Introduction	NS Mimickers	BH-NS 00000	MHDuet	Phase Transitions	LES o	BNS Mergers	Conclusion O

Modeling Multimessenger Magnetized Compact Object Mergers

Astrophysical neutrinos and the origin of the elements INT@UW, Seattle, WA

Steve Liebling

Long Island University, New York, USA

July 24, 2023

Introduction ●○	NS Mimickers	BH-NS 00000	MHDuet	Phase Transitions	LES ○	BNS Mergers	Conclusion ○

Motivation

- Realistic simulations of compact object mergers...
 - Fully nonlinear general relativity
 - Realistic, temperature-dependent equations of state
 - Neutrino processes
 - Relativistic magnetohydrodynamics, resistive MHD, forcefree, hybrid
 - Magnetic field instabilities...resolve, multiscale, ?
- ...for multi-messenger astronomy...
 - GW: LVK, future third-generation detectors
 - Neutrinos: direct-detection unlikely, but ejecta composition important for kilonova properties
 - EM: GRBs, kilonovae, other [precursors, flares, FRBs(?), etc]
- ...with efficient use of modern computers:
 - good scaling to solve big problems in reasonable time
 - ${\scriptstyle \bullet }$ w/ distributed AMR to resolve range of scales
 - efficient power usage (GFLOPS/W)? GPU/accelerator?

Some Preliminary (and possibly provocative) Thoughts/Questions

Phase Transitions

BNS Mergers

Conclusion

MHDuet

- Lots of CCSN observed, but only one definitive BNS merger
- Which ν effects are the biggest (biggest bang for the buck)?:
 - Muons

NS Mimickers

Introduction

• Flavor change/quantum kinetics

BH-NS

- Leakage \rightarrow (M1 or MC) \rightarrow hybrid \rightarrow full direct Boltzmann
- $\bullet\,$ All ν species and lepton number conservation
- Other?
- How do above effects compare to BNS numerical errors for ejecta?
 - atmosphere & stellar surface discontinuity
 - Unresolved scales and instabilities
 - Choices: Initial data, EoS, environment (magnetosphere, dark matter, etc)
- What constitutes "exotic physics"?
 - Phase transitions (not so exotic?)
 - Axion Like Particles (ALPs) & Alternative Gravity
 - $\bullet \ \ Cosmic \ strings/PBHs/etc$
- Degeneracies

Introduction	NS Mimickers ●○○	BH-NS 00000	MHDuet	Phase Transitions	o LES	BNS Mergers	Conclusion ○

Inverting M vs R curve

- "Inverse Structure Problem for Neutron-Star Binaries" [Lindblom, 1807.02538
- "The Relativistic Inverse Stellar Structure Problem" [Lindblom,1402.0035] [Lindblom,Indik,1207.3744]

Introduction	NS Mimickers ○●○	BH-NS 00000	MHDuet	Phase Transitions	LES o	BNS Mergers	Conclusion O

Inverting M vs R curve

 Introduction
 NS
 Minickers
 BH-NS
 MHDuet
 Phase Transitions
 LES
 BNS Mergers
 Conclusion

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○</td

NSs-vs-Boson Stars [w/Rigel Mummers, unpublished Nov. 2022]

- Tidal deformabilities determined by **EoS**
- Stability can be read-off M-vs-R curve
- Formation mechanism understood from **stellar collapse**
- hard surface

- Tidal deformabilities determined by scalar potential
- Stability can be read-off M-vs-R curve
- Formation mechanism understood from scalar condensation

Multimessenger Signals from BH-NS [East,Lehner,SLL,Palenzuela,2101.12214]

BH-NS

Introduction

NS Mimickers

• EM observations may be key to distinguishing some BHNS from BNS

MHDuet

• Precursor signals do not beneft from GW sky-localization and so must be EM loud

Phase Transitions

BNS Mergers

Conclusion

- 5:1 mass ratio (7 M_{\odot} and $M_{
 m NS}=1.33M_{\odot}$)
- Magnetized NS with $\Gamma=2$ and surface field strength $B_*=3\times 10^9~{\rm G}$
- Studied previously: BH acts as a battery in Unipolar Induction (UI) model [Hansen,Lyutikov 2012] [McWilliams,Levin 2011] [Prio, 2012] [Lai 2012]
 [D'Orazio+ 2016] and BNS precursor flaring [Most,Philippov,2205.09643, 2001.06037]
- \bullet Evolved with $\rm HAD$ resistive MHD with current prescribed such that:
 - Inside the star: approaches ideal MHD
 - Outside the star: approaches force-free limit

[East,Lehner,SLL,Palenzuela,2101.12214]

- EM power peaks a bit after GW peak
- (non-spinning) BH leaves a small current sheet in its wake
- Plasmoids ejected with some columnation soon after merger

Gamma-radiation sky maps from compact binaries [Ortiz+ 2107.07020]

Phase Transitions

MHDuet

BH-NS

00000

NS Mimickers

Introduction

• Poynting flux only simple proxy for EM signals

BNS Mergers

Conclusion

- Use the Separatrix Layer model for gamma-ray emission of [Bai,Spitkovsky 0910.5741]
- Generalize to more complicated configurations:
 - Test with inclined dipole (ie pulsar)
 - Magnetic twists and offset dipole
 - Binaries with enclosing surface approximation
 - Perfectly conducting surface
 - Enclosing either two dipoles (BNS) or single dipole (BHNS)

Introduction NS Mimickers BH-NS MHDuet Phase Transitions LES BNS Mergers Conclusion

Gamma-radiation sky maps from compact binaries [Ortiz+ 2107.07020]

- Enclosing surface approximation matches well orbiting NS (left top)
- Generate skymap and lightcurves for our BHNS evolution (left middle)
- Enclosing surface approximation (left bottom)

Introduction	NS Mimickers	BH-NS 0000●	MHDuet	Phase Transitions	LES ○	BNS Mergers	Conclusion ○

BH-NS Mergers w/ $\rm MHDuet$

Carlos Palenzuela (UIB Spain) & Miguel Bezares (U.Nottingham UK)

- Work in progress...
- Study magnetic effects with LES subgrid
- Extend to realistic EoS w/ M1 neutrino transport

Introduction	NS Mimickers	BH-NS 00000	MHDuet ●○	Phase Transitions	LES o	BNS Mergers	Conclusion ○
	1 3 67	TD T7					

MHDUET and MHDUEX

- $\bullet\,$ Developed as successor to $\rm HAD$
- \bullet Written w/in Simflowny which generates the code using a range of

infrastructures

- Code can be generated using either:
 - SAMRAI infrastructure from LLNL which reaches exascale for some problems
 - AMReX massively parallel AMR from LBNL/NREL/ANL via DOE
 - Promises scaling to higher numbers of cores
 - Supports GPUs via CUDA, HIP, SYCL, OpenACC

Simflowny	H	FT					
Documents tree	Docu	uments					
		Name †	Author	Date	Version	Туре	Description
regions		D Boson Star policy	Carlos Palenzuela	2016-06-20T00:00:00	RK4 WENO5Z	PDE Discretization Pol	
policies		D Gresho-chan Polic	Carlos Palenzuela	2019-05-28T12:38:23	WENO 5Z SPH	PDE Discretization Pol	
schemas		Lorentz 3D policy	Borja Miñano	2015-08-11T00:00:00	WENO5Z SPH species	PDE Discretization Pol	
modelFunctions		D Operator crossed	Carlos Palenzuela	2016-10-19T00:00:00	1	Spatial Operator Discre	
		Stev	ven L. Liebling	Modeling M	lultimessenger M	agnetized Comp	act Object Mer

Introduction	NS Mimickers	BH-NS 00000	MHDuet ○●	Phase Transitions	LES o	BNS Mergers	Conclusion O
MITDI							

MHDUET

- Past work with MHDUET:
 - Magnetized NS & BNS mergers with phase transitions [SLL,Palenzuela,Lehner 2010.12567]
 - BNS mergers compared to HAD [SLL,Palenzuela,Lehner 2002.07554]
 - Related codes: boson star mergers [Bezares+ 2201.06113]
- Initial data via LORENE or FUKA
 - BH-NS binaries in quasi-circular orbits
 - NS-NS binaries in quasi-circular orbits
- $\bullet \ \mathrm{MHD}{}_\mathrm{UET}$ open-source <code>mhduet.liu.edu-more</code> documentation to come

Phase Transitions: EoS Variations [SLL, Palenzuela, Lehner, 2010.12567]

Variations of SLy defined as piecewise polytrope:

- Onset density, ρ_1
- "size" of PT (e.g. "latent heat") $\Delta \rho$
- Γ in post-PT regime (e.g. slope)

Affects stability of solutions

 Introduction
 NS Mimickers
 BH-NS
 MHDuet
 Phase Transitions
 LES
 BNS Mergers
 Conclusion

 00
 000
 00
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Phase Transitions: Star Dynamics [SLL, Palenzuela, Lehner, 2010.12567]

Non-rotating, non-magnetic, perturbed by accretion (large atmosphere):

- Oscillations drive NS through PT
- If hybrid stable, oscillations tends to dampen
- If hybrid unstable, collapse ensues

similar to "reverse phase transitions" in BNS of [Ujevic+ 2211.04662]

Introduction NS Mimickers BH-NS OCOC OF OCOC O

Phase Transitions: Rotating Magnetized Stars

[SLL,Palenzuela,Lehner,2010.12567]

Magnetic field changes core with PT but not likely to change EM signals

 $\frac{1}{2} \frac{1}{2} \frac{1}$

[SLL,Palenzuela,Lehner,2010.12567]

[Espino+,2301.03619] finds PT damps m = 1 instability

Here, no significant damping of m = 1 mode by PT

Although PT in this case isn't that strong

Why Trust Large Eddy Simulation (LES) Method w/ Gradient Sub-Grid Scale (SGS) Model

BH-NS

MHDuet

• Tests:

NS Mimickers

Introduction

ullet a priori: filter/coarsen a resolved solution, SGS τ correlates very well with SFS

Phase Transitions

- a posteriori: LES solution compares will w/ well-resolved non-LES solution
- Spectral scalings agree with expectations
- No free parameters (besides C_i) and no calibration
- Used (ie *trusted*) in a variety of fields
- Gradient model allows both direct and inverse cascades

...a well motivated subscale model

LES

BNS Mergers

Conclusion

Introduction	NS Mimickers	BH-NS 00000	MHDuet	Phase Transitions	LES O	BNS Mergers ●0000000	Conclusion O

[Palenzuela, SLL, Minano, 2204.02721]

General Relativity and Quantum Cosmology

arXiv:2204.02721 (gr-qc)

[Submitted on 6 Apr 2022]

Large Eddy Simulations of Magnetized Mergers of Neutron Stars with Neutrinos

C.Palenzuela, S.L.Liebling, B.Micano

- Extend LES to realistic equations of state
- \bullet Implement leakage scheme within $\rm MHDUET$
- Improve local optical depth calculation

Binary Convergence

SH EoS, $M_B = 1.49 M_o dot$ (Total $M_{\rm ADM} = 2.74 M_{\odot}$, T = 0.01 MeV Initial separation 45 km

Convergence of GW involves most all of the code: EOM, AMR, extraction, EoS

Waveforms converge to at least $\mathcal{3}^{\mathrm{rd}}$ order

Introduction	NS Mimickers	BH-NS 00000	MHDuet	Phase Transitions	LES ○	BNS Mergers ○○●○○○○○	Conclusion O

LES Amplifies Magnetic Field

Introduction	NS Mimickers	BH-NS 00000	MHDuet	Phase Transitions	LES o	BNS Mergers	Conclusion O

LES Amplifies Magnetic Field But Not Much Affect on ν luminosities

NS Mimickers RH-NS MHDuet BNS Mergers Conclusion Introduction Phase Transitions 00000000 Latest Work: Study GW170817-like BNS mergers H4 ΒΗΒΛΦ — MPA1 SLv - HB ALF2 ENG APR4 - DD2 _____I \$220 SEHO FPS 1000 GW170817 800 • Work with Carlos Palenzuela (@UIB Spain) Ž 600 • Chirp mass consistent with GW170817: $1.186 \ M_{\odot}$ 400 AT2017gfo • EoSs consistent with current constraints. $\mathcal{M}_{\rm chirp} = 1.188 \ M_{\odot}$ spanning range: SLv and DD2 200

```
E.g.: [Radice, et al, 1711.03647]
```

0.7

0.8

0.9

1.0

0.5

0.6

Introduction	NS Mimickers	BH-NS 00000	MHDuet	Phase Transitions	LES o	BNS Mergers 00000●00	Conclusion ○

BNS Mergers

- Realistic, temperature dependent EoS
- Large-Eddy-Simulation techniques for magnetic field
- Leakage (and M1 neutrino transport soon...see [Izquierdo,Pareschi,Minano,Masso,Palenzuela,2211.00027])

EoS	q	$M_{ m chirp}$	$M_{ m ADM}$	R_1	R_2	C_1	C_2	$ B_{ m initial} ^{ m max}$	$t_{ m peak}$	$t_{ m collapse} - t_{ m pe}$
		(M_{\odot})	(M_{\odot})	(km)	(km)			(10 ¹⁴ G)	(ms)	(ms)
DD2	0.75	1.186	2.759	10.2	10.5	0.16	0.15	8.2	14.6	
DD2	0.87	1.186	2.733	10.4	10.5	0.20	0.19	4.6	15.4	
DD2	1.00	1.186	2.725	10.4	10.4	0.18	0.18	3.0	15.3	
SLy	0.75	1.186	2.759	8.7	9.3	0.26	0.20	2.2	18.2	8.8/8.7
SLy	0.87	1.186	2.733	8.9	9.2	0.23	0.19	1.5	18.0	12.8/15.2
SLy	1.00	1.186	2.725	9.1	9.1	0.24	0.24	1.9	15.0	11.5/8.9

Introduction	NS Mimickers	BH-NS 00000	MHDuet	Phase Transitions	LES o	BNS Mergers ○○○○○●○	Conclusion O

Gravitational Waves

Leakage damps oscillations

Assymmetric mass ratios collapse sooner (consistent with [Just+,2302.10928]) modulo some ambiguity in when to start the clock

Postmerger Gravitational Waves

[Dhani,Radice+,2306.06177] find that high frequency content indicative of collapse

Here, SLy4 collapses (with HF bump) versus DD2 which does not collapse (without HF bump) Introduction NS Mimickers BH-NS MHDuet Phase Transitions LES BNS Mergers Conclusion

Conclusion & Continuing Work

- The scalar potential may allow for boson star to mimick NS requiring multimessenger to distinguish
- Magnetized NS in BHNS may potentially power EM signal in the absence of significant disruption
- Examined phase transitions in NS: magnetized stars, m = 1, "reverse PT"
- Future: analyzing runs consistent with GW170817:
 - Two EoSs that span consistent range
 - Mass ratio spanning q = 0.75 1
 - Magnetized stars with LES subgrid model
 - Neutrino scheme: leakage (and soon M1 transport)
 - Looking at ejecta properties, kilonovae predictions, and r-process yields
- Have begun studying BH-NS mergers
- \bullet Have an AMReX-enabled version of the code, $\rm MHDUEX:$
 - Can run on GPUs
 - Needs more testing