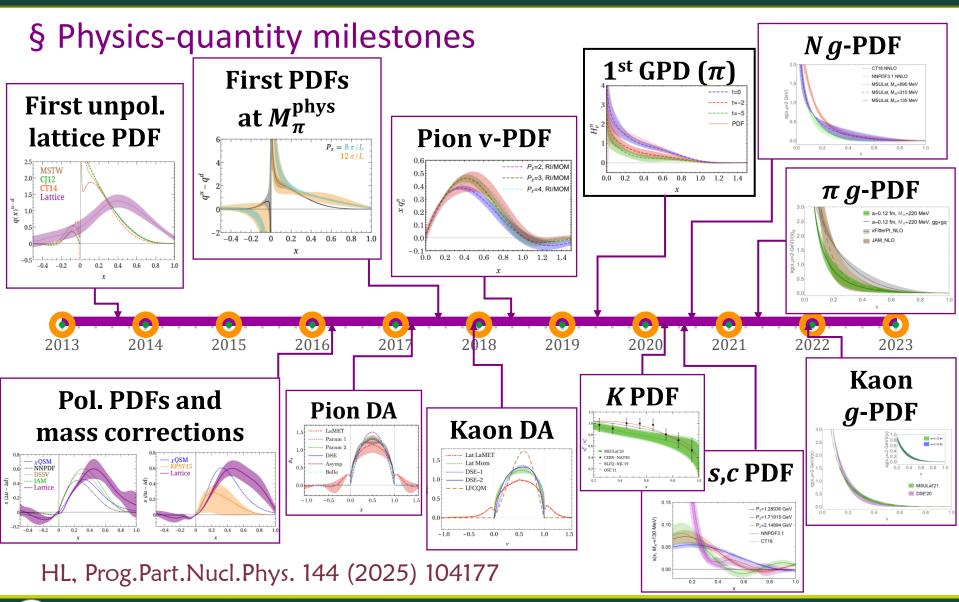
§ Recover true distribution (take $P_z \rightarrow \infty$ limit)

$$\tilde{q}(x,\mu,P_{Z}) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{P_{Z}}\right) q(y,\mu) + O\left(\frac{M_{N}^{2}}{P_{Z}^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{(xP_{Z})^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P_{Z})^{2}}\right)$$
X. Xiong e.a., 1310.7471; J.-W. Chen e.a., 1603.06664

Direct x-Dependent Structure

§ Longstanding obstacle to lattice calculations!

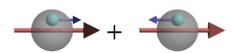
Quantities that can be calculated on the lattice today


Wanted PDFs, GPDs, etc.

Wanted PDFs, GPDs, etc.

- Quasi-PDF/large-momentum effective theory (LaMET) (X. Ji, 2013; See 2004.03543 for review)
- > Pseudo-PDF method: differs in FT (A. Radyushkin, 2017)
- Lattice cross-section method (LCS) (Y Ma and J. Qiu, 2014, 2017)
- ➢ Compton amplitude method (A.J. Chambers et al., 1703.01153)
- ➢ Hadronic tensor currents (Liu et al., hep-ph/9806491, ... 1603.07352)
- **≈** Euclidean correlation functions (RQCD, 1709.04325)

Lattice Parton Calculations



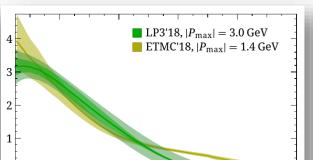
Lattice Example Results

§ Summary of PDF results at physical pion mass

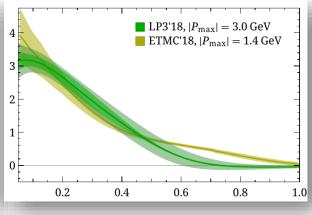
unpolarized

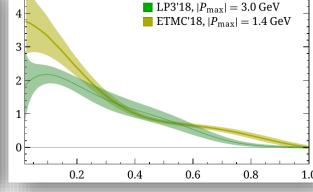
longitudinally polarized transversely polarized

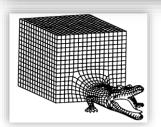
 $\Delta u(x) - \Delta d(x)$




$$u(x) - d(x)$$


 \blacksquare LP3'18, $|P_{\text{max}}| = 3.0 \text{ GeV}$


0.6


 \blacksquare ETMC'20, $|P_{\text{max}}| = 1.4 \text{ GeV}$ \blacksquare ETMC'18, $|p_{\text{max}}| = 1.4 \text{ GeV}$ \blacksquare ILab/W&M'20, $|P_{\text{max}}| = 3.3 \text{ GeV}$

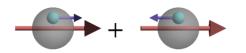
0.2

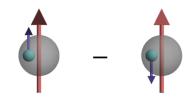
0.4

Finite volume, Discretization,

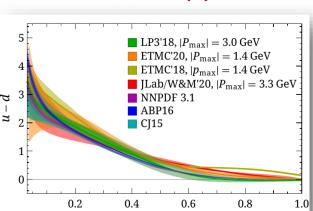
0.8

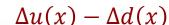
1.0

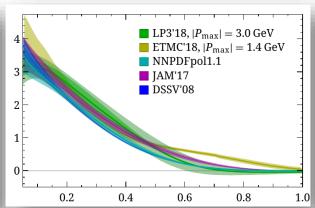

2006.08636 (PDFLattice2019)

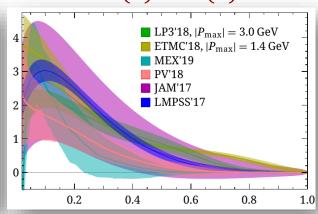

Lattice Example Results

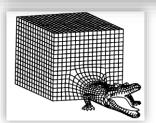
§ Summary of PDF results at physical pion mass


unpolarized


longitudinally polarized transversely polarized




$$u(x) - d(x)$$



 $\delta u(x) - \delta d(x)$

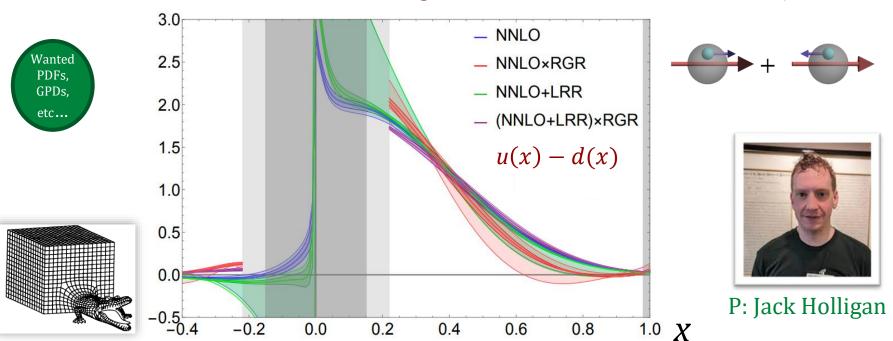
Finite volume, Discretization,

2006.08636 (PDFLattice2019)

Isovector PDFs Update

§ Nucleon isovector PDF calculated directly at physical pion mass

> NNLO matching & treat leading-renormalon effects


Leading-renormalon resummation (LRR)

R. Zhang, et. al.

Renormalization-group resummation (RGR) PLB 844, 138081 (2023)

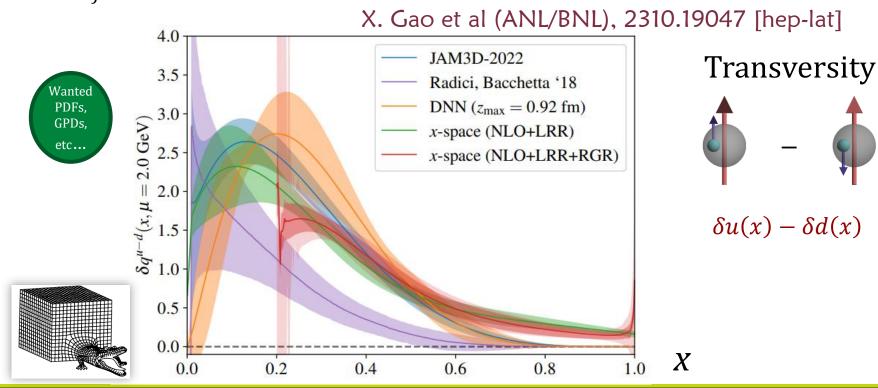
 $\gg N_f$ = 2+1+1 clover/HISQ, $a \approx 0.09$ fm, $P_z \approx 2$ GeV

J. Holligan, HL (MSULat), 2312.10829 [hep-lat]

Isovector PDFs Update

§ Nucleon isovector PDF calculated directly at physical pion mass

> NNLO matching & treat leading-renormalon effects



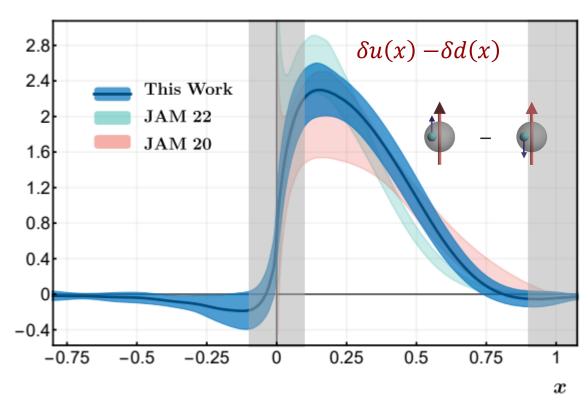
- Leading-renormalon resummation (LRR)
- Renormalization-group resummation (RGR)

R. Zhang, et. al. PLB 844, 138081 (2023)

 $\gg N_f$ = 2+1 clover/HISQ, $a \approx 0.076$ fm, $P_z \approx 1.5$ GeV

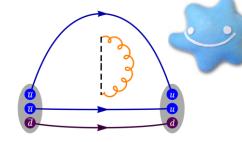
Continuum PDF

§ Nucleon PDFs using quasi-PDFs in the continuum limit



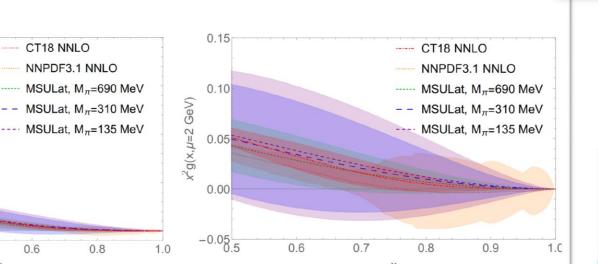
 $M_{\pi}L \in [3.9, 8.1]$ $P_z \in [1.8, 2.8]$

F. Yao et al (LPC), 2208.08008


Nucleon Gluon PDF (2020)

§ Gluon PDF using pseudo-PDF

➤ Lattice details: clover/2+1+1 HISQ 0.12 fm,


310-MeV sea pion


Z. Fan. et al (MSULat), 2007.16113

Study strange/light-quark

The comparison of the reconstructed unpolarized gluon PDF from the function form with CT18 NNLO and NNPDF3.1 NNLO gluon unpolarized PDF at $\mu = 2~GeV$ in the $\overline{\rm MS}$ scheme.

Slide by Zhouyou Fan@DNP2020

0.4

FG: Zhouyou Fan

0.2

 $xg(x,\mu=2 \text{ GeV})$

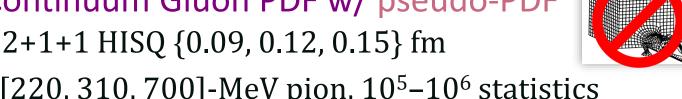
0.5

0.0

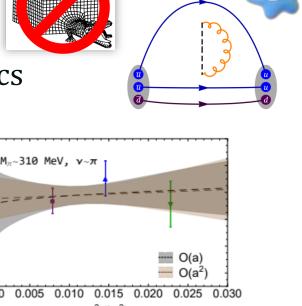
0.0

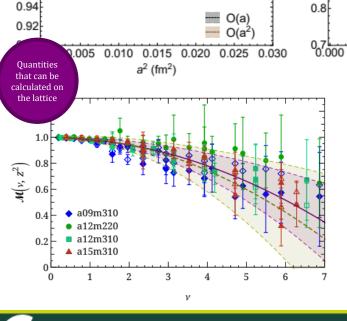
Gluon PDF in Nucleon

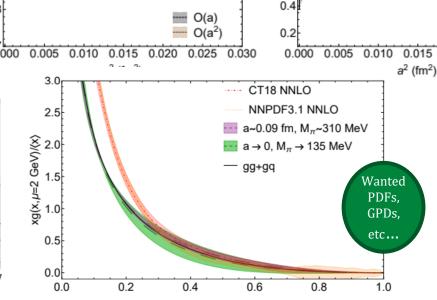
§ Continuum Gluon PDF w/ pseudo-PDF


1.0

M(v,z²)


≈ 2+1+1 HISQ {0.09, 0.12, 0.15} fm


[220, 310, 700]-MeV pion, 10^5 - 10^6 statistics


Z. Fan et al (MSULat), 2210.09985

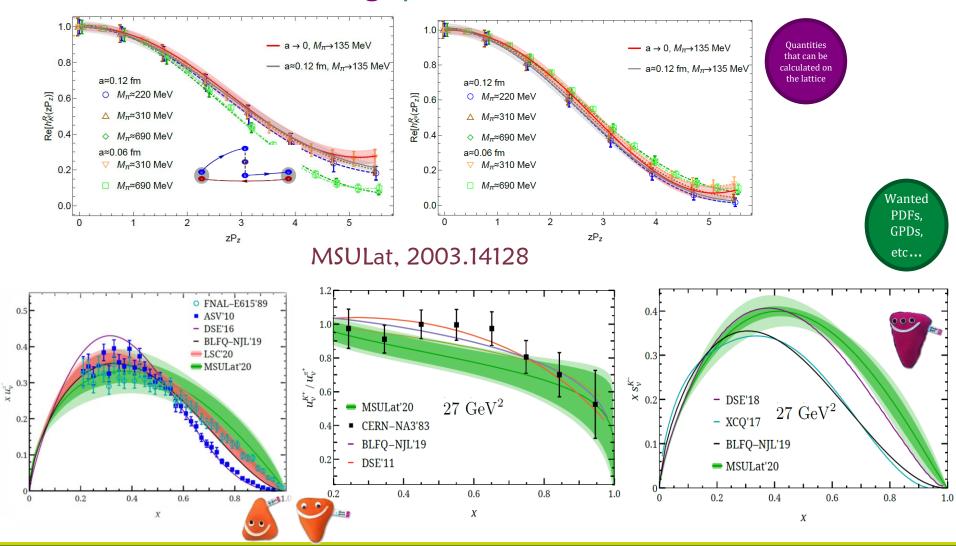
M_π~310 MeV, ν~π/2

.9°0 (√.z²)

G: Bill Good

1.04

1.02


1.00

0.98 0.96

 $M_{\pi} \sim 310$ MeV, $v \sim \pi/4$

Meson Valence-quark PDFs

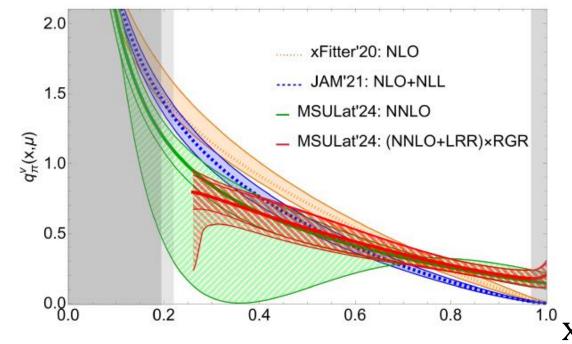
§ Pion/Kaon PDFs using quasi-PDF in the continuum limit

Valence-quark PDFs Update

§ Pion PDFs calculated directly at physical pion mass

> NNLO matching & treat leading-renormalon effects

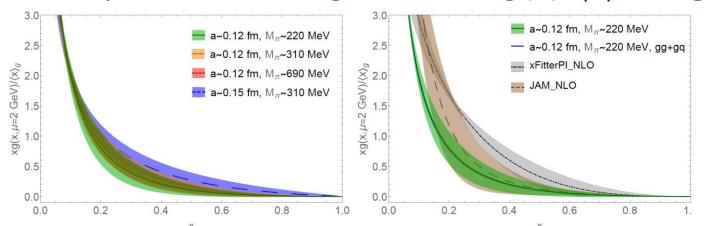
Leading-renormalon resummation (LRR)

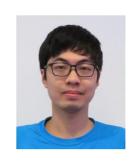

R. Zhang, et. al.

PLB 844, 138081 (2023) Renormalization-group resummation (RGR)

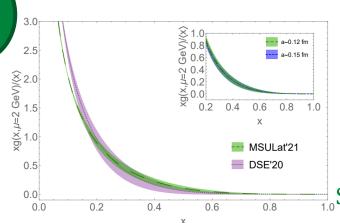
 \gg N_f=2+1+1 clover/HISQ, a~0.09 fm

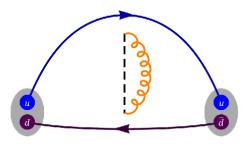
J. Holligan, HL (MSULat), 10.1088/1361-6471/ad3162

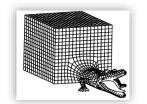

P: Jack Holligan



Meson Gluon PDFs


§ First pion and kaon gluon PDFs $g(x)/\langle x \rangle$ using pseudo-PDF


G: Zhouyou Fan

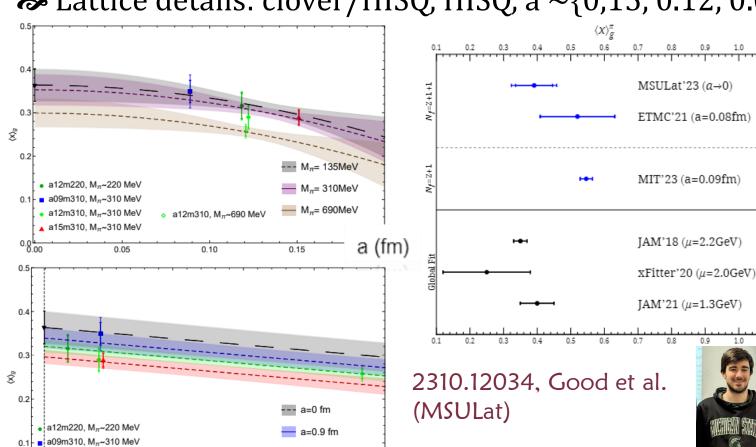

2104.06372, Fan et al. (MSULat); 2112.03124, Salas-Chavira et al. (MSULat)

G: Alejandro Salas-Chavira

finite-volume, discretization, heavy quark mass, ...

§ What does lattice QCD say about g(x)?

Wanted PDFs, GPDs,


etc...

Píon Gluon PDF Update

§ Study discretization systematic in $\langle x \rangle_{\{\pi,g\}}$

 \blacktriangleright Lattice details: clover/HISQ, HISQ, a \sim {0,15, 0.12, 0.09} fm

 M_{π}^2 (GeV²)

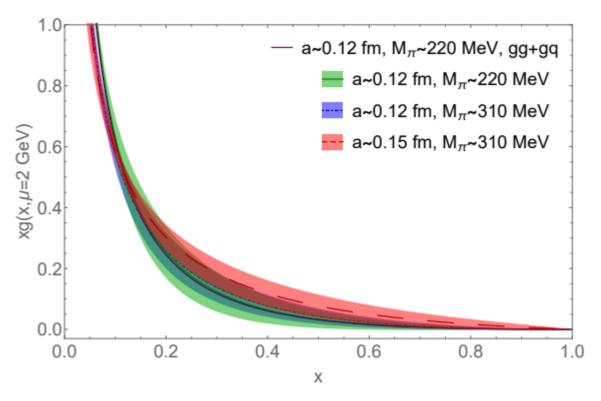
= a=0.12 fm

a=0.15 fm

a12m310, Mπ~690 MeV

0.2

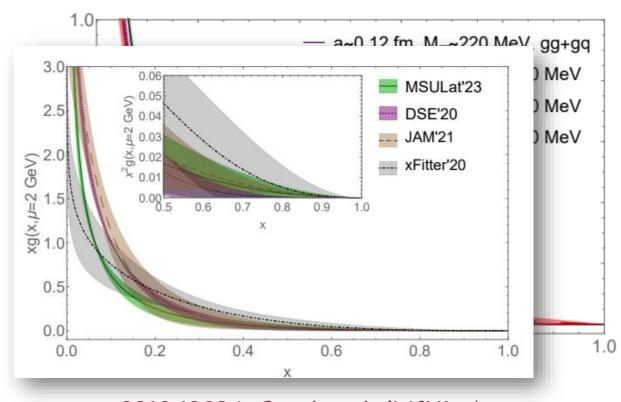
a12m310, M_π~310 MeV

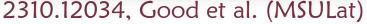

a15m310, M₂₇~310 MeV

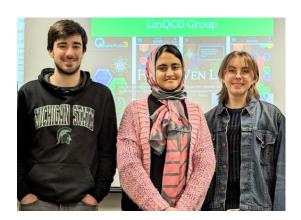

Píon Gluon PDF Update

§ Back to Pion gluon PDF g(x)

 \Rightarrow Update previous calculated $g(x)/\langle x \rangle$ in 2021

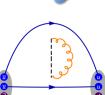





Pion Gluon PDF Update

§ Back to Pion gluon PDF g(x)

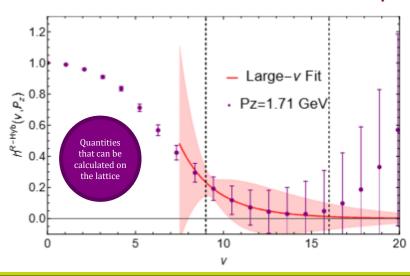
 \Rightarrow Update previous calculated $g(x)/\langle x \rangle$ in 2021

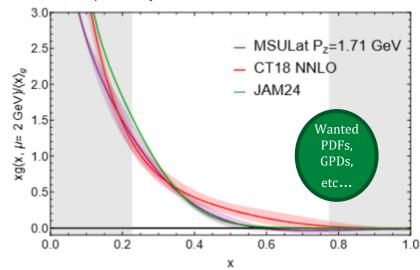


First LaMET Gluon PDF

§ Gluon PDF w/ quasi-PDF (no parameterization)

 \gg 2+1+1 clover/HISQ 0.12 fm, 690-MeV pion, 10^6 statistics Good et al (MSULat), 2505.13321


> PQCD calculated Wilson coefficient and matching kernel


$$C_0 = 1 + \frac{\alpha_s C_A}{2\pi} \left(\frac{5}{6} \ln \left(\frac{z^2 \mu^2 e^{2\gamma_E}}{4} \right) + \frac{3}{2} \right)$$

$$C^{\text{hyb.}}\left(\xi, \frac{\mu}{p^{z}}\right) = C^{\text{ratio}}\left(\xi, \frac{\mu}{p^{z}}\right) + \frac{\alpha_{s}C_{A}}{2\pi} \frac{5}{6} \left[-\frac{1}{|1-\xi|} + \frac{2\text{Si}((1-\xi)z_{s}p^{z})}{\pi(1-\xi)} \right]_{+}$$
(BNL)

Formula by Fei Yao (BNL)

Plots by Bill Good (MSU)

Hadron Tomography

§ Lots of progress on tomography by many collaborations

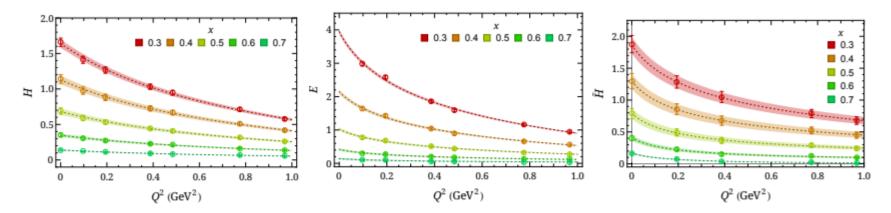
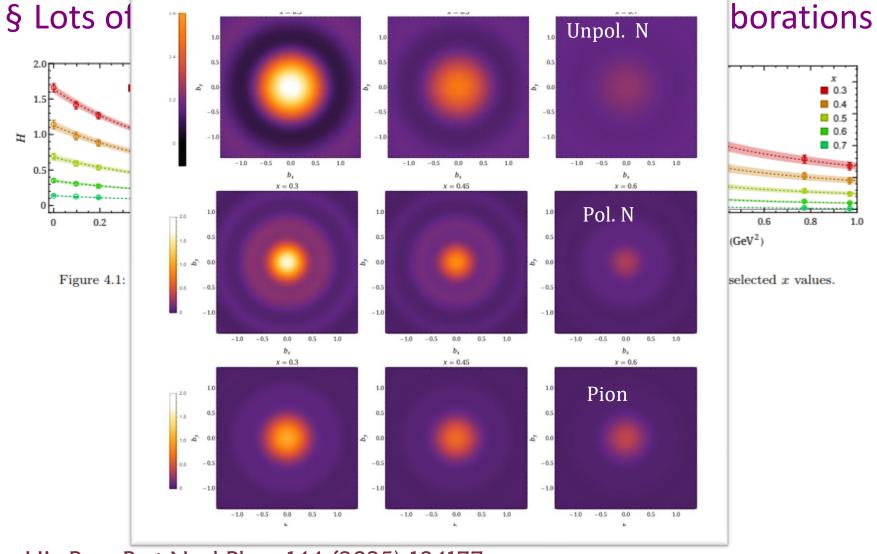



Figure 4.1: Nucleon isovector H (left), E (middle) and \tilde{H} (right) GPDs at $\xi = 0$ with z-expansion to Q^2 at selected x values.

HL, Prog.Part.Nucl.Phys. 144 (2025) 104177

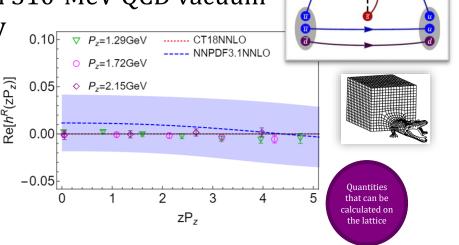
Hadron Tomography

HL, Prog.Part.Nucl.Phys. 144 (2025) 104177

Impact of Lattice-QCD PDFs on Global Fits

First Lattice Strange PDF

§ Results by MSULat/quasi-PDF method


Clover on 2+1+1 HISQ, 0.12-fm 310-MeV QCD vacuum

R. Zhang et al (MSULat), 2005.01124

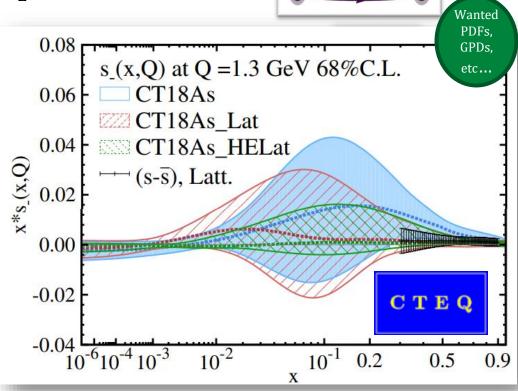
$$Re[h(z)] \propto \int dx (s(x) - \bar{s}(x)) cos(xzP_z)$$

FG: Rui Zhang

Lattice Strangeness Asymmetry Impact

§ Results by MSULat/quasi-PDF method

- ➢ Clover on 2+1+1 HISQ, 0.12-fm 310-MeV QCD vacuum
- \approx Extrapolated to $M_{\pi} \approx 140$ MeV, $P_z \approx 1.7$ GeV


R. Zhang et al (MSULat), 2005.01124

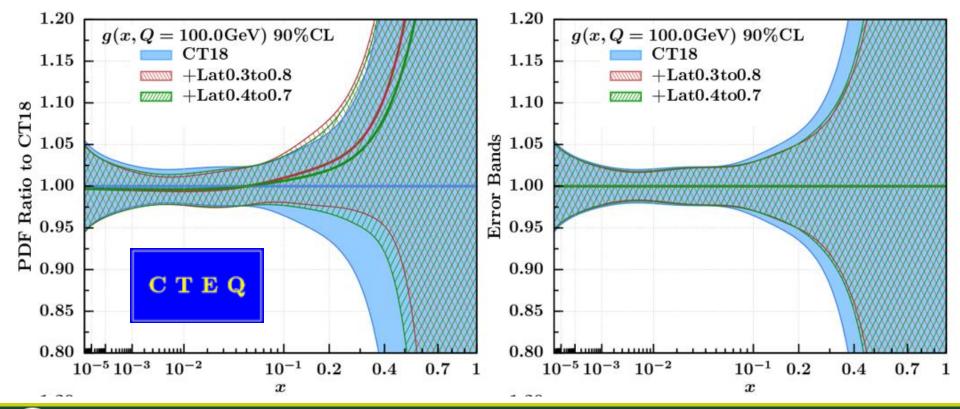
$$\operatorname{Re}[h(z)] \propto \int dx \left(s(x) - \bar{s}(x)\right) \cos(xz)$$

§ From quasi-PDF to PDF

$$\tilde{f}_{q}(x, P_{z}) = \int_{-1}^{1} \frac{dy}{|y|} f_{q}(y) C_{q/q}(x, y, P_{z}, \mu) + O\left(\frac{\Lambda_{\text{QCD}}^{2}}{x^{2} P_{z}^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{(1 - x)^{2} P_{z}^{2}}\right)$$

T. Hou, HL, M. Yan, C. Yuan, 2211.11064

§ The strangeness asymmetry $s(x,Q) - \bar{s}(x,Q)$ at x > 0.2 is difficult to measure, but can be predicted in lattice QCD

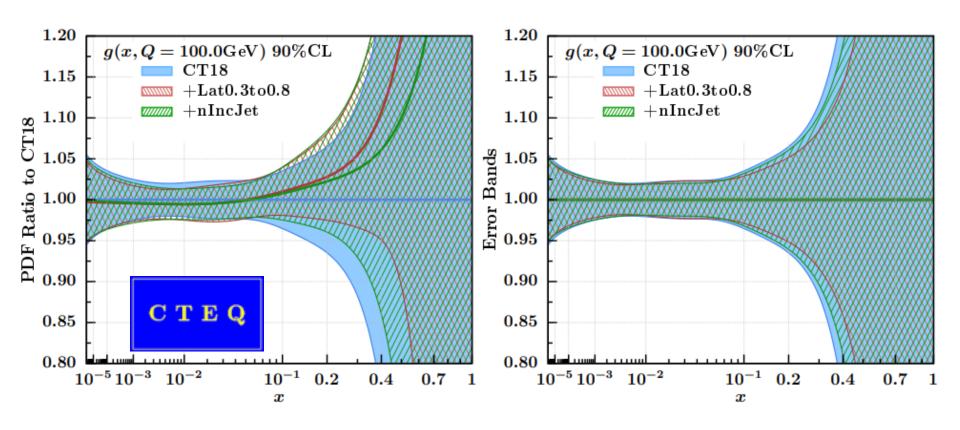


Nucleon Gluon PDF Impact

§ Impact study with CTEQ-TEA analysis

Take lattice inputs in the region where no strong experimental data constraints, $x \in [0.3, 0.8]$

Plots by Alim Ablat (Xinjiang U.); 2502.10630

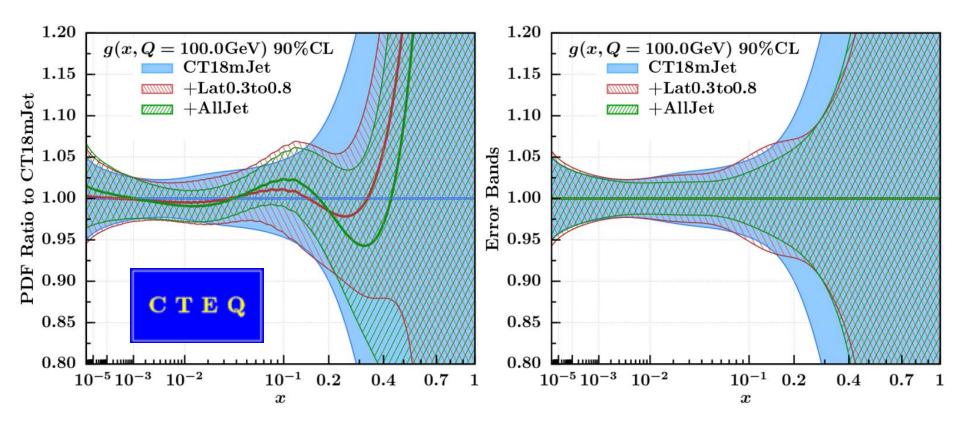


Nucleon Gluon PDF Impact

§ Impact study with CTEQ-TEA analysis

Take lattice inputs in the region where no strong experimental data constraints, $x \in [0.3, 0.8]$

Plots by Alim Ablat (Xinjiang U.); 2502.10630

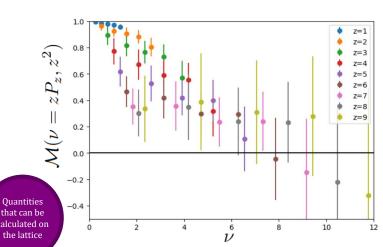


Nucleon Gluon PDF Impact

§ Impact study with CTEQ-TEA analysis

Take lattice inputs in the region where no strong experimental data constraints, $x \in [0.3, 0.8]$

Plots by Alim Ablat (Xinjiang U.); 2502.10630


Pion Gluon PDF Impact

§ Preliminary study with JAM analysis

> Treat lattice reduced pseudo-Ioffe time distribution (RpITD) as "cross-section" inputs in the JAM global fit

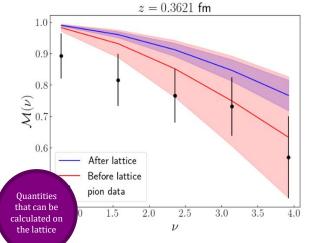
calculated

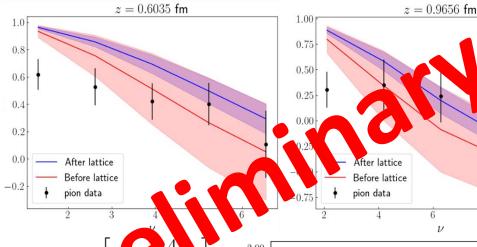
Plots by Bill Good (MSU)

matching kernels

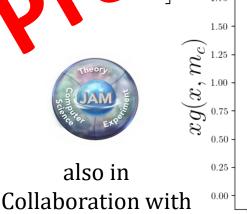
W. Good et al, 2409.02750 [hep-lat]

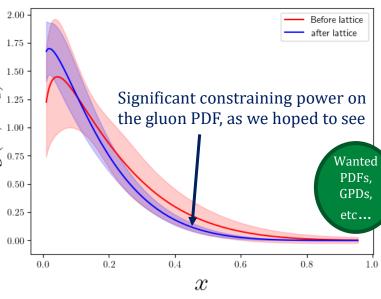
Lattice data
$$\mathcal{M}(\nu,z^2) = \int_0^1 dx \frac{xg(x)}{\langle x_g \rangle} \left[R_{gg}(x\nu,z^2\mu^2) + R_r(x\nu,z^2\mu^2) \frac{\langle x_S \rangle}{\langle x_g \rangle} \right]$$
Non-perturbative PDFs and moments
$$+ \int_0^1 dx \frac{xf_S(x)}{\langle x_g \rangle} R_{gq}(x\nu,z^2\mu^2) + \mathcal{O}(z^2m^2,z^2\Lambda_{\rm QCD})$$
Residual systematic error Balitsky, et al., PLB808, 135621 (2020)


Pion Gluon PDF Impact


§ Preliminary study with JAM analysis

Plots by Bill Good (MSU)



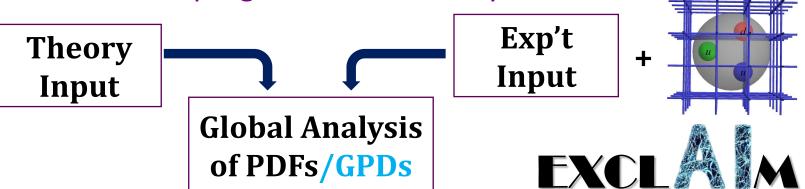

10

Lattice Progress & Challenges

§ Beyond the standard twist-2 collinear PDFs

- Generalized parton distributions (GPDs) for the pion and unpolarized/polarized nucleon
- Transverse-momentum- dependent distributions (TMDs)
 - Collins-Soper kernel, soft function and wavefunctions
- Twist-3 PDFs and GPDs

For more details and references, refer to 2202.07193


§ Challenges ahead for precision PDFs

- Large momentum is essential
 - With sufficient statistics nucleons may reach 5 GeV
- Methods for signal-to-noise improvement
 - Gluonic observables, new ideas for large momentum
- Access small-x physics; some methods have inverse problem in PDF extraction, more computational resources, etc.

Summary and Outlook

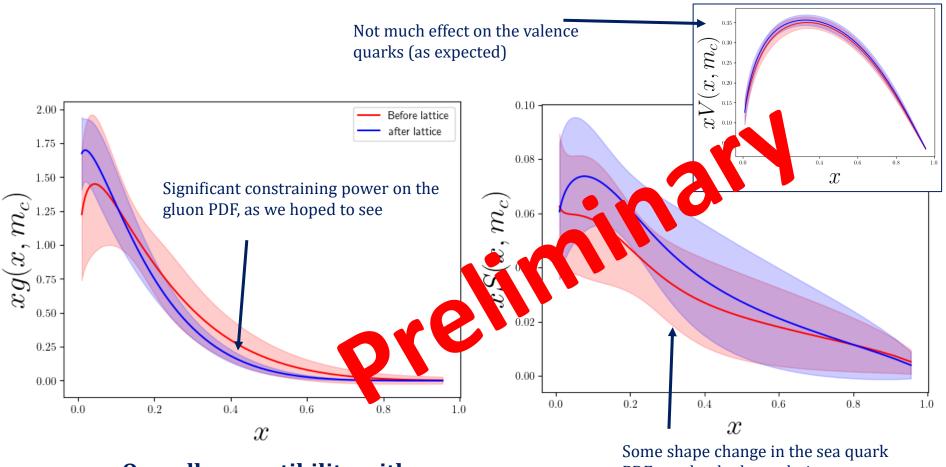
- § Exciting era using LQCD to study x-dependent parton distributions
 - Bjorken-x dependence of parton distributions now widely studied
 - More study of systematics planned for the near future
- § Lattice strange and gluon PDFs can have impacts
 - Treat lattice matrix elements as expt inputs in the future
 - Computational resources are needed for precision calculations (community support!)
- § Precision and progress are limited by resources

Thanks to MILC collaboration for sharing their 2+1+1 HISQ lattices & USQCD/NSF/DOE for computational resources This work is partially sponsored by grants NSF PHY 1653405 & 1653405, DOE DE-SC0024053 & RCSA Cottrell Scholar

x = 0.010

Students Wanted

LGT4HEP website: https://lgt4hep.github.io/

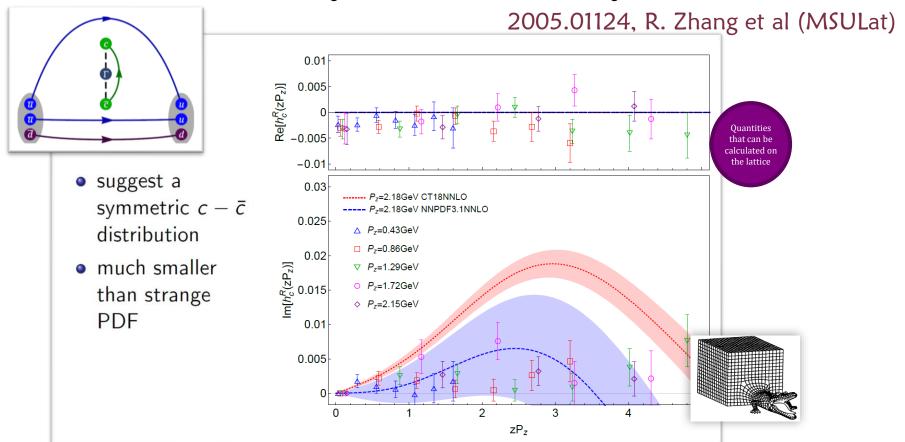


Backup Slides

More Pion PDF Updates

Overall compatibility with "before" lattice PDFs

PDF, need to look at relative errors

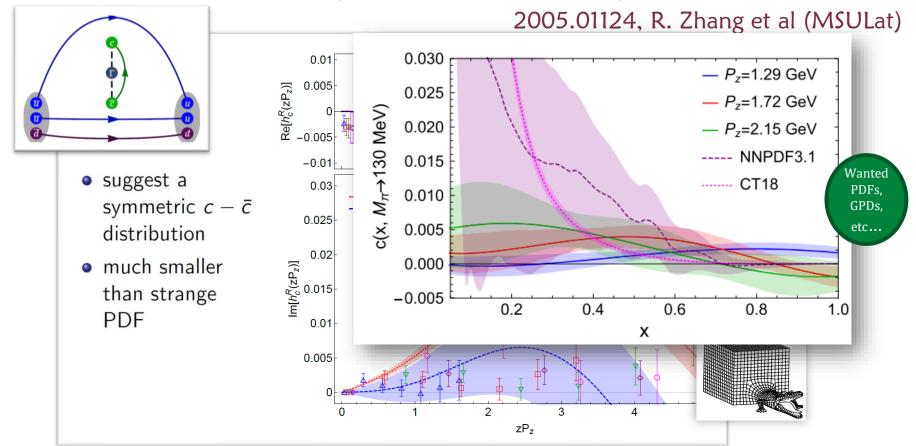


First Lattice Charm PDF

§ Large uncertainties in global PDFs

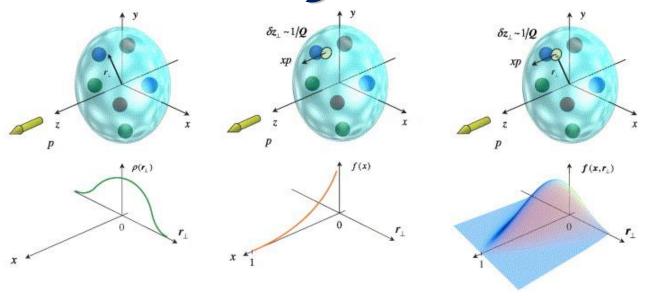
§ Results by MSULat/quasi-PDF method

Clover on 2+1+1 HISQ 0.12-fm 310-MeV QCD vacuum



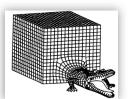
First Lattice Charm PDF

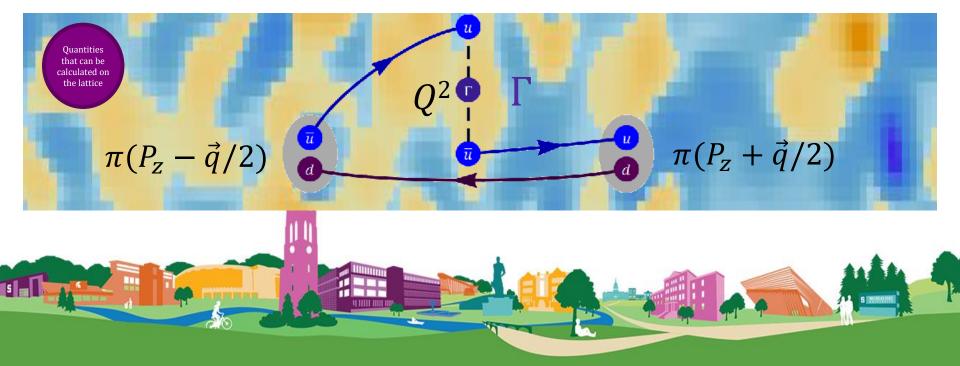
§ Large uncertainties in global PDFs


§ Results by MSULat/quasi-PDF method

Clover on 2+1+1 HISQ 0.12-fm 310-MeV QCD vacuum

Bjorken-x Dependent GPDs

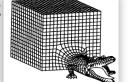



Generalized Parton Distributions

Single-ensemble result

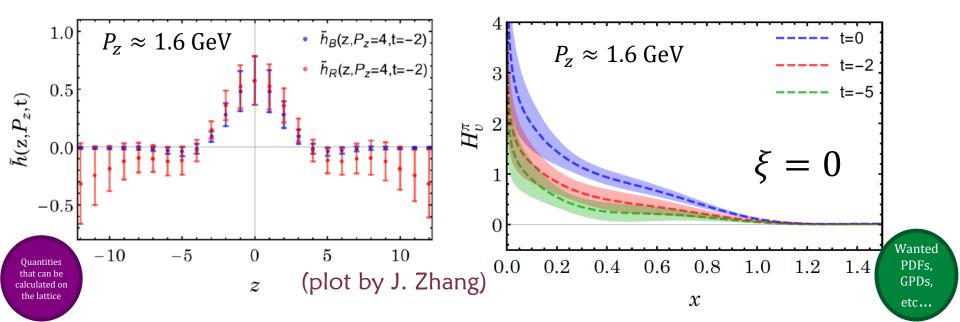
finite-volume, discretization, heavy quark mass,

..


First Lattice GPDs

§ First glimpse into pion GPD using Quasi-PDF/LaMET

Lattice details: clover/HISQ, 0.12fm, 310-MeV pion mass


$$P_z \approx 1.3, 1.6 \text{ GeV}$$

MILC, Phys. Rev. D, 82 (2010), 074501; Phys. Rev. D, 87 (2013), 0545056

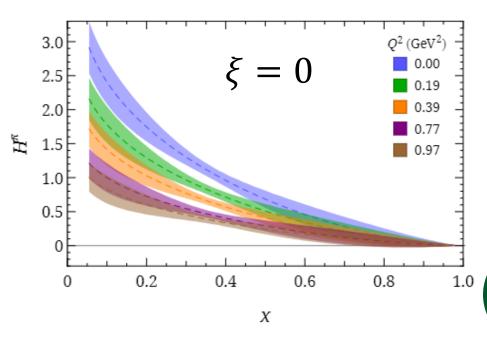
J. Chen, HL, J. Zhang, 1904.1237;

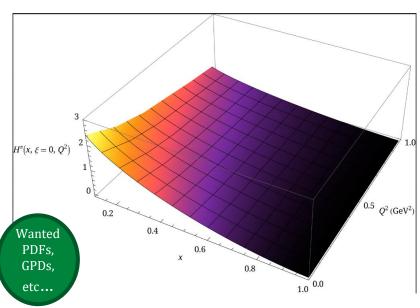
$$H_q^{\pi}(x,\xi,t,\mu) = \int \frac{d\eta^-}{4\pi} e^{-ix\eta^- P^+} \left\langle \pi(P+\Delta/2) \left| \overline{q} \left(\frac{\eta^-}{2} \right) \gamma^+ \Gamma \left(\frac{\eta^-}{2}, -\frac{\eta^-}{2} \right) q \left(-\frac{\eta^-}{2} \right) \right| \pi(P-\Delta/2) \right\rangle$$

Valence-Quark Pion GPD

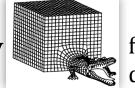
§ Pion GPD (H^{π}) using quasi-PDFs at physical pion mass

№ Lattice details: clover/2+1+1 HISQ 0.09 fm, 135-MeV pion mass, $P_z \approx 1.7$ GeV


fin dis

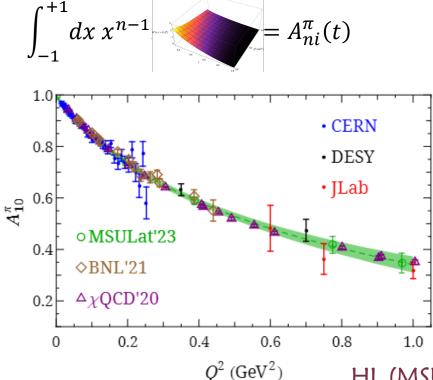

finite-volume, discretization,

HL (MSULat), Phys. Lett. B 846 (2023) 138181

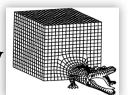


Valence-Quark Pion GPD

§ Pion GPD (H^{π}) using quasi-PDFs at physical pion mass


Lattice details: clover/2+1+1 HISQ 0.09 fm, 135-MeV pion mass, P_z ≈ 1.7 GeV

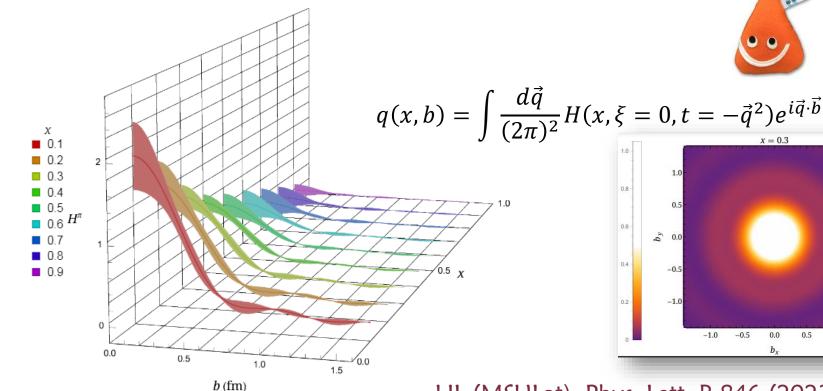
finite-volume, discretization,

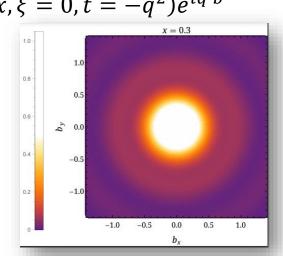


HL (MSULat), Phys. Lett. B 846 (2023) 138181

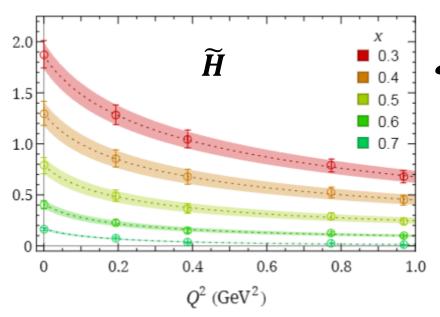
Pion Tomography

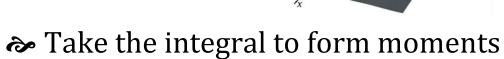
§ Nucleon GPD using quasi-PDFs at physical pion mass

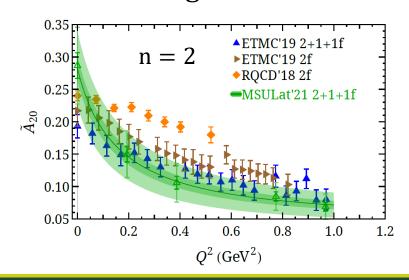

≈ Lattice details: clover/2+1+1 HISQ 0.09 fm, 135-MeV pion mass, $P_z \approx 1.7 \text{ GeV}$



finite-volume, discretization,

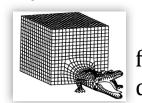



HL (MSULat), Phys. Lett. B 846 (2023) 138181


Nucleon Polarized GPDs

§ Helicity GPD (\widetilde{H})using quasi-PDFs at **physical pion mass**

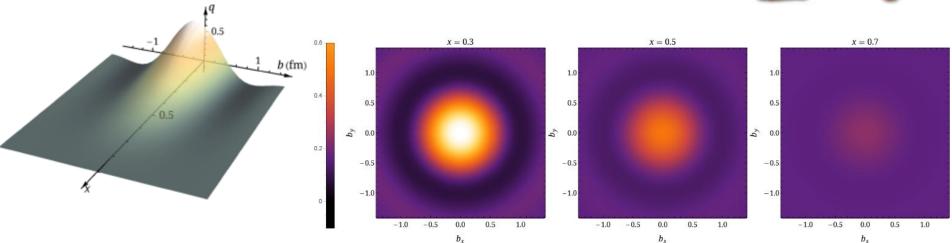
HL (MSULat), Phys.Lett.B 824 (2022) 136821



Nucleon Tomography

§ Nucleon GPD using quasi-PDFs at physical pion mass

Lattice details: clover/2+1+1 HISQ 0.09 fm, 135-MeV pion mass, P_z ≈ 2 GeV



finite-volume, discretization,

$$q(x,b) = \int \frac{d\vec{q}}{(2\pi)^2} H(x,\xi=0,t=-\vec{q}^2) e^{i\vec{q}\cdot\vec{b}}$$

HL, Phys.Rev.Lett. 127 (2021) 18, 182001

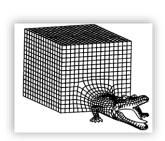
Also see work done by ANL/BNL/ETMC, 2209.05373, 2310.13114

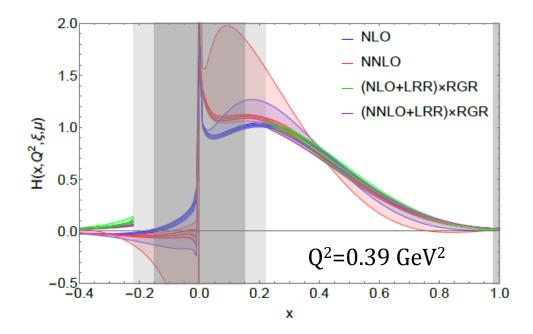
GPD Systematic Update

§ Nucleon isovector GPDs calculated directly at physical pion mass

> NNLO matching & treat leading-renormalon effects

Leading-renormalon resummation (LRR)

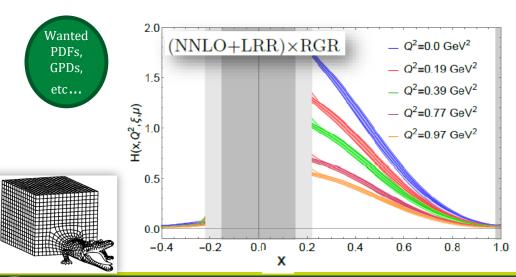

R. Zhang, et. al.

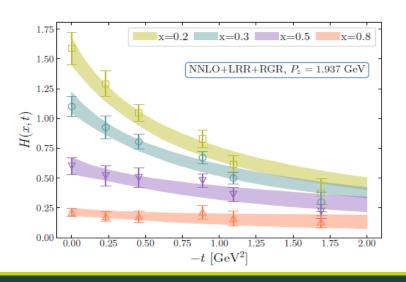

Separation PLB 844, 138081 (2023)

 $\gg N_f$ = 2+1+1 clover/HISQ, $a\approx 0.09$ fm, 135-MeV pion, $P_z\approx 2$ GeV

J. Holligan, HL (MSULat), 2312.10829 [hep-lat]

P: Jack Holligan


GPD Systematic Update


- § Nucleon isovector GPDs & pion valence-quark GPDs
- > NNLO matching & treat leading-renormalon effects

- Leading-renormalon resummation (LRR)
- Renormalization-group resummation (RGR)
- R. Zhang, et. al. PLB 844, 138081 (2023)

- N_f = 2+1+1 clover/HISQ, $a \approx 0.09$ fm, 135-MeV pion, $P_z \approx 2$ GeV J. Holligan, HL (MSULat), 2312.10829 [hep-lat]
- N_f = 2+1 clover/HISQ, $a \approx 0.09$ fm, 300-MeV pion, $P_z \approx 2$ GeV H. Ding et al (ANL/BNL/Wuhan), 2407.03516 [hep-lat]

